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Far-field contribution of evanescent modes to the
electromagnetic Green tensor
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Understanding the behavior of the evanescent part of the electromagnetic field has important implications in
many branches of modern physics, such as near-field optics. Motivated by recent disagreement in the litera-
ture, we derive an expression for the far-field asymptotic behavior of the free-space electromagnetic Green ten-
sor that is due to the evanescent modes. © 1999 Optical Society of America [S0740-3232(99)01110-2]
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In a series of papers'™ it has been argued that the eva-
nescent modes contribute as 1/|x| to the far-field behavior
of the monochromatic, free-space electromagnetic Green
tensor G,g(X, w). However, this argument leads to
some unphysical results, as has been demonstrated in the
literature.%” The correct formula for the evanescent con-
tribution was obtained in Ref. 7 but was left in integral
form. This decomposition of the propagator is important
in studies of the electromagnetic field scattered or radi-
ated from a surface, for example in near-field microscopy.®
Once the field and its normal derivative are known on the
surface, the Green tensor allows the field to be deter-
mined elsewhere. In this communication we explicitly
derive the asymptotic form of the evanescent contribution
to the far-field behavior of the Green tensor.

The Green tensor can be expressed in terms of the sca-
lar Green function Gy(X, o) for the Helmholtz equation in
the form
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where X = (X1, X5, X3) is the position vector, w is the fre-
quency, c is the speed of light in vacuum, and the outgo-
ing condition at infinity is assumed. The scalar Green
function may be represented as an angular spectrum of
homogeneous and evanescent plane waves and is given by
the expression®
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where X; = (X1, X5, 0), Kk, = (kq, k,, 0), the integration
extends over the whole k; plane, and
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The contribution to integral (2) from evanescent waves
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corresponds to the range of integration w/c < k; < .
We denote this contribution Gy¢(x, w) and perform the
angular part of the integration. Writing X, = r sin # and
X3 = rcos 6, with 0 < ¢ < 7w and r = |x|, we find that
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where J,, is the nth-order Bessel function. To obtain the
asymptotic behavior of Gy°(x, ) in the far zone, (w/c)r
> 1 (with 6 fixed), we first integrate Eq. (4) by parts and
obtain the exact result:
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We next analyze the second term on the right-hand side of
Eq. (5) and find by standard asymptotic methods'® that
the dominant contribution to this integral comes from the
vicinity of the boundary, i.e., the point k;, = w/c. Explic-
itly, we obtain the asymptotic expression
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(wlc)r > 1. (6)

To verify the correctness of asymptotic expression (6), we
evaluated it and the integral in Eqg. (4) numerically and
found them to be in excellent agreement for large values
of (w/c)r.
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On the x5 axis (6 = 0, or m) Eq. (6) gives the exact re-
sult, viz.,

GOE(X! w)|0=0,‘n’ = 1/r, (7)

as is well known in the scalar theory.’! In contrast to the
conclusions reached in Refs. 1-4, it is also clear from Eq.
(6) that the 1/r behavior found on the x; axis does not
hold for arbitrary directions. The directions specified by
0 = 0 and @ = m are special, as elaborated in Refs. 6 and
11. The off-axis behavior of Jo[ (w/c)r sin #]in Eq. (6) for
large r is r 2. Therefore the off-axis behavior of
Go®(X, ») isr~¥2. This clearly indicates that the evanes-
cent waves do not contribute to the radiated energy in the
far zone.

Finally, using Eq. (1), we give the leading term in the
far-field contribution from the evanescent modes to the
Green tensor:
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As in the scalar case, G,z°(X, ») decays off axis in the far
zone as r 32,

In conclusion, the authors hope that this communica-
tion resolves the controversy in the literature regarding
the far-field asymptotic behavior of the evanescent part of
the electromagnetic Green tensor.
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