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Abstract
We present a technique based on the use of coherent confocal microscopy that can be used to
estimate, to within a scale factor, all of the elements of the second-order susceptibility tensor
of a single pointlike nanoparticle under permutation and Kleinman symmetry. An estimate of
the three-dimensional position of a nanoparticle is also obtained. A forward model for the
problem is presented and a method for solving the inverse problem is demonstrated. The
approach is tested through simulations which show that the position and the elements of the
susceptibility tensor can be robustly retrieved using this method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Second-harmonic generation (SHG) is a coherent second-
order nonlinear optical process which produces an optical
field at twice the frequency of the input (pump) field; this
process occurs only in noncentrosymmetric material systems
[1, 2]. The second-order nonlinear susceptibility that describes
the generation of the SHG signal depends on the electronic
configurations, molecular structures and alignments, and local
morphologies of the system [1]. As a result, SHG has been
successfully used to investigate the local molecular alignment
and/or the structure in a wide variety of materials including
biological tissues [3, 4], organic and inorganic crystals
[5, 6], molecular materials, and surfaces and interfaces [7].
Recently, it has also been used to characterize individual
nanoparticles [2, 8–18]. In one study, the orientation and
the crystalline nature of the individual organic nanocrystals

were inferred from the SHG signal together with the two-
photon excited fluorescence [8]. In another study, three-
dimensional orientation of the individual nanocrystals was
determined by imaging the emitted SHG signal using a
defocused imaging system [2]. To-date limited effort has
been placed on determining the elements of the second-order
nonlinear susceptibility tensor for individual nanoparticles.
As has been demonstrated with biological samples [19],
the determination of the tensor elements provides additional
information about the nanoparticles and may be useful in
fields such as bioimaging, sensing, drug delivery [20], and
imaging [21].

In this paper, we present a technique to determine both the
position and the elements of the second-order susceptibility
tensor for individual nanoparticles. It utilizes a coherent
confocal microscope [20] and exploits the fact that SHG is
a coherent process, so that the phase and the amplitude of the
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field may be obtained interferometrically [1, 7]. We assume
that the particle is pointlike, that is, its structure is unresolvable
on the scale of the wavelength of light [22] and that it can be
characterized by a single second-order susceptibility tensor.
Analysis of large particles may require a more complicated
model [20]; however, the framework presented in this paper
is modular and is amenable to such modifications. We
also assume that the particle is fixed in position and well
isolated from other particles such that there is no inter-particle
interaction, and that the optical field used to characterize the
particle does not interact with neighbouring particles. In a
general setting, there are not enough data available to solve for
all elements of the nonlinear susceptibility simultaneously.
However, it is often possible to invoke symmetries of the
tensor to reduce the number of free variables and resolve the
remaining elements. The Kleinman symmetry [23, 24] may
be invoked for nondispersive nonabsorbing media. Then the
proposed technique can be used to infer the position and extract
all elements of the second-order susceptibility. In the case of
failure of the Kleinman symmetry, other symmetries may be
invoked to similar ends [24]. Since in practice the overall
scale of the data is not known precisely, the susceptibility
tensor elements are estimated up to a constant scaling factor.
For practical experiments, nanoparticles may be on substrates;
the retrieved susceptibility in our approach is then the effective
susceptibility that includes the effect of the substrate–particle
interaction. The bare particle polarizability can then be
inferred from the effective polarizability. In section 2
we describe the theoretical framework, and in section 3 we
present results from simulations.

2. Theory

2.1. Forward model

Figure 1 shows a simplified schematic of the proposed
experiment. An input beam with fundamental frequency ω

(indicated in figure 1 by dashed arrows) passes through a
beam splitter. Part of the beam passes through the vector
beam shaper which imparts the required phase and intensity
distribution to the input beam giving rise to a field E(b) at the
entrance pupil of the lens L1. The beam is then refracted by L1

which results in the field E(l) at the exit pupil of the lens and a
field g in the focal volume. The sample consists of a substrate
supporting the nanoparticle to be characterized. As mentioned
earlier, the substrate can have more than one nanoparticle;
however, these nanoparticles should be sparsely distributed so
that the focused beam interacts with only the nanoparticle to
be characterized. The interaction of the nanoparticle with the
focused optical field generates the backscattered signal E(s)

which consists of the optical field at both the fundamental and
second harmonic (indicated in figure 1 by solid arrows), 2ω,
frequencies. This signal then propagates back through L1 and
is combined with a reference SHG signal, E(r)(2ω), at the
beam splitter. The SHG filter in the signal path ensures that
only the second-harmonic signal is recorded at the detector.
The reference SHG signal can be generated using a nonlinear
crystal with a large second-order susceptibility such as beta-
barium borate (BBO) or lithium triborate (LBO) [1, 6, 7, 25].

Figure 1. Schematic of the proposed experimental setup.

It should also be noted that the reference SHG signal must
be generated from the illuminating optical source in order
to ensure that the reference field is coherent with the SHG
signal backscattered from the nanoparticle (as demonstrated
in [6]).

The intensity at the detector is a function of both the
position of the geometrical focus r = (x, y, z) and the second-
harmonic angular frequency 2ω, and can be written as [20, 26]

I (r; 2ω) = 〈|E(r)(2ω)|2〉 + 2 Re{S(r; 2ω)}
+ 〈|E(s)(r; 2ω)|2〉, (1)

where 〈. . .〉 represents a time-averaging operation. In equation
(1), the first term depends only on the reference signal;
assuming a plane wave reference signal the dependence on r
can be removed. The third term, which is the autocorrelation
term, is typically very small and can usually be neglected [20].
The interferometric cross term defined as

S(r; 2ω) = 〈{E(r)(2ω)}†E(s)(r; 2ω)〉 (2)

can be recovered from its measured real part Re{S(r; 2ω)}
using the Hilbert transform [20], where † represents the
Hermitian transpose. Note that the application of the Hilbert
transform in retrieving the complex field is applicable when
the data are collected over a range of frequencies; alternatively,
if the experiments are carried out at a single frequency,
phase-shifting interferometry could be used. However, the
fundamental results of this paper are independent of the
technique used to retrieve the complex field.

To determine the backscattered field E(s)(r; 2ω), we
develop a forward model for the field from the incident field,
through the optical system, to the interaction with the sample
and back out. We denote the beam delivered by the source
onto the vector beam shaper by E(in)(ω). It is converted to the
field E(b)(sx, sy;ω) on the entrance pupil of the lens by the
vector beam shaper, such that

E(b)(sx, sy;ω) = V̄ (sx, sy)E
(in)(ω), (3)

Here, sx and sy are the components of the unit vector directed
from a point on the exit pupil to the geometrical focus [27, 28]
which can be mapped to a corresponding point on the entrance
pupil by ray tracing, where V̄ (sx, sy) is a tensor operator
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describing the operation of the vector beam shaper. Assuming
an aplanatic lens obeying the sine condition and the intensity
law [28], the refracting action of the lens can be written as

E(l)(sx, sy;ω) = Ā(sx, sy)E
(in)(ω), (4)

where the tensor Ā includes both the effect of the vector beam
shaper and the refraction by the lens. This can be obtained
from the rotation of equation (2.23) in [29] or from equation
(3.51) in [28]. The field at an arbitrary point r′ is calculated
as [20, 27, 28]

g(r′ − r;ω) = k

2π i

∫
dsx dsy

Ā(sx, sy)E
(in)(ω)

sz(sx, sy)
eiks·(r′−r)

= F̄ (r′ − r;ω)E(in)(ω), (5)

where F̄ is a tensor that includes the effect of the vector beam
shaper and the lens. The parameter sz, in free space, is related

to sx and sy through the standard relation sz =
√

1 − s2
x − s2

y

[20]. The angular spectrum representation approach outlined
here can also be modified to allow for situations where the field
is focused onto a sample with background index mismatch
[28].

Assuming that the nanoparticle is at a position r(p)

(p represents the position of the nanoparticle) and its
effective 3 × 6 susceptibility tensor in contracted notation,
i.e. the second-order susceptibility tensor under permutation
symmetry, is represented by d, the resultant second-harmonic
polarization may be written as [23, 30]

P (2ω) = d

⎡
⎢⎢⎢⎢⎢⎢⎣

g2
x(r

(p) − r;ω)

g2
y(r

(p) − r;ω)

g2
z (r

(p) − r;ω)

2gy(r
(p) − r;ω)gz(r

(p) − r;ω)

2gx(r
(p) − r;ω)gz(r

(p) − r;ω)

2gx(r
(p) − r;ω)gy(r

(p) − r;ω)

⎤
⎥⎥⎥⎥⎥⎥⎦

= d

⎡
⎢⎢⎢⎢⎢⎢⎣

e1

e2

e3

e4

e5

e6

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(6)

where gx , gy and gz are the x, y and z components of the
focal field g and ei is shorthand for the ith-row element of
the 1 × 6 vector of products of the elements of g. The
amplitude of the field resulting from this induced second-
harmonic polarization is proportional to k2P (2ω) [26]. This
field propagates back through the lens. By reciprocity, this
operation can be described by F̄

T
(2ω) [20], where T refers

to the transpose of the operator. Hence, the backscattered
second-harmonic field can be written as

E(s)(r; 2ω) ∝ k2F̄
T
(r(p) − r; 2ω)P (2ω). (7)

Note that F̄ implicitly includes the dyadic Green’s function
which is frequency dependent [27, 31]. It should be noted that
there is a backscattered fundamental field as well; however,
it is neglected since it is filtered out. The backscattered field
then interferes with the reference field. Using equation (2),
the complex field can be written as

S(r; 2ω) ∝ k2〈{E(r)(2ω)}†F̄ T
(r(p) − r; 2ω)P (2ω)〉. (8)

Thus, one can acquire an image by fixing the focal plane at
z = 0 and scanning the stage in two dimensions in (x, y). The

received complex field, using the Einstein summation notation,
can be written as

S (x, y; 2ω) ∝ dij (ω) hij

(
x − xp, y − yp; z(p), 2ω

)
, (9)

where hij are optical response functions (ORFs) which help
discriminate the output signal due to each susceptibility
element and are defined as

hij

(
x, y; z(p), 2ω

) = k2E
(r)∗
l (2ω)Fil

(−x, − y; z(p), 2ω
)
ej .

(10)

In equation (10) the Einstein summation notation has again
been used and ∗ represents the complex conjugate. Also,
the subscripts i, l = 1, 2, 3, and j = 1, . . . , 6 represent
the corresponding elements of the parent tensor/vector. For
example, F12 represents an element of the first row and second
column of the operator F̄ . As equation (6) shows ej s are the
functions of the nanoparticle position. From equation (9), one
sees that although the backscattered second-harmonic signal
is a second-order function of the input field (through ej ), it is
linearly dependent on the susceptibility elements. The ORFs
defined in equation (10) are general. As noted above, it is not
possible to solve for the elements of the susceptibility in the
general case, and so some prior constraint must be applied.
Here we invoke the Kleinman symmetry as an example,
which can be enforced when d is taken to have the following
form [23]:

d =
⎡
⎣d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d23 d33 d23 d13 d14

⎤
⎦ . (11)

Equation (9) constitutes the forward model and can be used
to predict the recorded signal when both the position r(p)

and the effective second-order susceptibility matrix d of the
nanoparticle are known.

2.2. Inverse problem

To estimate the nanoparticle parameters, namely the
susceptibility elements and the position of the particle, from
the collected data, the inverse problem needs to be solved. This
is achieved by searching for the set of parameters that leads
to the smallest deviation between the observed data and that
predicted from the forward model. There are several different
quantitative metrics to estimate the deviation; in this paper, we
use the Euclidian norm

C(d, r(p); 2ω)

= ‖S(ρ; 2ω) − dij (ω)hij (x − xp, y − yp; z(p), 2ω)‖.
(12)

The Euclidian norm chosen in equation (12) is
consistent with a Gaussian noise model [32] characteristic
of interferometer measurements dominated by the noise from
the reference beam and/or from the thermal detector [33].
The information about the position and the susceptibility of
the nanoparticle is encoded in the recorded signal through the
ORFs in equation (10); therefore, successful retrieval of these
parameters, as in any coding/decoding process, depends on
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Figure 2. The intensity of each polarization component at the focal
plane with the input beam and the lens parameters specified in the
text. The intensities are normalized by the maximum intensity
across all polarizations and all positions.

the ability of ORFs to sufficiently encode each susceptibility
element onto the recorded data. Specifically, the ORFs are
required to each be distinct and non-negligible. Furthermore,
since the ORFs are dependent on the input field in the
focal region, successful use of this technique requires that
an appropriate beam type be used. For example, the focal
field for a Gaussian beam contains a negligibly small field
of z polarization [28]. As a result, for the Gaussian beam,
several ORFs, such as h13 are expected to be negligible as
they depend on either the z or a product of the z- and the
x- or the y-polarized field in the focal region. In contrast, a
strongly focused radial vector beam, a beam with polarization
distribution that is radially pointing outward from the beam
centre at each point [34], is also not expected to be a good
choice for this technique because under very strong focusing
a radial vector beam provides a strong z-polarized field at
the expense of the x- and the y-polarized field [28]. In this
case, ORFs such as h11 and h12 are expected to be negligible
as they depend either on the x or the y field, or a product
of the z- with the x- or the y-polarized field. In this paper,
we choose a modified radial beam that is focused using a 0.8
numerical-aperture lens. The vector beam generator used in
this paper blocks the central portion of the input beam and
rotates the polarization at other points by an angle equal to the
azimuthal angle of the point. Example techniques to generate
such beams include the use of spiral phase delay plates, graded
transmission filter [35], and spatial light modulators [36].
The resulting focal field distribution has comparable x, y,
and z polarization field strengths (see figure 2) which cannot
be achieved by using a uniformly polarized Gaussian beam.
Figure 3 shows the real and imaginary components of the
first three of the ten independent spatial domain ORFs, using
the modified radial beam, when the reference field is linearly
polarized along the x axis.

3. Simulations

To analyse the performance of the proposed technique
numerical experiments were carried out. The nanoparticle
parameters were generated randomly. One set of position
values is shown below:

r(p) = λSHG[−0.0139 − 0.1774 − 0.0241]T . (13)

The Kleinman symmetry assumes (optical) transparency [23],
and as such the susceptibility elements should be real. An
example of this is shown below where the values have been
normalized by the maximum value:

d =
⎡
⎣0.8274 0.5416 0.2956 0.0378 1.0000 0.7854

0.7854 0.6721 0.5913 0.7503 0.0378 0.5416
1.0000 0.7503 0.1569 0.5913 0.2956 0.0378

⎤
⎦ .

(14)

The position r(p) and the contracted susceptibility matrix d
were then used in equation (9) to generate the synthetic data.
It consisted of a 2D complex-field distribution S(x, y; 2ω).
In addition, since the data collected in actual experiments are
never noise free, we choose to add complex random Gaussian
noise. To generate an image with a given value of signal to
noise ratio (SNR), for each pixel, the noise level is randomly
chosen from a Gaussian distribution with mean and variance
defined by both the signal level at that pixel and the required
SNR. Specifically, the real and the imaginary parts of the
complex noise are generated independently from a Gaussian
distribution whose variance is equal to half of the signal power
ratio to the SNR. The power at each pixel is calculated as
the square of the amplitude of the complex signal at that
pixel.

To solve the inverse problem, the Nelder–Mead algorithm
was applied over the particle position through the fminsearch
function in MATLAB. The initialization point for the
algorithm was randomly generated using the rand function
in MATLAB with a range of 1.5λSHG in the x- and y-
direction centred on the origin. During each iteration, the
corresponding elements of the susceptibility were calculated
using matrix inversion of the data in equation (9). Without
any restriction, fminsearch will converge to complex values.
However, requiring the susceptibility to be real at the start
of the optimization procedure derails convergence as this
constraint introduces discontinuity in the objective function
whereas fminsearch assumes continuous objective function.
We circumvent this problem by permitting complex values at
the beginning of the optimization procedure and restricting the
susceptibility to be real once a minimum is approached.

For an SNR of 25 dB, the following values of position

r̂ = λSHG[−0.0141 −0.1767 −0.0239]T (15)

and susceptibility elements

d̂=
⎡
⎣0.8223 0.5325 0.2972 0.0342 1.0000 0.7813

0.7813 0.6690 0.5867 0.7451 0.0342 0.5325
1.0000 0.7451 0.1518 0.5867 0.2972 0.0342

⎤
⎦

(16)

were estimated. Again retrieved values have been normalized
by the maximum real part. In practical systems the
absolute scale of the data will not be known precisely—
hence the normalization is for comparison purposes—so the
susceptibility is estimated to within a constant scaling. We
observe that the estimated value of the position closely
matches the expected value (equation (13)) despite the
noise. Also, comparing the elements of matrix d̂ with
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(a)

(d)

(b)

(e)

(c)
(g)

(f)

Figure 3. The real (a)–(c) and the imaginary (d)–(f) parts of the first three (of ten) spatial domain ORFs, h11, h12, h13, for a radial vector
beam at a defocus of 0.125λSHG where λSHG = 2πc/2ω. These ORFs are dependent on the input beam type as well as on the amount of
defocus, and encode the position and the susceptibility information of the nanoparticle onto the recorded signal. Thus, these ORFs can also
be thought of as the basis elements, albeit non-orthogonal, onto which the measured field can be decomposed. The coefficients of the
decomposition give us the ten independent elements of the second-order susceptibility tensor under the permutation and Kleinman
symmetry. (g) The scales used for these plots. Here, the axes have been labelled in the units of wavelength and the ORF values have been
normalized by the maximum value across all ORFs.

elements of matrix d, we see that the values closely match
despite the noise. It should be noted that in a physical
experiment, the deduced susceptibility would be determined
in the macroscopic (laboratory) reference frame. To correlate
these values with the crystal structure, one will need to
supplement retrieved values with knowledge of the orientation
of the emission dipole (multipole) of the particle which can be
obtained from techniques like defocused imaging [2].

The effect of the noise on the accuracy of the retrieved
position and susceptibility is shown in figure 4. For each
data point shown, numerical experiments were run ten times
at a constant noise level and with a separate set of randomly
generated nanoparticle parameters. The particle was restricted
to the focal plane for all calculations. The error values shown
are the average of the 10 error values for each point. The
confocal scanning step size in the transverse direction (along
x or y) and in the axial direction was 0.125λSHG and 0.25λSHG,
respectively. Figure 4(a) shows the norm of the error in
the susceptibility elements. Similarly, figure 4(b) shows the
Euclidian norm of the error in position r̂(p) −r(p) as a function
of the SNR. We observe the intuitive result that as the SNR is
increased the error decreases. Since only 10 of the 18 elements
are independent, to calculate the norm, a vector of these 10
elements was constructed and the corresponding Euclidian
norm was calculated. It again shows an improvement in the
retrieval accuracy as the noise level is decreased. Although
in these calculations the particle is assumed to be in the focal
plane (i.e. z = 0), our approach allows for the position and
susceptibility of the particle to be retrieved even if the particle
is located in any other plane.

4. Summary

We presented a technique to determine both the position
and the second-order nonlinear susceptibility tensor elements
for single nanoparticles under the permutation and Kleinman
symmetry. The performance of the technique was assessed
through the numerical experiments which showed that the
retrieval is robust. Since the nanoparticles are placed on a
substrate, the retrieved values of the susceptibility will be

Figure 4. Euclidian norm of the error in the retrieved values of (a)
the susceptibility, and (b) the position as a function of the SNR ratio.
Refer to the text for details.

‘effective values’ in the sense that the effect of the substrate
is also reflected in these values. This might be overcome by
suspending the particle in a vacuum using optical levitation
techniques. Furthermore, the framework presented in this
paper can be extended to extract information regarding third-
and higher-order susceptibilities, as well as other types of
coherent interaction processes. In this paper we analysed the
case of non-absorptive nanoparticles. For absorptive particles
the Kleinman symmetry condition is not applicable. Although
the framework developed here can be used to analyse such
particles, in that case not all elements of the susceptibility
tensor can be unambiguously retrieved unless some other
prior conditions which reduce the number of independent
susceptibility tensor elements are applicable.
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