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Abstract

The question is discussed whether potential scattering problems can be treated as boundary value problems associated
with differential equations, as is sometimes suggested in the literature. We show that, except in some very special cases, this
is not possible. The values of the wave function and its normal derivative on the boundary of a finite-range potential cannot
be prescribed arbitrarily but are implicit in the integral equation of potential scattering. We derive two coupled singular
integral equations for the boundary values for the case when the scattering potential is homogeneous. c© 1998 Published
by Elsevier Science B.V.
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1. Introduction

Potential scattering problems, whether in quantum
mechanics, optics, acoustics or in other fields are
generally treated by means of integral equations. For
relatively simple situations, such as for scattering of
a plane wave by a homogeneous sphere, alternative
methods are available, e.g. expanding the solution for-
mally both inside and outside the scatterer in terms of
modes and determining the coefficients of the modes
by matching the two expansions at the boundary,
making use of the (assumed) continuity of the wave
function and of its normal derivative.

In contrast to these well-known standard ap-
proaches, several problems have been treated in the
literature as true boundary value problems of differ-
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ential equations. Such problems are basically limited
to scattering by a hard sphere and a soft sphere in
acoustics. The hard sphere can be regarded as the
limiting case of an infinitely strong scattering po-
tential. For the soft sphere, however, it is not clear
whether there exists an equivalent scattering poten-
tial. Perhaps because of the success of the boundary
value approach in these two special cases, the im-
pression has been given in the literature that more
general scattering problems can also be treated in this
way [1,2]. However, it is well known that the values
of the wavefunction on the boundary of a finite-range
potential are implicitly contained in the integral equa-
tion of potential scattering and they cannot, therefore,
be specified a priori.

In this Letter we show that for the case of scattering
from a homogeneous finite-range potential, the values
of the wavefunction and of its normal derivative on
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the boundary of the scatterer satisfy a coupled pair of
singular integral equations, indicating more explicitly
than is apparent from the integral equation that the
boundary values cannot be prescribed arbitrarily.

2. Potential scattering of scalar waves

Let us consider a monochromatic plane wave of
unit amplitude and frequency ω, propagating in the
direction specified by a unit vector s0,

V (i)(r, t) = U(i)(r) exp(−iωt), (2.1)

U(i)(r) = eiks0·r, (2.2)

incident on a scattering medium occupying a vol-
ume V , bounded by a closed surface S in free space
(see Fig. 1). In Eq. (2.2) k = ω/c = 2π/λ0 is the
wavenumber, c being the speed of light in vacuum
and λ0 the vacuum wavelength. We assume that the
macroscopic physical properties of the scatterer are
independent of time. We denote by n(r) the refrac-
tive index of the medium at frequency ω. In general
it is a function of position, specified by the position
vector r. The total field (i.e. the sum of the incident
and the scattered field) generated by the interaction of
the incident field with the scatterer satisfies the basic
equation of potential theory [3,4]

(∇2 + k2)U(r) = −4πF(r)U(r), (2.3)

where

F(r) ≡ k2

4π
[n2(r)− 1] (2.4)

is the so-called scattering potential. The solution of
Eq. (2.3) for the total field must behave far away from

s0 V

O

S

r = rs

n

Fig. 1. A plane wave, propagating along the direction of the unit
vector s0, is incident on a scattering volume V . The volume is
bounded by a closed surface S, with outward unit normal n. The
direction of scattering is denoted by s.

the scatterer as the sum of the incident plane wave
and an outgoing spherical wave, i.e. it must have the
asymptotic behavior

U(rs) ∼ eiks0·r + f(s, s0)
eikr

r
, (2.5)

as kr → ∞, with the direction of scattering, charac-
terized by the unit vector s, kept fixed, f being the
scattering amplitude.

The solution of Eq. (2.3), subject to the usual as-
sumption thatU(r) and its normal derivative ∂U/∂n ≡
n ·∇U at the boundary S of the scattering volume
are continuous and subject to the asymptotic condi-
tion (2.5) represents the total field U(r) generated by
scattering. (A generalization of the theory which takes
into account possible discontinuities at the boundaries
has recently been discussed in Ref. [5]. It indicates
that under certain circumstances such discontinuities
can have significant effects on the far field.)

As is well known, Eq. (2.3) subject to the conti-
nuity conditions, may be recast into the integral equa-
tion [4,6]

U(r) = U(i)(r) +
∫
V

F(r′)U(r′)
eik|r−r′|

|r− r′| d3r′,

(2.6)

where

G(r− r′) =
eik|r−r′|

|r− r′| . (2.7)

is the outgoing free space Green’s function of the
Helmholtz operator L ≡ ∇2 + k2.

There is a different class of scattering problems
which is sometimes discussed in the literature (see, for
example, Ref. [1]). For such problems one prescribes
boundary conditions on the surface S of the scatterer
and one seeks a solution which behaves as an outgo-
ing spherical wave at infinity. Problems of this kind
are treated most frequently for a “hard” and a “soft”
sphere [7]. In the former case one imposes the Dirich-
let boundary condition U(r) = 0 on S; in the latter
case one imposes the Neumann boundary condition
∂U(r)/∂n = 0 on S [8]. It is sometimes suggested
that many more problems of scattering from a bounded
medium may also be treated as boundary value prob-
lems [2,7]. However, the physical significance and
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even the possibility of such an approach is obscure at
best.

The solutions to the potential scattering problem and
to a boundary value problem have certain features in
common such as the asymptotic behavior expressed by
relation (2.5) and results such as certain reciprocity
theorems and the optical cross-section theorem. How-
ever, the boundary value formulation does not explic-
itly take into account the nature of the medium, char-
acterized by the scattering potential. Although, in prin-
ciple, boundary values are, of course, associated with
any potential scattering problem, knowledge of them
can only be obtained by solving them first by other
methods, e.g. by the use of the integral equation of
potential scattering or by solving a pair of singular
integral equations for the boundary values and their
normal derivatives as we will now show.

3. Boundary values for the field and its normal
derivative

In this section we derive integral equations for the
values of the field and its normal derivative on the
boundary of the scatterer. Our starting point is the
scalar version of the so-called Ewald1Oseen extinction
theorem (see, for instance, Refs. [9,10]).

We consider a homogeneous scattering volume V
with constant refractive index n. The scalar version
of the extinction theorem is expressed by the formula
(see Ref. [11] or Eq. (A.4) of Appendix A of this
Letter)

U(i)(r<) = − 1
4π

∫
S

(
U(r′)

∂G(r< − r′)
∂n′

− G(r< − r′)
∂U(r′)
∂n′

)
dS. (3.1)

Here r< is any point inside the scatterer, and G is
the outgoing free space Green’s function, given by
Eq (2.7). As the point r< approaches the boundary S,
with rs denoting a point on the surface S, the first term
of the integrand of Eq. (3.1) becomes singular when
r′ = rs. A similar expression occurs also in potential
theory. The result is [12,13]

U(i)(rs) = 1
2U(rs)−

1
4π

P
∫
S

(
U(r′)

∂G(rs − r′)
∂n′

− G(rs − r′)
∂U(r′)
∂n′

)
dS, (3.2)

where P denotes the Cauchy principal value taken at
r′ = rs.

The field inside the scatterer satisfies the equation

(∇2 + k2
1)U(r) = 0, (3.3)

where k1 = 2πn/λ0 (with λ0 denoting the wavelength
in vacuo) is the wave number of the field inside the
scatterer. Let G1 be a Green’s function of the operator
L1 ≡ ∇2 + k2

1. It satisfies the differential equation

(∇2 + k2
1)G1(r− r′) = −4πδ(3)(r− r′). (3.4)

By a trivial generalization of the Helmholtz1Kirchhoff
integral theorem for free space (see Section 8.3 of
Ref. [4]) to a homogeneous material medium we ob-
tain the formula

U(r<) = − 1
4π

∫
S

(
U(r′)

∂G1(r< − r′)
∂n′

− G1(r< − r′)
∂U(r′)
∂n′

)
dS. (3.5)

As the point r< approaches the boundary surface S,
one obtains in a similar manner as in connection with
Eq. (3.2)

U(rs) = 1
2U(rs)−

1
4π

P
∫
S

(
U(r′)

∂G1(rs − r′)
∂n′

− G1(rs − r′)
∂U(r′)
∂n′

)
dS. (3.6)

Eqs. (3.2) and (3.6) are two coupled singular integral
equations for the field U and its normal derivative
∂U/∂n on the boundary of the scatterer. We note that
these equations imply, if we recall that the scattered
field U(s) = U − U(i), that at any point rs on the
boundary of the scatterer,

U(s)(rs) =
1

4π
P
∫
S

(
U(r′)

∂G(rs − r′)
∂n′

− G(rs − r′)
∂U(r′)
∂n′

)
dS, (3.7)
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where

G(r− r′) = G(r− r′)− G1(r− r′). (3.8)

This is a necessary condition which the scattered field
on the boundary must satisfy.

From Eq. (3.6) or (3.7) it is seen that neither the
field nor its normal derivative can be prescribed arbi-
trarily at the boundary of the scatterer.

Finally, we mention that a pair of singular integral
equations for the value of an electromagnetic field and
of its normal derivative at the boundary, rather than
for a scalar field, was derived by Pattanayak [14].

4. Conclusions

We have shown that, contrary to suggestions often
made in the literature, potential scattering problems
involving finite-range potentials cannot be formulated
as boundary value problems of differential equations,
except in some very special cases. In fact, to deter-
mine the boundary values which the field and its nor-
mal derivative take on the boundary of the scatterer,
one must first solve the scattering problem by other
methods (e.g. by using the integral equation of poten-
tial scattering) which yields the boundary values as a
byproduct. We have derived a coupled pair of singu-
lar integral equations (Eqs. (3.2) and (3.6)) which
the field and its normal derivative must satisfy on the
boundary of a homogeneous scatterer.
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Appendix A. The extinction theorem for scalar
fields

In this appendix we present a simple derivation of
the scalar version of the extinction theorem in the form
originally derived by Pattanayak and Wolf [11]. We
recall Eq. (2.3),

(∇2 + k2)U(r) = −4πF(r)U(r), (A.1)

and the fact that the outgoing free-space Green’s func-
tion G satisfies the equation

(∇2 + k2)G(r− r′) = −4πδ(3)(r− r′). (A.2)

We interchange the role of r and r′, multiply Eq. (A.1)
byG, Eq. (A.2) byU, subtract the resulting equations,
integrate over the scattering volume V and use Green’s
theorem. We then find that if the point r is within the
scattering volume (in which case we again write r<
rather than r)∫
S

(
U(r′)

∂G(r< − r′)
∂n′

− G(r< − r′)
∂U(r′)
∂n′

)
dS

= −4πU(r<) + 4π
∫
V

F(r′)U(r′)
eik|r<−r′|

|r< − r′|
d3r′.

(A.3)

The volume integral on the right of Eq. (A.3) repre-
sents U(s)(r<) = U(r<)−U(i)(r<), whereU(s)(r<)
is the scattered field (cf. Eq. (2.6)). Hence Eq. (A.3)
may be expressed in the form

U(i)(r<) = − 1
4π

∫
S

(
U(r′)

∂G(r< − r′)
∂n′

− G(r< − r′)
∂U(r′)
∂n′

)
dS, (A.4)

which is the extinction theorem, Eq. (3.1). It shows
that the values which U and ∂U/∂n take on the bound-
ary are such that the incident field is extinguished at
every point r< inside the scattering volume.
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