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Transport-of-intensity and transport-of-spectrum equations are derived using the coherent mode decomposition for
paraxial fields having an arbitrary state of coherence. We give a simple example that demonstrates the difference
between a partially coherent and a fully coherent transport of intensity or spectrum. The results presented here may
be used to estimate the intensity response in a variety of phase-contrast imaging modalities and may form the basis
for improved phase-retrieval techniques. © 2010 Optical Society of America
OCIS codes: 030.0030, 030.4070, 110.4980, 350.5030.

Phase contrast is commonly exploited to circumvent the
low absorption contrast of semitransparent samples in
a wide range of imaging techniques, including optical
microscopy [1], x-ray imaging [2], and transmission elec-
tron microscopy [3]. In quantitative phase-contrast ima-
ging techniques, phase-retrieval methods are employed
to compute an image that depicts the projected refractive
index distribution of a sample. Assuming perfectly coher-
ent illumination, phase-retrieval methods have been de-
veloped based on the transport-of-intensity equation
(TIE) and other physical models that relate the field
phase to intensity measurements [4]. In practice, of
course, only partially coherent fields are available, and
performing phase retrieval based on the assumption of
a perfectly coherent illuminating field can yield erro-
neous results.
In this Letter, we make use of the coherent mode de-

composition [5–8] to derive a generalization of the TIE
that is valid for spatially partially coherent paraxial fields
in which the modal phases are governed by the eikonal
equation [7]. In previous works [9,10], a model has been
presented that is not derived from theWolf equations but,
instead, introduces a heuristic “generalized phase” that
reduces to the solution to the eikonal equation in the limit
that the field is fully spatially coherent. While this tech-
nique may yield reasonable results in some situations,
such as in synchrotron radiation when the overwhelming
majority of power is concentrated in one mode [11], mul-
tiple modes exist in partially coherent fields, e.g., those
from x-ray tube sources. The phase and amplitude from
each mode contributes to the field intensity and, there-
fore, the TIE must incorporate them all.
Consider first a deterministic monochromatic field that

satisfies the paraxial wave equation, i.e., Uðr;ωÞ ¼
Vðr;ωÞ expðikzÞ, where
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denotes the transverse Laplacian. By writing
Eq. (1) as L̂V ¼ 0, the construction of the quantity
V% L̂ V − V ½L̂V '% results in the local relation
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where S ¼ U%U ¼ V%V is the Fourier spectrum of the
field and ψ ¼ argðVÞ is the phase of the field. This equa-
tion relates the local rate of change of the spectrum in the
approximate direction of wave propagation to the trans-
verse rates of change of the spectrum and the phase of
the field. For monochromatic fields, Eq. (2) is often re-
ferred to as the TIE. It should be noted that Eq. (2) is
actually a transport-of-spectrum equation and that, gen-
erally, no simple relationship exists between the spec-
trum and intensity for polychromatic fields.

Although many treatments of energy transport for ima-
ging applications are developed by using deterministic
fields like the one above, realizable fields and sources
are stochastic (random) processes. Random fluctuations
in the field induce partial coherence between values of
the field at pairs of points and times (or frequencies)
[6]. In general, such fields do not have well-defined Four-
ier transforms and, thus, the Fourier spectrum in Eq. (2)
does not exist, except in the generalized sense. For sta-
tionary ergodic fields, however, the Fourier spectrum
may be replaced by a power spectral density.

The fields in Eq. (1) are not directly accessible, being
realizations of a random process. In the spectral domain,
the measurable quantity of interest is the cross-spectral
density (CSD):

Wðr1; r2;ωÞ ¼ hU%ðr1;ωÞUðr2;ωÞiω; ð3Þ

where h·iω denotes the ensemble average of frequency-
domain realizations. The power spectral density,
Sðr;ωÞ ¼ Wðr; r;ωÞ, gives the power per frequency in the
optical field. The CSD may be expressed in a coherent
mode decomposition [5,12]:
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Wðr1; r2;ωÞ ¼
XM

m¼1

γmðωÞϕ%
mðr1;ωÞϕmðr2;ωÞ; ð4Þ

where γm are spectral weights, ϕm are the so-called
coherent modes that are statistically independent and sa-
tisfy the Helmholtz equation (or an appropriate approx-
imation), andM is the total number of coherent modes. It
should be noted that the use of the power spectral den-
sity and CMD is based on an assumption of stationary
ergodic fields. As in the deterministic case, the ϕm can be
written as

ϕmðr;ωÞ ¼ amðr;ωÞeiψmðr;ωÞ; ð5Þ

where ψm is the real-valued phase of mode m. While the
deterministic coherent modes have a well-defined phase,
it is important to stress that the random field does not.
The only measurable phase related to the partially coher-
ent field is that of the CSD.
From Eq. (4), we find the spectrum of the field:

Sðr;ωÞ ¼
XM

m¼1

γmðωÞDmðr;ωÞ; ð6Þ

where Dmðr;ωÞ ¼ a2mðr;ωÞ. Substitution into Eq. (2)
gives the transport-of-spectrum equation for partially
coherent fields:
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The TIE for partially coherent fields is found by integrat-
ing Eq. (7) over ω:
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Equations (7) and (8) are the main results of this work.
For a random paraxial field in an arbitrary state of partial
coherence, they relate variations along the optical axis in
the spectrum or intensity to the coherent modes of the
random field. No further simplifications in these equa-
tions may be made without additional assumptions re-
garding the physical or statistical characteristics of the
field.
Equation (8) may be reduced to the results of other

intensity propagation models for polychromatic fields
[10,13,14], for the case that the field is geometric. In
the geometrical limit, the modes take the form given in
Eq. (5) but with am and ψm independent of frequency.
We write Dmðr;ωÞ → !DmðrÞ and ψmðr;ωÞ → k!ψmðrÞ.
Equation (7) reduces to
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·
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and Eq. (8) reduces to
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where

Pm ¼
Z

dωγmðωÞ ð11Þ

is the total intensity in each mode.
Note that, when only one mode is relevant, the field

can also be regarded as being fully spatially coherent,
i.e., Pm ¼ 0 ∀m ≠ 1. In this case, Eq. (10) reduces to

∂IðrÞ
∂z

¼ −P1∇
⊥

· !D1ðrÞ∇
⊥

!ψ1ðrÞ: ð12Þ

Note that P1
!D1ðrÞ ¼ IðrÞ. This is the result found by Gur-

eyev et al. under the potential scattering model ([10], see,
for example, Eq. 1). Additionally, in the case that the field
is single mode and ∇

⊥

S ·∇
⊥

!ψ1 ≪ S∇2
⊥

!ψ1, the phase
satisfies the Poisson equation [13]:

∇

2
⊥

!ψ1ðr;ωÞ ¼ −S−1ðr;ωÞ ∂Sðr;ωÞ
∂z

: ð13Þ

Equations (12) and (13) can be applied to fields that are
well approximated by a single coherent mode. The TIE
has many important applications in fields such as optical
microscopy, for example, where it serves as the basis for
phase-retrieval algorithms [13,15]. As an example of a
single-mode field to which Eqs. (12) and (13) apply, con-
sider a statistically stationary point source. For a single
point source S ¼ 1=r2, where r is the distance from the
source to the observation point, and the right-hand side
of Eq. (13) evaluates to −S−1

∂S=∂z ¼ 2z=r2. The phase of
the field radiating from the point source is given by
!ψ1 ¼ r, and, so, the left-hand side of Eq. (13) evaluates
to ∇

2
⊥

!ψ1 ¼ ðr2 þ z2Þ=r3. Within the paraxial zone, r ≈ z
and Eq. (13) is satisfied by these two expressions.

Consider a simple example in which Eq. (7) is valid but
Eqs. (2) and (12) do not apply, such as the field generated
by two incoherent point sources. The resulting CSD has
the coherent mode decomposition

Wðr0; r00;ωÞ ¼
X2

m¼1

γmðωÞ
e−ikjr

0
−rmj

jr0 − rmj
eikjr

00
−rmj

jr00 − rmj
; ð14Þ

where rm is the location of the mth radiator and γmðωÞ
denotes the spectrum of each point radiator. The right-
hand side of Eq. (13) can be estimated from measure-
ments of the spectral density in closely adjacent planes
normal to the z axis, and, in this example, can be directly
computed as

−Sðr;ωÞ−1 ∂Sðr;ωÞ
∂z

¼
2γ1ðωÞz
jr−r1j4

þ 2γ2ðωÞz
jr−r2j4

γ1ðωÞ
jr−r1j2

þ γ2ðωÞ
jr−r2j2

: ð15Þ

In Fig. 1, the results of inverting Eq. (13) for three cases
are plotted as a function of the x coordinate in the detec-
tion plane. In the first case, Eq. (13) is evaluated for the
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field described by Eq. (14) when γ1ðωÞ ¼ 1 and γ2ðωÞ ¼ 0
(denoted !ψ1), in the second case γ1ðωÞ ¼ 0 and γ2ðωÞ ¼ 1
(denoted !ψ2), and in the third case γ1ðωÞ ¼ 1 and γ2ðωÞ ¼
1 (denoted !ψ12). It can be seen that, when the field is
multimode (the field associated with ψ12), the so-called
retrieved phase does not match the accumulated phase
of either mode (nor is it the average or sum of the phases
of the two modes). Moreover, !ψ12 is not associated with
any physical optical path length travelled. As a result,
phase retrieval based on Eq. (12), i.e., the implicit as-
sumption of spatial coherence, returns nonphysical
results.
To accurately find the phase of each coherent mode,

phase-retrieval methods based on Eq. (7) or Eq. (8) must
be developed and employed. It should be emphasized
that there is no single phase to be recovered from a par-
tially coherent field. Instead, one may hope to recover the
amplitude and phase of each coherent mode. In contrast
to previously proposed methods, which assumed the ex-
istence of a single coherent mode and a single phase, this
process inherently requires at least M measurements
when M coherent modes exist.
One possible phase recovery strategy involves making

measurements at multiple frequencies and solving a sys-
tem of linear equations based on Eq. (7). Since spectrally
and spatially resolved measurements can be experimen-
tally challenging in the x-ray regime, we propose an alter-
native scheme. By modifying the coherence properties of
the illuminating field, it may be possible to construct a
system of equations using Eq. (8) that can be solved to
arrive at the phase of each mode. Under the assumptions
inherent in fully coherent TIE [see Eq. (2)], [4] conven-
tional phase-retrieval methods may be applied to the
solution of the system of linear equations [13].

In summary, we have introduced new TIE and
transport-of-spectrum equations that relate variations in
intensity or spectrum to the coherent modes of the CSD.
These results are generally applicable to intensity trans-
port in spatially partially coherent fields, i.e., fields de-
scribed by more than one coherent mode. Such fields
are produced by multimode lasers, extended thermal
sources, and arrays of single-mode sources, and are, gen-
erically, the fields encountered in practice. As in recent
studies of coherent diffractive imaging [16], these models
may provide a framework for the development of
phase-retrieval methods for use with partially coherent
paraxial fields.
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Fig. 1. (Color online) Plot of the retrieved phases when the
wave field is assumed to be fully coherent, found by inverting
Eq. (13), on the line z ¼ 100 mm and y ¼ 0 for three cases:
γ1ðωÞ ¼ 1 and γ2ðωÞ ¼ 0 (!ψ1), γ1ðωÞ ¼ 0 and γ2ðωÞ ¼ 1 (!ψ2),
and γ1ðωÞ ¼ 1 and γ2ðωÞ ¼ 0 (!ψ12).
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