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Chapter 1

Introduction

1.1 Historical introduction

Physical optics is the wave-theory based study of classical optical fields. Active
areas of research in physical optics include the state of polarization, the coherence
properties, and the effects of propagation for an optical field [Born and Wolf,
1999; Mandel and Wolf, 1995; Wolf, 2007; Brosseau, 1998]. Physical optics,
in contrast to geometrical optics, is based on a wave theory, rather than a ballistic
theory, for the optical fields. It can be shown that geometrical optics is, in fact,
a limiting case for certain types of wave fields. See [Born and Wolf, 1999,
Chapter 3] or [Balanis, 1989, Chapter 13] for two separate treatments.

A proper physics-based model for each of these effects is found in Maxwell’s
equations [Maxwell, 1892] and the constitutive relations that relate field strengths
to flux densities in various media [Chew, 1995]. When Maxwell’s equations are
related in their differential form, they can be reduced to a set of wave equations
for either the magnetic or electric field.

It is often the case that the fields of interest in optical research are time-
harmonic fields, i.e. the fields oscillate at one temporal frequency, ω. By applying
this assumption to the wave equations for the electric and magnetic fields, a set
of Helmholtz equations is obtained. This reduction in dimensionality simplifies
the problem of calculating the optical fields in space based on a set of boundary
or initial conditions. The formalism of Green functions may be applied to the
Helmholtz or wave equations to solve for the electric or magnetic field in all space
[Tai, 1994].

Since Huyghens’ experiments with calcite crystals more than 300 years ago
[Huyghens, 1690], it has been known that light can be polarized, and the state
of polarization of light has become an important area of research. Often, the state
of polarization is characterized by four numbers - the Stokes parameters - that

7



8 1.1. Historical introduction

define uniquely the polarization state of a wavefield [Stokes, 1852]. The Stokes
parameters, however, are only useful in cases when the electric field is confined to
a two-dimensional plane. This criterion is satisfied by plane waves and fields that
are well-modeled by the paraxial approximation, i.e. beams. A more involved
treatment is necessary when the electric field is not bound to a two-dimensional
plane [Hannay, 1998].

Statistical optics, or coherence theory [Wolf, 2007] is the branch of physical
optics concerned with the properties of nondeterministic light. By applying the
assumptions of stationarity and ergodicity, time-averaged measurements made by
an optical detector can be related to the ensemble average over all possible realiza-
tions of the random wavefield. For nondeterministic fields, correlation functions
play an important role. The two-time, two-point correlation function of a field, the
mutual coherence function, is used to model broadband stochastic fields. Quasi-
monochromatic fields are well-modeled by the cross-spectral density, a two-point,
one-frequency function of the field. Through the Wiener-Khintchine-Einstein the-
orem, these two functions can be related [Wiener, 1930; Khintchine, 1934; Ein-

stein, 1914].
Much like the fields themselves, the correlation functions for optical fields obey

a set of propagation laws [Wolf, 1955; Mandel and Wolf, 1995]. The propa-
gated versions of the correlation functions allow one to predict the results of exper-
iments using nondeterministic light [Wolf, 2007]. This predictive capability has
a wide variety of applications, including stellar interferometry [Michelson and

Pease, 1921; Hanbury Brown and Twiss, 1954], spectroscopy [Wolf, 1986;
Wolf and James, 1996], imaging [Fischer and Cairns, 1995], and focusing
[Wang et al., 1997; Fischer and Visser, 2004].

It has recently become clear that polarization, the correlation between two elec-
tric field components at a single point, and coherence, the correlation of two electric
field components of the field at two points, are intimately connected [Wolf, 2003].
It is for this reason that these two topics, coherence and polarization, are both
studied in this thesis.

Singular optics [Nye and Berry, 1974; Nye, 1999] is a branch of wave anal-
ysis concerned with the presence of singular structures in a wavefield (field nulls,
zeroes of the two-point correlation function, non-elliptical polarization) and the
topology of the wavefield around those structures. For complex scalar fields, or
when considering only a component of a vector field, the singular structure is a
phase singularity [Nye and Berry, 1974]. Occurring at a zero of the field (or
field component), a phase singularity is a point at which the phase is undefined.
The region near a phase singularity is typified by a swirling (either clockwise or
counter-clockwise) of the phase. Much like a phase singularity, a coherence vortex
is a singular structure associated with a zero of the cross-spectral density [Gbur
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et al., 2001]. As the cross-spectral density is of a higher dimension than the field, its
behavior near a coherence vortex is only well-understood for a small subset of pos-
sible fields [Gbur and Swartzlander, 2008; Van Dijk and Visser, 2009; Van

Dijk et al., 2009]. For complex vector fields, a polarization singularity is a point,
line, or surface in space at which the polarization ellipse is degenerate, i.e. the
polarization is linear or circular [Berry and Dennis, 2001]. Phase singularities
of the components of a vector field represent a subset of the possible linear po-
larization states for a vector field. The polarization ellipses in the region near a
point of circular polarization generically behave in one of three well-known ways
[Nye, 1999]. The tools of singular optics can thus be applied to the analysis of a
wide variety of wavefields.

1.2 Outline of this thesis

By understanding Maxwell’s equations and, from them, how optical fields propa-
gate, a number of interesting problems in optics may be studied. A field which is,
in some sense, stochastic, may be treated within the confines of coherence theory,
where the random field is characterized by its cross-spectral density. The cross-
spectral density of the random field may be shown to obey a double Helmholtz
equation, which allows one to calculate the cross-spectral density in all space based
on certain boundary conditions [Wolf, 1955]. Thomas Young’s famous experi-
ment [Young, 1804; Young, 1807] may be better analyzed within the framework
of propagating optical fields, either deterministic or stochastic [Zernike, 1938].
The optical field in the focal region of a lens can likewise be found through prop-
agation techniques based on Maxwell’s equations [Richards and Wolf, 1959].

In the remainder of this Chapter, the wave equations for electric and magnetic
fields are derived; the Green function for a scalar optical field is derived; the basic
tenants of coherence theory are introduced; and some basic concepts in singular
optics are discussed.

The total power radiated by two partially coherent sources is investigated in
Chapter 2. It is found that the total power is related to the degree of coherence
between the two sources and the separation between them.

In Chapter 3, the singular structures of a focused, radially-polarized field are
identified. By varying the opening angle of the lens (the numerical aperture), the
creation and annihilation of various singular structures are observed, including
points of circular polarization, lines of linear polarization, and an unstable point
in the focal region at which there is no electric field at all.

In Chapter 4, the relationship between singular structures in various optical
regimes - deterministic scalar fields, deterministic vector fields, and stochastic
scalar fields - are identified using a Young’s interferometer. It is shown that the
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mathematical structure of each wave theory results in the coincidence, on an ob-
servation screen, of singular structures for a field of each of the types listed above.

In Chapter 5, the state of polarization of a field propagating away from an
N -pinhole interferometer is examined. It is shown that the presence of singular
structures is generic, i.e. requires no symmetry of the configuration, and that any
polarization state can be created when N > 2.

1.3 Maxwell’s equations and the wave equations

The fundamental equations of electromagnetism are Maxwell’s equations. In dif-
ferential form, they are

∇× Ẽ(r, t) = − ∂

∂t
B̃(r, t), (1.1)

∇× H̃(r, t) = J̃(r, t) +
∂

∂t
D̃(r, t), (1.2)

∇ · B̃(r, t) = 0, (1.3)

∇ · D̃(r, t) = ρ̃(r, t), (1.4)

where, Ẽ is the electric field, H̃ is the magnetic field, B̃ is the magnetic flux, D̃ is
the electric flux, J̃ is the current density, and ρ̃ is the charge density. The charge
and current densities are sources, and the other four quantities fully describe the
electromagnetic field. It is impossible to further simplify these equations without
constitutive relations, i.e. equations that relate the flux densities to the fields. The
constitutive relations are functions of the material in which the electromagnetic
field is propagating, and can be calculated directly [Lorentz, 1880; Lorenz,
1881].

In the most general case, the flux densities are functionals of the fields. How-
ever, it is often true that there are linear, local, instantaneous, and isotropic rela-
tions between the flux and the field, resulting in

D̃(r, t) = ǫẼ(r, t), (1.5)

B̃(r, t) = µH̃(r, t), (1.6)

where ǫ is the electric permittivity and µ is the magnetic permeability.
With these constitutive relations in place, the electric and magnetic fields can

be decoupled. Taking the curl of Eq. (1.1) and interchanging the order of deriva-
tives results in

∇×∇× Ẽ(r, t) = − ∂

∂t
∇× B̃(r, t). (1.7)
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Using Eq. (1.6) and substituting Eq. (1.2) for ∇× B̃(r, t) results in

∇×∇× Ẽ(r, t) = −µ ∂
2

∂t2
D̃(r, t) − µ

∂

∂t
J̃(r, t). (1.8)

By substituting from Eq. (1.5), one arrives at the uncoupled equation for the
electric field:

∇×∇× Ẽ(r, t) + ǫµ
∂2

∂t2
Ẽ(r, t) = −µ ∂

∂t
J̃(r, t). (1.9)

Finally, using the vector relationship ∇ × ∇ × A = ∇(∇ · A) − ∇2A, the wave
equation for the electric field is found, viz,

∇2Ẽ(r, t) − µǫ
∂2

∂t2
Ẽ(r, t) = µ

∂

∂t
J̃(r, t) +

1

ǫ
∇ρ̃(r, t). (1.10)

In an analogous manner, the wave equation for the magnetic field can be derived.
This results in

∇2H̃(r, t) − µǫ
∂2

∂t2
H̃(r, t) = −∇× J̃(r, t). (1.11)

One can immediately identify the speed with which the electric and magnetic
fields propagate as c = 1/

√
µǫ. Light is thus an electomagnetic disturbance, and

the state of polarization is defined entirely by the vector E(r, ω). Note that this
result does not take into account the possibility of an inhomogeneous medium, i.e.
there are no scatterers present, just sources.

Often, one is interested in time-harmonic fields, that is, fields that oscillate at a
single frequency. The fields are generated by time-harmonic sources. The electric
field and the source densities can thus be written as

Ẽ(r, t) = E(r, ω)e−iωt,

J̃(r, t) = J(r, ω)e−iωt,

ρ̃(r, t) = ρ(r, ω)e−iωt. (1.12)

Substituting Eq. (1.12) into Eq. (1.10), one obtains the Helmholtz equation for
the electric field,

∇2E(r, ω) + k2
0E(r, ω) = −iωµJ(r, ω) +

1

ǫ
∇ρ(r, ω), (1.13)

where k0 = ω/c, where c is the speed of light. When the field is linearly polarized,
or when the field is unpolarized, a scalar approximation may be valid for describing
the electric (or magnetic) field. The Helmholtz equation for scalar fields is

∇2U(r, ω) + k2
0U(r, ω) = −4πκ(r, ω), (1.14)

where κ is the source density. A scalar approximation for optical fields is often
used in coherence theory and in many scattering and imaging problems.
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1.4 Green functions

A differential equation such as Eq. (1.14) defines a local relationship between the
field at given point and the source terms. The solution to that differential equation,
however, defines the field at all points in the region. The method of Green functions
is used to calculate the field based on the sources and certain boundary conditions.

Consider the two equations

∇2G(r, r′;ω) + k2
0G(r, r′;ω) = −4πδ(r − r′), (1.15)

∇2U(r, ω) + k2
0U(r, ω) = −4πκ(r, ω), (1.16)

where r′ is an arbitrary point in the region of interest. Multiplying both sides of
Eq. (1.15) by U and both sides of Eq. (1.16) by G and taking the difference, one
gets,

U(r, ω)∇2G(r, r′;ω) −G(r, r′;ω)∇2U(r, ω)

= −4πδ(r− r′)U(r, ω) + 4πκ(r, ω)G(r, r′;ω). (1.17)

Integrating over the unprimed variables, and applying Green’s theorem yields

∮

∂V

dS · [U(r, ω)∇G(r, r′;ω) −G(r, r′;ω)∇U(r, ω)]

= −4πU(r′, ω) + 4π

∫

V

d3r G(r, r′;ω)κ(r, ω), (1.18)

where dS is the outward-pointing differential surface element along the bound-
ary of the region of interest, V. One sees that both the source and the field at
the boundary contribute to the field in the region. The boundary conditions are
system-dependent. For example, a perfect conductor has the boundary condition
U(r, ω) = 0 ∀ r ∈ ∂V.

The Green function of Eq. (1.15) can often be chosen so that one of the terms
inside the surface integral in Eq. (1.18) is identically zero. Thus, the field can be
found anywhere in the region V through knowledge of the field or its derivative on
the boundary of the region and the source density. In free space, the Green function
obeys the boundary condtion known as the Sommerfeld radiation condition and is
of the form

G(r, r′;ω) =
eik|r−r

′|

|r − r′| . (1.19)

A similar method can be used to calculate the electric field [Tai, 1994] or the
correlation functions of a stochastic field [Wolf, 1955] within a specified region.
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1.5 Coherence theory

A random process, x(t), is considered to be wide-sense stationary if the statistics
up to second order are time-shift invariant, i.e. 〈x∗(t1)x(t2)〉 = 〈x∗(t1+τ)x(t2+τ)〉
for any time shift, τ , where 〈·〉 denotes an ensemble average. In the case of ergodic
fields, the ensemble average can be replaced with a time average [Wolf, 2007].
One notes that the autocorrelation, Γ(t2 − t1) = 〈x∗(t1)x(t2)〉, is a function only
of the time difference. The Fourier transform of the two-time autocorrelation is a
well-defined quantity:

∫∫

dt1 dt2 Γ(t2 − t1)e
i(ωt2−ω′t1) = S(ω)δ(ω − ω′), (1.20)

where S(ω) is the spectral density. This relationship, known as the Wiener-
Khintchine-Einstein theorem [Wiener, 1930; Khintchine, 1934; Einstein, 1914],
shows that a wide-sense stationary field is uncorrelated across any two distinct fre-
quencies, and that a measurement of the spectral densities allows one to find the
correlation function of the random field.

A collection of random processes, {xn(t)}, are considered to be jointly sta-
tionary (at least in the wide sense), if for any two wide-sense stationary random
processes, the cross-correlation between those processes is also only a function of
the time difference: Γij(t2 − t1) = 〈x∗n(t1)xj(t2)〉 for all xi and xj . A stationary
optical source is a collection of jointly-stationary, wide-sense stationary stochastic
emitters. In cases of practical importance, the cross-correlation for the field is an
important quantity, and can be written as Γij = 〈x∗i (t1)xj(t2)〉. As a generaliza-
tion of the Wiener-Khintchine-Einstein theorem, the cross-spectral density for the
collection of sources is given by the formula

Wij(ω)δ(ω − ω′) =

∫∫

dt1 dt2 Γij(t2 − t1)e
i(ωt2−ω′t1). (1.21)

One can also consider the cross-spectral density to be the ensemble average of
a collection of stochastic frequency-domain fields, that is Wij(ω)δ(ω − ω′) =
〈X∗

i (ω′)Xj(ω)〉 [Wolf, 1981; Wolf, 1982]. It is important to note that the col-
lection of temporal fields {xn(t)} and the collection of frequency-domain fields
{Xm(ω)} are not related by a Fourier transform. There is also no specified rela-
tionship between any elements of the ensemble of temporal fields and the ensemble
of frequency-domain fields.

An important quantity in coherence theory is the spectral degree of coherence
between two sources. It is a complex number with magnitude between zero and
one, and is defined as

µij(ω) =
Wij(ω)

√

Wii(ω)Wjj(ω)
. (1.22)
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The spectral degree of coherence conveys the degree of statistical similarity between
the fields emanating from sources i and j. When |µij| = 1, the two sources are
called ’fully coherent.’ When |µij| = 0, the two sources are ’incoherent.’ All
other values of the degree of coherence imply that the two sources are ’partially
coherent.’

1.6 Singular optics

Singular optics [Nye, 1999; Soskin and Vasnetsov, 2001] is the branch of
physical optics concerned with points in a wavefield in which some quantity, usu-
ally the phase of a complex field, is undefined. Consider the function f(r) =
A(r) exp(iφ(r)), where A and φ are real-valued functions. Suppose that, at the
point r′, A(r′) = 0. The function φ is thus undefined at r′, and r′ is a singular
point for f , also known as a phase singularity. The charge of a phase singularity,
s, is defined by the relation

s =
1

2π

∮

C

∇φ(r) · dr, (1.23)

where the path C encloses the phase singularity and is taken in the counter-
clockwise direction [Nye, 1999].

In the case that the field of interest is a two-dimensinal real-valued vector field,
B(r), the phase is defined as φ = tan−1(By/Bx) [Schouten et al., 2003c; Schou-

ten et al., 2004a]. For complex two-dimensional fields, there are a collection of
singular structures - points in which the field is linearly polarized, known as L-
points; points in which the field is circularly polarized, known as C-points; and
points at which the complex field is identically zero, or V -points [Berry and

Dennis, 2001].
The location of the singular structures in a wavefield are often a function

of some system parameter. For focused fields, the parameter may be the semi-
aperture angle of the lens [Diehl et al., 2006; Schoonover and Visser, 2006].
For an N -pinhole experiment, the pinhole separation distance, the phase relation-
ship between the fields in each pinhole, and the orientation angle of the field in
each pinhole (for vector fields) may be used [Gbur et al., 2001; Visser and

Schoonover, 2008; Gan and Gbur, 2007; Gbur et al., 2004a; Schouten

et al., 2004a; Ruben and Paganin, 2007]. For any of these cases, the system
parameter can be smoothly changed, and the location of the singular structures
will move. In the event that this movement causes two singularities to collide, one
of two things may happen: if the singularities are of the same type and of opposite
charge, they will annihilate, leaving no singularities; if the two singularities are
of differing types (a left-handed and right-handed C-point), the resulting collision



Chapter 1. Introduction 15

will result in a V -point. As the system parameter is changed, it is also possible
that pairs of phase singularities will appear and move apart. This process is known
as the creation of phase singularities.

The creation and annihilation of phase singularities are two complementary
processes - reversing the way in which the system parameter is smoothly changed
will turn the creation process into an annihilation and vice versa. The comple-
mentary process to the creation of a V -point is the unfolding of that V -point
into a number of singular structures. This process has been investigated for fo-
cused fields [Schoonover and Visser, 2006] and the field emanating from a
two-pinhole experiment [Visser and Schoonover, 2008].

The tools and results of singular optics are useful in many applications. Be-
cause of their use in, for example, optical trapping, the properties of focused,
radially polarized beams have been studied extensively in the past few years (see,
e.g., [Visser and Foley, 2005] and the references therein). By locating points
where either the radial or longitudinal component of the focused field is zero,
improvements may be made in the trapping scheme. The control of polariza-
tion states is important in many imaging problems [Davis and Carney, 2008],
and thus the ability to define and control the state of polarization for a wave-
field has many uses. Analysis of the singularities of the Poynting vector can be
used to enhance the transmission of light through small apertures [Schouten

et al., 2003b; Schouten et al., 2003c; Schouten et al., 2004b].



16 1.6. Singular optics



Chapter 2

The Power Radiated by Two

Correlated Sources

This Chapter is based on the following publication:

• R.W. Schoonover, T.D. Visser, “The power radiated by two correlated
sources,” Opt. Commun. 271, Issue 2, 323–326 (2007).

Abstract

We analyze the total power that is radiated by two correlated point sources. The
influence of the degree of coherence between the two sources and of the distance
between them can clearly be distinguished. Significant modulations of the total
radiated power are predicted. Both primary and secondary sources are investi-
gated.

17



18 2.1. Introduction

2.1 Introduction

When the light from two point sources interferes, as, for example, in Thomas
Young’s celebrated experiment [Born and Wolf, 1999; Schouten et al., 2004a],
the visibility of the interference fringes that are formed is a direct measure of
the correlation between the source fields [Zernike, 1938]. The spectral inter-
ference law expresses how the spectral density (or ‘spectral intensity’) at an ob-
servation point in the region of superposition depends on the spectral degree of
coherence [Mandel and Wolf, 1995, Sec. 4.3.2].

In this Chapter we study the total power that is radiated by two correlated
point sources. As we will demonstrate, the power is modulated significantly by
both the distance between the two sources, and by their spectral degree of coher-
ence. Especially when the distance between the two sources is of the order of a
wavelength, a situation that is commonly found in acoustics, strong modulations
are predicted. Further testimony to the relevance of our study is that after comple-
tion of the manuscript we discovered its resemblance to a more restricted research
problem suggested in [Mandel and Wolf, 1995] of which the solution has never
been published. Our analysis treats both primary and secondary sources. We
illustrate our findings with numerical results.

2.2 Primary sources

Consider two identical, small primary sources located at points Q1 and Q2, that
are separated by a vector d. Let SQ(ω) be the spectrum of each source, ω being
an angular frequency. The field at an observation point P is then given by the
formula

U(P, ω) = U(Q1, ω)
eikR1

R1
+ U(Q2, ω)

eikR2

R2
, (2.1)

where Ri is the distance between Qi and P (i = 1, 2), and k = ω/c with c the
speed of light in vacuum. If the spectral degree of coherence between the two
source fields is denoted by µQ(ω), then the spectral density at P is given by

S(P, ω) = 〈U∗(P, ω)U(P, ω)〉, (2.2)

= SQ(ω)

{

1

R2
1

+
1

R2
2

+

[

µQ(ω)
eik(R2−R1)

R1R2
+ c.c.

]}

. (2.3)

Here c.c. is the complex conjugate, and the angle brackets denote an average taken
over an ensemble of source field realizations (in the sense of coherence theory in
the space-frequency domain [Mandel and Wolf, 1995, Ch. 4]) that are assumed
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Figure 2.1: Illustrating the notation relating to the far-zone approximation (2.6).

to be stationary, at least in the wide sense. The spectral degree of coherence of
the two source fields satisfies the relation

µQ(ω) =
WQ(Q1, Q2;ω)

SQ(ω)
, (2.4)

with

WQ(Q1, Q2;ω) = 〈U∗(Q1, ω)U(Q2, ω)〉 (2.5)

being the cross-spectral density of the two source fields. When the point P is in
the far zone, we have to a good approximation (see Fig. 2.1),

eik(R2−R1)

R1R2
≈ eikd·s2

R2
2

, (2.6)

with s2 a unit vector. On substituting from Eq. (2.6) into Eq. (2.3) we obtain for
the far-zone spectrum the formula

S(∞)(P, ω) =
SQ(ω)

R2
2

{

2 +
[

µQ(ω)eikd·s2 + c.c.
]}

. (2.7)

Suppressing the subscript 2 and writing S(∞)(Rs, ω) rather than S(∞)(P, ω), Eq. (2.7)
becomes

S(∞)(Rs, ω) =
SQ(ω)

R2

{

2 +
[

µQ(ω)eikd·s + c.c.
]}

. (2.8)
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On integrating this result over all possible angles we find for the total power that
is radiated by two correlated primary point sources the expression

P (ω) = R2

∫

(4π)

S(∞)(Rs, ω) dΩ, (2.9)

= 2SQ(ω)

{

4π +

[

1

2
µQ(ω)

∫

(4π)

eikd·s dΩ + c.c.

]}

, (2.10)

= 8πSQ(ω) [1 + j0(kd)Re{µQ(ω)}] , (2.11)

where Re denotes the real part, d = |d| and j0 is the spherical Bessel function of
the first kind and of order zero. It is seen from Eq. (2.11) that the total power
that is radiated at frequency ω consists of the sum of the contributions of the two
sources, and an interference term which depends on both the spectral degree of
coherence of the two source fields, µQ(ω), and on the separation between the two
sources.

Let us now discuss the implications of Eq. (2.11) for two limiting cases. First,
when the separation between the two sources is much smaller than the wavelength,
i.e. when d≪ λ, then

j0(kd) ≈ 1, (2.12)

and Eq. (2.11) gives

P (ω) ≈ 8πSQ(ω) [1 + Re{µQ(ω)}] . (2.13)

Since

−1 ≤ Re{µQ(ω)} ≤ 1, (2.14)

we see that in this case

0 ≤ P (ω) ≤ 16πSQ(ω). (2.15)

If the two sources are completeley uncorrelated, i.e. if µQ(ω) = 0, then, according
to Eq. (2.11),

P (ω)uncorr. = 8πSQ(ω). (2.16)

Hence we may rewrite the inequality (2.15) as

0 ≤ P (ω) ≤ 2P (ω)uncorr.. (2.17)

In the case when P (ω) = 0 there is obviously complete cancelation of the far
field due to destructive interference. Since S(∞)(Rs, ω) ≥ 0, this implies, ac-
cording to Eq. (2.9), that S(∞)(Rs, ω) = 0 for all directions s. So the system
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Figure 2.2: The normalized power P (ω)/P (ω)uncorr. radiated by two primary
sources as a function of their separation distance d, and the real part of their
spectral degree of coherence Re{µQ(ω)}.

behaves as a non-radiating source [Gbur, 2003]. In the other limiting case, when
P (ω) = 2P (ω)uncorr., there is an increase in the radiated power due to construc-
tive interference and, consequently the far-field spectral density in the far zone
averaged over all directions is increased.

In the limit when the separation between the two sources is much larger than
the wavelength, i.e. when d≫ λ, then

j0(kd) ≈ 0, (2.18)

and Eq. (2.11) gives

P (ω) ≈ P (ω)uncorr.. (2.19)

It is seen from Eq. (2.19) that for separation distances much greater than the wave-
length, the total radiated power is independent of the spectral degree of coherence
of the fields generated by the two sources.

Fig. 2.2 shows the behavior of the total power radiated by the two sources as
a function of their separation distance d (in units of wavelengths) and the real
part of their spectral degree of coherence Re{µQ(ω)}. Especially when the source
separation is of the order of a wavelength (a situation that is commonly found, for
example, in acoustics) both parameters strongly modulate the radiated power.
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Figure 2.3: Two secondary sources.

2.3 Secondary sources

Consider an opaque screen Q, located in the plane z = 0, with two pinholes of
radius a centered at the points specified by the vectors x = (d/2, 0, 0) and −x

(see Fig. 2.3). The secondary source field in each aperture is Ui(ω), with i = 1, 2.
Again the spectral densities are assumed to be equal, namely SQ(ω). The field at
the screen is thus given by the expression

UQ(ρ, ω) = U1(ω) circ(ρ + x) + U2(ω) circ(ρ − x), (2.20)

where ρ = (x, y, 0) denotes a position vector of a point in the plane z = 0, and

circ(ρ) =

{

1 |ρ| ≤ a
0, |ρ| > a.

(2.21)

The cross-spectral density of the field at in the plane of the screen is, therefore,
given by the expression

WQ(ρ1,ρ2;ω) = 〈[U∗
1 (ω)circ(ρ1 + x) + U∗

2 (ω)circ(ρ1 − x)]

×[U1(ω)circ(ρ2 + x) + U2(ω)circ(ρ2 − x)]〉, (2.22)

The radiant intensity of the far-field in a direction indicated by the unit vector
s is related to this cross-spectral density by the equation [Mandel and Wolf,
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1995, Eq. (5.3–8)]

J(s, ω) =

(

k

2π

)2

cos2 θ

×
∞
∫∫

−∞

WQ(ρ1,ρ2;ω) exp[−iks⊥ · (ρ2 − ρ1)] d
2ρ1d

2ρ2, (2.23)

where θ is the angle that s makes with the positive z-axis, and s⊥ = (sx, sy). On
substituting from Eq. (2.22) into Eq. (2.23) we find that

J(s, ω) = a2J2
1 (ka) cos2 θ SQ(ω)

×{2 + [µQ(ω) exp(−iksxd) + c.c.]} . (2.24)

It is seen from Eq. (2.24) that for source radii a such that J1(ka) = 0 the radiant
intensity vanishes identically. It is to be noted that this not due to interference
between the two sources, because in this case both sources themselves are non-
radiating. The observation that for certain sizes a coherent source does not radiate
at all was first made by Carter and Wolf [Carter and Wolf, 1981].

The total power, at frequency ω, that is radiated by the sources is given by the
formula [Mandel and Wolf, 1995, Eq. 5.7–53]

P (ω) =

∫ 2π

0

∫ π/2

0

J(s, ω) sin θ dθdφ. (2.25)

Now sx = sin θ cos φ; on using this expression and also that

3

∫ π/2

0

J0(kd sin θ) cos2 θ sin θ dθ = 3

[

sin kd− kd cos kd

(kd)3

]

, (2.26)

= j0(kd) + j2(kd), (2.27)

we find for the total power that is radiated at frequency ω by two correlated
secondary sources the expression

P (ω) =
4π

3
a2J2

1 (ka)SQ(ω) {1 + [j0(kd) + j2(kd)] Re{µQ(ω)}} , (2.28)

Regarding Eq. (2.28) it is of interest to remark that −1 ≤ j0(x) + j2(x) ≤ 1.
The structure of Eq. (2.11), which pertains to primary sources, and Eq. (2.28),

which pertains to secondary sources, is rather similar. One difference is that the
dependence on the source separation distance is through a single spherical Bessel
function of the first kind in one case, and through a sum of two such functions in
the other case. The behavior of these functions is illustrated in Fig. 2.4. It is seen
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that the interference term for two primary sources has zeros for different values
of the separation distance than the interference term for two secondary sources.
However, the behavior of the total power that is radiated in the limiting cases of
d≪ λ and d≫ λ is the same for pairs of sources of both types.

In conclusion, we have derived expressions for the total power that is radiated
by a pair of correlated, primary and secondary sources. The expressions consist
of a direct contribution from each source and an interference term. The latter is
the product of two factors: the real part of the spectral degree of coherence, and
an oscillating function of the distance between the sources. When the separation
distance is small compared to the wavelength – a situation that is commonly met
in acoustics – the modulating influence of the degree of coherence and of the
separation distance can be quite significant.



Chapter 3

Polarization Singularities of

Focused, Radially Polarized Fields

This Chapter is based on the following publications:

• D.W. Diehl, R.W. Schoonover, and T.D. Visser, “The structure of focused,
radially polarized fields,” Opt. Express 14, 3030–3038 (2006).

• R.W. Schoonover and T.D. Visser, “Polarization singularities of focused,
radially polarized fields,” Opt. Express 14, 5733–5745 (2006).

Abstract

The state of polarization of strongly focused, radially polarized electromagnetic
fields is examined. It is found that several types of polarization singularities exist.
Their relationship is investigated, and it is demonstrated that on smoothly varying
a system parameter, such as the aperture angle of the lens, different polarization
singularities can annihilate each other. For example, the evolution of a lemon into
a monstar and its subsequent annihilation with a star is studied. Also, the quite
rare collision of a C-line and an L-line is observed.
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3.1 Introduction

At points in complex-valued scalar fields where the amplitude is zero, the phase of
the field is undetermined or singular [Nye and Berry, 1974]. Singular optics is
concerned with the description and classification of the different kinds of singular-
ities that can occur in wave fields [Nye, 1999; Soskin and Vasnetsov, 2001].
Examples of such singularities are the zeros of intensity that are found in fo-
cused fields [Karman et al., 1997]. In real-valued, two-dimensional vector fields,
the orientation of the vector is singular wherever the vector vanishes. Such sin-
gularities of the Poynting vector field in two-dimensional geometries are studied
in Refs. [Schouten et al., 2003c; Schouten et al., 2004b]. Complex-valued
vector fields can display singularities of the vector components. An example
of these are singularities of the longitudinal component of the electric field in
strongly focused, linearly polarized beams [Diehl and Visser, 2004]. Recently,
the two-point correlation functions that describe spatially partially coherent light
were shown to posses singularities as well [Schouten et al., 2003a; Gbur and

Visser, 2003; Fischer and Visser, 2004; Gbur and Visser, 2005]. All types
of singularities mentioned above can be created or annihilated when a system
parameter, such as the wavelength of the field, is smoothly varied. In these cre-
ation/annihilation events topological charge and topological index are conserved.

At every point in a time-harmonic electromagnetic field, the end point of the
electric field vector traces out an ellipse as time progresses [Born and Wolf,
1999, Sec. 1.4]. The polarization is said to be singular at points where this ellipse
degenerates into a circle (at so-called C-points) or into a line (at so-called L-lines).
Polarization singularities in wave fields are described in [Nye, 1999; Berry and

Dennis, 2001; Freund et al., 2002; Soskin et al., 2003; Mokhun et al., 2002].
Because of their use in, for example, optical trapping, the properties of focused,

radially polarized beams have been studied extensively in the past few years (see,
e.g., [Visser and Foley, 2005] and the references therein). The electric field in
the focal region of such a beam has two non-zero parts, namely a radial component
and a longitudinal component. The creation and annihilation of phase singularities
of these field components has been described in [Diehl et al., 2006]. It the present
paper the rich polarization behavior of focused, radially polarized fields is analyzed.
It is shown that the focal region contains different kinds of polarization singularities
such as L -lines, stars, monstars, lemons, and V -points. Their interrelation is
examined, and it is demonstrated how polarization singularities can be created or
annihilated when, e.g., the semi-aperture angle of the focusing system is changed.
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Figure 3.1: Illustration of a high numerical aperture system focusing a radially
polarized beam.

3.2 Focused, radially polarized fields

Consider an aplanatic focusing system L, as depicted in Fig. 3.1. The system has a
focal length f and a semi-aperture angle α. The origin O of a right-handed carte-
sian coordinate system is taken to be at the geometrical focus. A monochromatic,
radially polarized beam is incident on the system.

The electric and magnetic fields at time t at position r are given by the expres-
sions

E(r, t) = Re [e(r) exp(−iωt)] , (3.1)

H(r, t) = Re [h(r) exp(−iωt)] , (3.2)

respectively, where Re denotes the real part. The longitudinal component ez and
the radial component eρ of the electric field at a point P = (ρP , zP ) in the focal
region are given by the equations [Visser and Foley, 2005]

ez(ρP , zP ) = −ikf

∫ α

0

l(θ) sin2 θ cos1/2 θ

× exp(ikzP cos θ)J0 (kρP sin θ) dθ, (3.3)

eρ(ρP , zP ) = −kf
∫ α

0

l(θ) sin θ cos3/2 θ

× exp(ikzP cos θ)J1 (kρP sin θ) dθ, (3.4)

where Ji is the Bessel function of the first kind of order i. Also, l(θ) denotes the
angular amplitude function

l(θ) = f sin θ exp[−f 2 sin2 θ/w2
0], (3.5)
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where w0 is the spot size of the beam in the waist plane, which is assumed to
coincide with the entrance plane of the focusing system. As stated above, the
electric field has no azimuthal component. On using the dimensionless optical
coordinates (sometimes referred to as Lommel variables)

u = kzP sin2 α, (3.6)

v = kρP sinα, (3.7)

to specify the position of the observation point P , Eqs. (3.3) and (3.4) can be
rewritten as

ez(u, v) = −ikf 2

∫ α

0

sin3 θ cos1/2 θ exp(−β2 sin2 θ)

× exp(iu cos θ/ sin2 α)J0

(

v sin θ

sinα

)

dθ, (3.8)

eρ(u, v) = −kf 2

∫ α

0

sin2 θ cos3/2 θ exp(−β2 sin2 θ)

× exp(iu cos θ/ sin2 α)J1

(

v sin θ

sinα

)

dθ, (3.9)

where the parameter β = f/w0 denotes the ratio of the focal length of the system
and the spot size of the beam in the waist plane.

3.3 The electric energy density

The time-averaged electric energy density consists of the sum of two contributions,
viz.

we =
ǫ0
2
E2(u, v) =

ǫ0
4

[

|eρ(u, v)|2 + |ez(u, v)|2
]

, (3.10)

where ǫ0 denotes the permittivity in vacuum. One expects the relative contribution
of the longitudinal field component to increase when the semi-aperture angle α
increases. It is found that this is indeed the case. In Fig. 3.2 contours of the
time-averaged electric energy densities |eρ(u, v)|2 and |ez(u, v)|2 are shown, both
normalized to the same value. In this example α = π/6, and it is seen that the
contribution of the radial field component dominates at most points. The reverse
is true, however, for larger values of α. This is illustrated in Fig. 3.3 in which
contours for the same two energy density contributions are shown for the case that
the semi-aperture angle α = π/3. Then the contribution of the longitudinal field
component is clearly dominant at most points in the focal region. These results
are in agreement with earlier observations [Youngworth and Brown, 2000;
Novotny et al., 2001].
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Figure 3.2: Contours of |eρ(u, v)|2 (a) and |ez(u, v)|2 (b). In this example the
semi-aperture angle α = π/6, and the beam parameter β = 0.6.
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Figure 3.3: Contours of |eρ(u, v)|2 (a) and |ez(u, v)|2 (b). In this example the
semi-aperture angle α = π/3, and the beam parameter β = 0.6.
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3.4 Phase singularities of the field components

In a previous paper we showed that the longitudinal electric field component of
strongly focused, linearly polarized beams exhibits phase singularities [Diehl and

Visser, 2004]. We also showed that these singularities can be created or annihi-
lated when the semi-aperture angle of the focusing system is changed. We now
examine the existence of phase singularities of the two field components of the
electric field in the focal region of focused, radially polarized beams. The presence
of singular points (i.e., points of zero amplitude) of ez is readily seen from Figs. 3.4
and 3.5 in which the phase of the field component is indicated by color. At points
where different colors meet the field amplitude is zero and, consequently, the phase
of the field component is singular.

In the description of linearly polarized light there is only a single free parameter,
namely the semi-aperture angle α [Diehl and Visser, 2004]. However, in the
model for radially polarized light, there is an additional free parameter, namely
the beam parameter β [See Eqs. (3.8) and (3.9)]. One might therefore guess
that there are two different mechanisms for the creation or annihilation of phase
singularities, namely varying the semi-aperture angle α, and varying the beam
parameter β. This is found to be indeed the case. In Figure/Movie 3.4 an example
of annihilations of phase singularities of the longitudinal field component ez caused
by smoothly increasing the semi-aperture angle α is presented. For, for example,
α ≈ 51.7◦ an annihilation event can be seen near (u, v) = (22, 10).

In Figure/Movie 3.5, the behavior of the same field component for varying
values of the beam size parameter β is shown. Again, several annihilation events
can be observed.

The radial field component eρ also posseses phase singularities. In Figure/Movie
3.6 it is shown how an Airy ring-like singularity is created on the z-axis when the
beam parameter β is varied. This is reminiscent of an experimental observation
reported in [Karman et al., 1998].

3.5 The state of polarization in the focal plane

It is seen from Eqs. (3.8) and (3.9) that in the focal plane (u = 0) the longitudinal
electric field component ez(0, v) is purely imaginary, whereas the radial electric
field component eρ(0, v) is real-valued. Thus, for all points in the focal plane we
can separate the real and imaginary part of the electric field and write

e(0, v) = eρ(0, v)ρ̂ρρ+ i Im [ez(0, v)] ẑ, (3.11)

with ρ̂ρρ and ẑ unit vectors in the radial and the longitudinal direction, respectively,
and Im denotes the imaginary part. Since eρ(0, v)ρ̂ρρ and ez(0, v)ẑ are perpendicular
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Figure 3.4: Color-coded plot of the phase of the longitudinal electric field compo-
nent ez for different values of the semi-aperture angle α. In this example β = 0.6.
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Figure 3.5: Color-coded plot of the phase of the longitudinal electric field compo-
nent ez for different values of the beam-size parameter β. In this example α = π/3.
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Figure 3.6: Color-coded plot of the phase of the radial electric field component eρ

for different values of the beam-size parameter β. When β is decreased, an Airy
ring-like singularity is created. In this example α = π/4.

to each other, they constitute the conjugate semi-axes of the polarization ellipse.
Moreover, ρ̂ρρ lies in the focal plane, whereas ẑ is perpendicular to it. Hence, the
polarization ellipse of the electric field at any point in the focal plane is at right
angles to the focal plane. Also, the plane of polarization (i.e., the plane formed by
the polarization ellipse) at a point (x, y, 0) = (v cosφ, v sinφ, 0) makes an angle φ
with the xz-plane. The two axes of the polarization ellipse are in the ratio

R(v) =
|Im [ez(0, v)]|
|eρ(0, v)|

. (3.12)

The behavior of the two normalized electric field components eρ(0, v)/Im[ez(0, 0)]
and Im[ez(0, v)]/Im[ez(0, 0)] and the ratio R(v) are both shown in Fig. 3.7. It is
seen that at certain circles in the focal plane (e.g., v = 3.0, 6.7) the electric field
is purely radial, whereas at others (e.g., v = 0, 5.2) the electric field is purely
longitudinal. At the former points the field is linearly polarized along the radial
direction with the ratio R being zero; at the latter points the field is linearly
polarized along the z-direction with R being infinite. Both sets of circles constitute
so-called L-lines in the focal plane [Nye, 1999]. We note that at points such as v =
1.4, 4.4, 5.9 where R(v) equals unity (indicated by the dashed line in Fig. 3.7(b), the
polarization is circular. In other words, the circles v = 1.4, 4.4, 5.9 form so-called
C-lines in the focal plane.

The sense in which the electric polarization ellipse is traversed (i.e., its ’handed-
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Figure 3.8: The electric polarization ellipse in the focal plane for selected values of
the radial distance (v = 0.00, 0.71, 1.42, 3.05, 4.00, 5.00). The arrow indicates the
direction in which the ellipse is being traversed. In this example the semi-aperture
angle α = π/4, and the beam parameter β = 0.6.

ness’) can be determined by noting from Eqs. (3.1) and (3.11) that E(0, v, t = 0) =
eρ(0, v)ρ̂ρρ, whereas a quarter period later one has E(0, v, t = π/2ω) = Im [ez(0, v)] ẑ.
This implies that if, on varying the radial distance v, one of the two electric field
components changes sign, then so does the handedness of the state of polariza-
tion. Stated differently, in the focal plane the L-lines (at which the polarization is
linear) separate rings in which the electric polarization ellipse is being traversed in
opposite directions. The electric polarization ellipse and its handedness are shown
in Fig. 3.8 for selected values of the radial position v. As a side remark we note, as
can be seen from Fig. 3.7(a), that everywhere in the focal plane at least one of the
two electric field components is non-zero. Hence, in contrast to focused linearly
polarized fields [Richards and Wolf, 1959], nowhere in the focal plane does
the total electric energy density (given by Eq. (3.10)) vanish.

3.6 The state of polarization in the focal region

The standard description of the state of polarization in terms of Stokes parame-
ters [Born and Wolf, 1999] applies to plane waves, i.e. to fields in which the
electric field only has two non-zero cartesian components, both perpendicular to
the direction of propagation. On focusing a plane wave, the electric field acquires
a third non-zero component which is directed along the direction of propagation
(the so-called longitudinal field component) [Richards and Wolf, 1959]. Un-
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der the assumption of paraxiality (i.e., assuming the semi-aperture angle of the
focusing system to be small), this third component may be neglected. The config-
uration that we examine is not a paraxial one, but in cylindrical coordinates only
two components of the electric field are non-zero. This means that with a suitable
change in the definition of the Stokes parameters, the usual description of the state
of polarization and, in particular, of polarization singularities [Nye, 1999] can be
applied.

The electric field in the focal region is given by the formula

e(u, v) = ez(u, v)ẑ + eρ(u, v)ρ̂ρρ, (3.13)

with the components ez(u, v) and eρ(u, v) given by Eqs. (3.8) and (3.9), and with
ẑ and ρ̂ρρ unit vectors in the longitudinal and radial direction, respectively. Let us
define the variables

a1 = |ez(u, v)| , (3.14)

δ1 = arg[ez(u, v)], (3.15)

a2 = |eρ(u, v)| , (3.16)

δ2 = arg[eρ(u, v)]. (3.17)

The state of polarization of the field may then be characterized by the four Stokes
parameters (cf. [Born and Wolf, 1999, Sec. 1.4] for a similar definition with
respect to a cartesian coordinate system.)

S0 = a2
1 + a2

2, (3.18)

S1 = a2
1 − a2

2, (3.19)

S2 = 2a1a2 cos δ, (3.20)

S3 = 2a1a2 sin δ, (3.21)

with the phase difference δ given by

δ = δ2 − δ1. (3.22)

For any given intensity (i.e., S0 = constant), the normalized Stokes parameters
s1 = S1/S0, s2 = S2/S0 and s3 = S3/S0 may be represented as a point on the
Poincaré sphere (see Fig. 3.9). On the north pole (s1 = s2 = 0, s3 = 1), the
polarization is circular. We adopt the convention of calling this state right-handed
because, according to Eq. (3.1), the ellipse is being traversed in a clockwise manner
in the (ez, eρ)-plane. The polarization is right-handed for points on the northern
hemisphere, and left-handed for all points on the southern hemisphere. It easily
verified that at the south pole (s1 = s2 = 0, s3 = −1, ) the polarization is circular
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Figure 3.9: The Poincaré sphere with cartesian axes (s1, s2, s3).

and left-handed. For all points on the equator (s3 = 0), the polarization is linear.
At (s1 = 1, s2 = s3 = 0) the field is purely z-polarized, whereas at (s1 = −1, s2 =
s3 = 0) it is purely ρ-polarized. At (s1 = 0, s2 = 1, s3 = 0) and (s1 = 0, s2 =
−1, s3 = 0), finally, the linear polarization is under angle of +π/4 and −π/4 in the
(ez, eρ)-plane, respectively. For the case that a1 ≥ a2, the orientation of the ellipse
is described by the angle ψ between the major semiaxis and the z-direction. It is
given by the expression [Born and Wolf, 1999, Sec. 1.4.2, Eq. (46)]

ψ =
1

2
arctan

(

s2

s1

)

. (3.23)

It follows from Eqs. (3.8) and (3.9) that at any two points (u, v) and (−u, v)
that are symmetrically located with respect to the focal plane, the field components
satisfy the symmetry relations

ez(−u, v) = −e∗z(u, v), (3.24)

eρ(−u, v) = e∗ρ(u, v), (3.25)

where the asterisk denotes complex conjugation. Clearly, the two variables a1 and
a2 remain unchanged under reflection of the point of observation in the focal plane.
The behavior of the other quantities that describe the state of polarization under
reflection of the point of observation in the focal plane is summarized in Table 1.
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We note that the antisymmetrical behavior of the second Stokes parameter and
the angle ψ implies that they both vanishes identically in the focal plane, i.e.,

s2(0, v) = 0; ψ(0, v) = 0. (3.26)
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(z, −x)
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(−z, −x)

ψ

O

z = 0

Figure 3.10: Illustrating the symmetry properties of the polarization ellipse.

The symmetry properties of the polarization ellipse are illustrated in Fig. 3.10. If,
for example, the major semiaxis of the polarization ellipse at a point (z, x) makes
an angle ψ with the positive z-axis, then at a point (−z, x) the orientation angle
will be −ψ. The handedness, however, will be the same at both positions. The
orientation of the ellipse and its handedness at (z,−x) and (−z,−x) follow from
considering the rotational symmetry of the field.

An example of the evolution of the Stokes parameters s1 and s3 in the focal
plane as the radial distance v is increased is shown in Figure/Movie 3.11. Using
the relation s2

1 + s2
2 + s2

3 = 1 together with the first expression in (3.20), it is found

Table 3.1: The behavior of various quantities that characterize the state of polar-
ization under reflection of the point of observation in the focal plane.

(u,v) δ1 δ2 δ s0 s1 s2 s3 ψ

(-u,v) π − δ1 −δ2 −δ − π s0 s1 −s2 s3 −ψ
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that for observation points in the focal plane the (s1, s3) vector has unit length.
When the radial distance is increased, the state of polarization is seen to exhibit
a cyclical behavior, changing from linear to circular and back to linear again. In
other words, the Stokes vector traverses the s2 = 0 meridian of the Poincaré sphere
several times.
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Figure 3.11: The normalized Stokes parameters s1 and s3 in the focal plane for
increasing values of the dimensionless radial distance v. In this example α = π/4
and β = 1.5.

3.7 Polarization singularities

At points where the polarization ellipse degenerates into a circle or into a line,
the state of polarization is said to be singular. At C-points (i.e., s3 = ±1),
where the polarization is circular, the orientation angle ψ of the elipse, as given
by Eq. (3.23), is undetermined. At C-points the polarization can either be left-
handed or right-handed. At L-lines (i.e., s3 = 0), where the polarization is linear,
the handedness of the ellipse is undetermined. In the remainder these two types
of polarization singularities are examined. It should be noted that, because of
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rotational symmetry, points and closed lines in the (u, v)-plane are circles and
tori, respectively, in three-dimensional space.

3.7.1 Linear polarization

It follows from Eq. (3.21) that linear polarization generically occurs at points (u, v)
at which

Re [ez(u, v)] Im [eρ(u, v)] = Im [ez(u, v)] Re [eρ(u, v)] . (3.27)

This single condition is typically satisfied on a line in (u, v)-space. A subset of
these points are locations where one of the two field components is zero, i.e. at
phase singularities of either field component. For example, for the longitudinal
component these occur at points at which

Re [ez(u, v)] = Im [ez(u, v)] = 0. (3.28)

These two conditions are typically satisfied at isolated points in (u, v)-space. Phase
singularities of both field components are found in the focal plane and at other
points in space. They can be created or annihilated by smoothly varying the width
of the incident beam or the semi-aperture angle [Diehl et al., 2006].

By drawing the contours of s3 = 0, a multitude of L-surfaces is found. As is
illustrated in Fig. 3.12, the phase singularities of the two electric field components
all lie on L-surfaces. Notice that there is a surface of linear polarization that
connects each Airy ring of ez to the adjacent Airy ring of eρ. On traversing these
closed surfaces in the focal plane, the Stokes vector makes a complete rotatation
along the equator of the Poincaré sphere.

It is seen from Eq. (3.9) that on the central axis (i.e., v = 0) the radial electric
field component vanishes. Therefore this axis constitutes an L-line. It follows from
rotational symmetry that its index is +1 (see [Nye, 1999, Sec. 13.3]).

3.7.2 Circular polarization

It is seen from the definitions (3.19)–(3.21) that circular polarization occurs gener-
ically at points in the u, v-plane. One way of locating them is to represent the field
in a circular polarization basis (cf. [Jackson, 1975] for an similar decomposition
in cartesian coordinates), i.e.,

e(u, v) = e+(u, v)ĉ+(u, v) + e−(u, v)ĉ−(u, v), (3.29)

where

e± = (ez ∓ ieρ)/
√

2, ĉ± = (ẑ ± iρ̂)/
√

2. (3.30)
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Figure 3.12: The loci of linear polarization, i.e. contours of s3 = 0, in the focal
region. Because of the rotational symmetry of the field, these are tori centered on
the u-axis. The contours are superposed on a color-coded phase map of ez. Phase
singularities of ez are located at points where all different colors converge. The
open circles indicate phase singularities of the other field component, eρ. In this
example α = π/4 and β = 0.5.

Thus e+ (e−) represents the amplitude of the right- (left-) handed circular compo-
nent of the field. In this way, C-points correspond to phase singularities of either
component. An example is presented in Fig. 3.13. It is seen that the number of
right- and left-handed C-points is approximately the same. However, there is a
line (a cylindrical sheet in three-dimensional space) of left-handed circular polar-
ization at approximately v = 1.4. This is a non-generic surface that appears to
be only weakly dependent on the parameters u and β. To understand this feature
more fully we apply a first-order Taylor expansion to Eqs. (3.8) and (3.9). These
expressions then become

ez(u, v) = −ikf 2

∫ α

0

θ3 exp(−β2θ2) exp(iu/ sin2 α) dθ, (3.31)

eρ(u, v) = −kf 2

∫ α

0

θ3 exp(−β2θ2) exp(iu/ sin2 α)
v

2 sinα
dθ. (3.32)
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Thus, e+ can be written as

e+(u, v) = −ikf 2 exp(iu/ sin2 α)
[

1 − v

2 sinα

]

∫ α

0

θ3 exp(−β2θ2) dθ. (3.33)

It is readily apparent that left-handed circular polarization occurs when v = 2 sinα.
Also, because the zero of e+ is independent of the longitudinal variable u, this phase
singularity is line-shaped. Notice that there is no corresponding C-surface for
right-handed circular polarization because the resulting equation would yield (at
first order) v = −2 sinα. To test the validity of this approximation, the computed
location of the C-surface is compared to the approximate values in Table 2. Even
when the semi-aperture angle α = 60◦, the approximation holds quite well.
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Figure 3.13: A color-coded phase map of (a) e+ and (b) e−, both with lines of
linear polarization (solid black curves) superposed. Left-handed C-points are phase
singularities of e+ in panel (a), whereas right-handed C-points are singularities of
e− in panel (b). In this example β = 0.5 and α = π/4.

Table 3.2: Comparison of the approximate location of the C-surface to its actual
location. In these examples β = 0.5.

α actual v v = 2 sinα Error

15◦ 0.515 0.517 0.50%

30◦ 1.005 1.000 0.50%

45◦ 1.425 1.414 0.76%

60◦ 1.765 1.732 1.87%
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Apart from their handedness, C-points can be classified into three distinct types
based on the local behavior of the polarization ellipses (see [Nye, 1999, Sec. 12.2]).
These types are stars (with index −1/2), monstars (index 1/2), and lemons (index
1/2). This local behavior is shown in Fig. 3.14 for the pair of C-points seen in
Fig. 3.13(b) near (u, v) ≈ (30, 5) for three different values of the semi-aperture
angle α. Indicated in red are the local straight-line orientations of the major axis
of the nearby ellipses. (A single line for a lemon, and three lines for stars and
monstars). Notice that the lemon-type polarization singularity of Fig. 3.14(a) has
evolved into a monstar in Fig. 3.14(b). In panel 3.14(c) the situation is shown
after the star and the monstar have annihilated.

3.7.3 Relationship between L-lines and C-points

There is a strong connection between L-lines and C-points. The former separate
space into regions of different handedness. In agreement with this, the left-handed
C-points in Fig. 3.13(a), are all located outside the closed L-lines, whereas the
right-handed C-points in Fig. 3.13(b) are all located within them. As reported by
Freund et al. [Freund et al., 2002], there is a connection between the charge of
component singularities on a closed L-line and the total charge of C-points enclosed
by it. As is shown in Appendix A.1, for this specific case Eq. (5) of [Freund

et al., 2002] can be re-written as

2
∑

∈L

q− =
∑

L

qρ +
∑

L

qz, (3.34)

where the summation on the left-hand side is over all topological charges of C-
points enclosed by the L-line, and the right-hand summations are over the charges
of the two electric field components on the L-line. For example, it was verified
that the two L-lines that contain the points (0, 4) and (22, 7) in Figs. 3.12 and 3.13
both satisfy this sum rule.

Figure/Movie 3.15 shows the evolution of the left-handed field component e−
and the L-lines as the semi-aperture angle α is increased. Notice that L-lines
deform, separate, and merge. A small L-line that contains a C-point in its interior
can be seen to break off when α ≈ 43◦, and unite with another L-line when
α ≈ 46.5◦. In addition, a C-point annihilation is seen near α ≈ 61◦. The upper
singularity is a star and the lower singularity is a lemon that evolves into a monstar
before the annihilation takes place. Fig. 3.14 shows the corresponding local ellipse
behavior for this event.
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Figure 3.14: Local orientation of the major axis of the electric polarization ellipse
shown for three different values of the semi-aperture angle α with the beam pa-
rameter β kept fixed at 0.5. The local straight-line orientation of the major axes
are shown in red to aid the eye. In panel a (α = 52◦), a star (above) and a lemon
(below) are seen. In panel b (α = 61◦), the lemon has transitioned into a monstar.
In panel c (α = 65◦), the annihilation leaves only a straight-line orientation of the
major axis.
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Figure 3.15: A color-coded phase map of the left-handed component e− with L-
lines, shown in black, superposed. The semi-aperture angle α is increased from
35◦ to 65.5◦, with β kept fixed at 0.5.
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Figure 3.16: The real and imaginary parts of ez along the optical axis normalized
to Im[ez(0, 0)] as α ranges from 55.0◦ to 58.0◦, with β kept fixed at 1.5.



Chapter 3. Polarization Singularities of Focused, Radially Polarized Fields 45

3.7.4 Vector singularities

In addition to the different kinds of singularities mentionen in Sec. 1, there exist
also points where the two-dimensional complex electric vector field e is identi-
cally zero. Such points are referred to as V -points [Freund, 2002]. V -points
are necessarily a phase singularity of both cartesian components and both com-
ponents in the circular polarization basis. They are to be distinguished from
singularities of real-valued vector fields such as the Poynting vector [Schouten

et al., 2003c; Schouten et al., 2003b; Schouten et al., 2004b]. Since the com-
plex electric field given by Eqs. (3.8) and (3.9) is an analytic function, its zeros
are isolated points in the (u, v) plane [Copson, 1935]. Because the condition
e(u, v) = 0 has co-dimension four, V -points do not generically occur. However,
as we now demonstrate, they do appear in the focal region of radially polarized
beams.

In our configuration V -points occur, for example, when the longitudinal com-
ponent ez is zero on the optical axis (where the radial component eρ is identically
zero). In Figure/Movie 3.16 the real and imaginary parts of ez are shown. Their
intersection near u = 11.5 is seen to move towards and eventually below the
horizontal axis when the semi-aperture angle α is increased in a continuous man-
ner. At approximately α = 56.6◦, this intersection crosses the horizontal axis, i.e.
Re (ez) = Im (ez) = 0 near (u, v) = (11.5, 0). Clearly this V -point is unstable
under perturbations.

Another way in which vector singularities may occur is through the collission
of an L-line and a C-point [Berry and Dennis, 2001]. Although the field at
a V -point is neither linearly nor circularly polarized, the condition for linear po-
larization, (S3 = 0) combined with the two conditions for circular polarization,
(S1 = S2 = 0), result in the necessary condition that S0 = 0, i.e. the electric
field vanishes at the collision point. An example of such an event is shown in
Figure/Movie 3.17 in which the semi-aperture angle α is gradually increased. The
L-line that is seen to break apart moves downwards towards the horizontal C-line
near v = 1.6. In this process the L-line shrinks and collapses to a point at the mo-
ment of collission. On further increasing α, this point changes back into an L-line
that approaches the optical axis. The C-line remains essentially stationary while
the L-line passes through it. We mention in passing that the L-line of interest
in Figure/Movie 3.17 intersects one phase singularity of each cartesian component
and encloses one point of pure right-handed circular polarization. When the L-line
collapses to a point at the line of pure left-handed polarization (at approximately
v = 1.6), both cartesian singularities coincide, creating a V -point. Alternatively,
the V -point can be be considered as the collision of phase singularities of the
circular components e+ and e−. In fact, because L-surfaces separate space into
regions of right- and left-handedness, the only way in which C-points of opposite
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Figure 3.17: A color-coded phase map of e+ with L-lines (solid black curves)
superposed as the semi-aperture angle α ranges from 50.0◦ to 66.0◦ and with β
kept fixed at 1.5.
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handedness can collide is when the L-line separating them collapses to a point.

3.8 Discussion

It is to be noted that in the system at hand the magnetic field in the focal region
has only a single (azimuthal) component. This implies that the behavior of the
magnetic polarization is trivial compared to that of the electric polarization.

Also, because of the rotational symmetry of the configuration, the closed L-
lines that are seen in the u, v-plane, form tori in three-dimensional space centered
on the optical axis. Likewise, the C-points form rings.

In summary, strongly focused, radially polarized fields have been considered
within the context of singular optics. The state of polarization was discussed and
analyzed for this system. Phase singularities of the two electric field components
and polarization singularities were identified. The relation between L-lines and C-
lines was discussed, and an annihilation of two C-points involving a star, a lemon
and a monstar, was shown. Finally, it was demonstrated that isolated vector
singularities, V -points, can occur in this system and two different ways of creating
them were analyzed.
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Chapter 4

A Cascade of Singularities in

Young’s Interference Experiment

This Chapter is based on the following publication:

• T.D. Visser, R.W. Schoonover, “A cascade of singular field patterns in
Young’s interference experiment,” Opt. Commun. 281, Issue 1, 1–6 (2008).

Abstract

We analyze Young’s interference experiment for the case that two correlated, lin-
early polarized beams are used. It is shown that even when the incident fields are
partially coherent, there are always correlation singularities (pairs of lines where
the fields are completeley uncorrelated) on the observation screen. These correla-
tion singularities evolve in a non-trivial manner into dark lines (phase singularities
in the paraxial approximation). The latter in turn each unfold into a triplet of po-
larization singularities, namely an L-line and two C-lines of opposite handedness.

49
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4.1 Introduction

More than two centuries after its conception, Thomas Young’s interference exper-
iment [Young, 1804; Young, 1807; Born and Wolf, 1999] remains a source of
novel insights. Several new effects have been predicted [Schouten et al., 2003d;
Agarwal et al., 2005] or observed [Schouten et al., 2004a; Kuzmin et al., 2007].
Also, so-called correlation singularities [Fischer and Visser, 2004; Palacios

et al., 2004; Swartzlander and Schmit, 2004; Wang et al., 2006], pairs of
points at which the fields are completely uncorrelated, have been identified in
Young’s interference pattern [Schouten et al., 2003a]. Several recent studies are
concerned with the state of polarization of the field [Mujat et al., 2004; Roy-

chowdhury and Wolf, 2005; Setala et al., 2006]. This aspect allows the
study of a new kind of singular behavior [Soskin and Vasnetsov, 2001]. Ev-
erywhere in a monochromatic field, the end-point of the electric vector traces
out an ellipse over time. This polarization ellipse is characterized by three pa-
rameters describing its eccentricity, orientation and handedness. Polarization
singularities [Nye, 1999; Berry and Dennis, 2001; Dennis, 2002; Freund

et al., 2002; Mokhun et al., 2002; Freund, 2002; Soskin et al., 2003; Schoon-

over and Visser, 2006], points where the ellipse has degenerated into a circle
(so-called C-points, where the orientation of the ellipse is undefined) or into a line
(so-called L-points, where the handedness is undefined), have, to the best of our
knowledge, never been charted in the context of Young’s experiment.

It has recently become apparent that different types of optical singularities
are connected [Gbur et al., 2004b]. In the present Chapter the relation between
correlation singularities, dark lines, and polarization singularities is discussed. It
is shown how each of them may occur in Young’s double-slit experiment. Also,
the continuous evolution of correlation singularities into dark lines and their sub-
sequent unfolding into polarization singularities is described. This is done by
analyzing the field that results from the superposition of two correlated beams
with identical linear polarization. By gradually increasing the state of coherence
of the two beams until they are fully coherent and co-phasal, pairs of correlation
singularities are shown to transform into pairs of dark lines. If then the two di-
rections of polarization are changed in a continuous manner from being parallel
to making a finite angle with each other, each dark line is found to unfold into
a pair of C-lines of opposite handedness plus an L-line. A possible experimental
realization of this ’cascade’ of field patterns is proposed.
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Figure 4.1: Illustrating the notation.

4.2 Correlation singularities and dark lines

Consider a plane, opaque screen A with two identical, small apertures located
at Q1(r

′
1) and Q2(r

′
2), that are separated by a distance 2d (see Fig. 4.1). At

each aperture a linearly polarized beam is incident. The two beams are partially
coherent, and their directions of polarization are for now taken to be parallel.
The latter assumption allows us to use scalar diffraction theory. An interference
pattern is formed on a second screen B that is parallel to A and a distance ∆ away
from it. Let

r′1 = (d, 0, 0) r′2 = (−d, 0, 0), (4.1)

and let the two incident fields at frequency ω be given by U (inc)(r′1, ω) and U (inc)(r′2, ω).
The second-order coherence properties of the incident fields may be characterized
by the cross-spectral density function [Mandel and Wolf, 1995], i.e.

W (inc)(r′1, r
′
2;ω) = 〈U (inc)∗(r′1, ω)U (inc)(r′2, ω)〉, (4.2)

where the angle brackets denote averaging over an ensemble of field realizations.
The spectral degree of coherence is the normalized version of the cross-spectral
density function, viz.

µ
(inc)
12 (ω) =

W (inc)(r′1, r
′
2;ω)

√

S(inc)(r′1, ω)S(inc)(r′2, ω)
, (4.3)

where

S(inc)(r′i, ω) = W (inc)(r′i, r
′
i;ω), (i = 1, 2) (4.4)
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is the spectral density of the field at pinhole i. We assume the two spectral densities
to be equal, i.e. S(inc)(r′1, ω) = S(inc)(r′2, ω) = S(inc)(ω).

It can be shown that the modulus of the spectral degree of coherence is bounded:

0 ≤ |µ(inc)
12 (ω)| ≤ 1. (4.5)

The lower bound corresponds to completely uncorrelated light, whereas the upper
bound corresponds to fully coherent light. For all intermediate values the light is
said to be partially coherent.

The field at two observation points P (r1) and P (r2) on screen B is, assuming
small angles of incidence and diffraction, given by the formulae [Born and Wolf,
1999, Sec. 8.8]

U(r1, ω) = K11U
(inc)(r′1, ω) +K21U

(inc)(r′2, ω), (4.6)

U(r2, ω) = K12U
(inc)(r′1, ω) +K22U

(inc)(r′2, ω), (4.7)

where

Kij = − i

λ
dAe

ikRij

Rij
, (i, j = 1, 2) (4.8)

and dA denotes the area of each pinhole, Rij the distance QiPj and k = 2π/λ =
ω/c is the wavenumber associated with frequency ω, λ being the wavelength and
c the speed of light.

It is convenient to use the customary paraxial approximations [Born and

Wolf, 1999, Sec. 8.8.1] for the factors Kij, viz.

K1j ≈ − idA
λR1j

eikRje−ikr′1·r̂j ≈ − idA
λ∆

eikRje−ikdxj/∆, (4.9)

K2j ≈ − idA
λR2j

eikRje−ikr′2·r̂j ≈ − idA
λ∆

eikRjeikdxj/∆, (4.10)

where rj = (xj , yj, zj), Rj = |rj| and r̂j = rj/R. It is to be noted that the vector
products appearing in Eqs. (4.9) and (4.10) imply that the observed field is, in the
vicinity of the x-axis, essentially invariant in the direction perpendicular to the
line connecting the two pinholes, i.e. in the y-direction. We will therefore restrict
our analysis to observation points along the x-axis. It should be noted however,
that the field behavior we discuss occurs along lines.

The cross-spectral density function of the field on screen B is defined, strictly
analogous to Eq. (4.2), as

W (r1, r2;ω) = 〈U∗(r1, ω)U(r2, ω)〉, (4.11)
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with its spectral degree of coherence given by the expression

µ(r1, r2;ω) =
W (r1, r2;ω)

√

S(r1, ω)S(r2, ω)
, (4.12)

where S(ri, ω) = W (ri, ri;ω) is the spectral density at P (ri). The modulus of the
spectral degree of coherence of the field on the observation screen is again bounded,
i.e.

0 ≤ |µ(r1, r2;ω)| ≤ 1, (4.13)

with the bounds having the same meaning as for µ
(inc)
12 (ω).

As mentioned before, we consider observation points that lie on the x-axis. As
a further specialization, we will analyze pairs of points that are located symmet-
rically with respect to the z-axis, i.e. we take

r1 = (x, 0,∆), (4.14)

r2 = (−x, 0,∆). (4.15)

On substituting from Eqs. (4.6) and (4.7) into Eq. (4.11) while using the ap-
proximations (4.9) and (4.10) we then obtain for the spectral density and the
cross-spectral density the expressions

S(r1, ω) = 2

(

dA

λ∆

)2

S(inc)(ω)
{

1 + |µ(inc)
12 (ω)| cos(β + 2kdx/∆)

}

,(4.16)

S(r2, ω) = 2

(

dA

λ∆

)2

S(inc)(ω)
{

1 + |µ(inc)
12 (ω)| cos(β − 2kdx/∆)

}

,(4.17)

W (r1, r2;ω) = 2

(

dA

λ∆

)2

S(inc)(ω)
{

Re[µ
(inc)
12 (ω)] + cos(2kdx/∆)

}

, (4.18)

where β denotes the argument (phase) of µ
(inc)
12 (ω). We note that S(r1, ω) 6=

S(r2, ω) because, in general, µ
(inc)
12 (ω) 6= µ

(inc)
21 (ω).

As is well known, there are no observation points where the spectral density
vanishes when Young’s experiment is performed using partially coherent light.
(However, this is not necessarily true when three partially coherent beams are made
to interfere. [Gbur et al., 2004a; Basano and Ottonello, 2005; Ambrosini

et al., 2005]) In the present case this follows from the fact that |µ(inc)
12 (ω)| < 1 for

partially coherent light, and therefore the terms in braces in Eqs. (4.16) and (4.17)
have no zeros.

It is seen from Eqs. (4.16) and (4.17) that in the limit Re[µ
(inc)
12 (ω)] → 1, i.e.,

when the two incident fields are fully coherent and co-phasal, the spectral density
vanishes at points

r = (xn, 0,∆), (4.19)
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where

xn = ±π∆

kd
(n+ 1/2), (n = 0, 1, 2, . . .) (4.20)

It is to be noted that the complete destructive interference that leads to the spectral
density to be zero at these points is a direct consequence of the use of the paraxial
approximation [Eqs. (4.9) and (4.10)]. In reality, rather than phase singularities,
there will be dark lines on the observation screen with a vanishing but non-zero
intensity.

In contrast to the field amplitude, the behavior of the correlation functions is
more subtle. There are pairs of observation points at which the fields are com-
pletely incoherent (i.e., pairs of points for which W (r1, r2;ω) = µ(r1, r2;ω) = 0)
even if the incident is partially coherent. A necessary and sufficient condition for
this to occur is for the term in braces in Eq. (4.18) to become zero, i.e

cos(2kdx/∆) = −Re[µ
(inc)
12 (ω)]. (4.21)

In view of the relation (4.5) it follows that Eq. (4.21) can always be satisfied. So
we conclude that even if the two incident fields are partially coherent, there are
pairs of observation points r1 = (x, 0,∆), r2 = (−x, 0,∆) at which the fields at
frequency ω are completely uncorrelated. Let us now examine the behavior of the
solutions of Eq. (4.21) for the case that Re[µ

(inc)
12 (ω)] is positive. We can write the

positive solutions for the position x as

x±n =
π∆

kd
(±δ + n + 1/2), (n = 0, 1, 2, . . .), (4.22)

with δ a positive constant that depends on the value of Re[µ
(inc)
12 (ω)], and the

superscript ± indicating whether the plus or minus sign is taken in front of δ. If
Re[µ

(inc)
12 (ω)] tends to unity, δ becomes smaller and the points x+

n and x−n , that
are each part of two different correlation singularities, namely the pairs of points
(−x+

n , x
+
n ) and (−x−n , x−n ), move closer to each other. In the limit of the two

incident fields becoming fully coherent and co-phasal, the points x+
n and x−n merge

and both correlation singularities disappear, i.e.

lim
Re[µ

(inc)
12 (ω)]→1

x+
n = x−n = xn. (4.23)

In this limit the points ±x±n become the dark lines given by Eq. (4.19). Hence we
conclude that in the limit of the two incident fields becoming fully coherent and
co-phasal (i.e., µ

(inc)
12 (ω) = 1), each half of the correlation singularity (−x+

n , x
+
n )

annihilates with a neighboring half of the correlation singularity (−x−n , x−n ). The
result of this ’cross-pair’ annihilation of correlation singularities is a dark line at
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xn. (Only in the idealized paraxial case are these dark lines true zeros of intensity,
i.e. phase singularities.)

An example is shown in Fig. 4.2 in which four coherence singularities (i.e.
four pairs of points) are shown for selected values of the real part of the spectral

degree of coherence, Re[µ
(inc)
12 (ω)]. In panel (a) the equally colored pairs (−x−0 , x−0 ),

(−x+
0 , x

+
0 ), (−x−1 , x−1 ) and (−x+

1 , x
+
1 ) each form a coherence singularity, in other

words µ(−x−0 , x−0 ;ω) = µ(−x+
0 , x

+
0 ;ω) = µ(−x−1 , x−1 ;ω) = µ(−x+

1 , x
+
1 ;ω) = 0. In

panel (b) the same four coherence singularities are shown for a higher value of

Re[µ
(inc)
12 (ω)]. It is seen that each half of a correlation singularity, like e.g. x−0 ,

moves closer to a neighboring half of another correlation singularity, in this case
x+

0 . In panel (c) the limiting case of Re[µ
(inc)
12 (ω)] = 1 is shown. Now the four

correlation singularities have annihilated, and four dark lines at −x1, −x0, x0, and
x1 have been created.

4.3 Dark lines and polarization singularities

In order to study polarization effects, we must use a vector description rather than
the scalar description we used thus far. The incident fields are assumed to be fully
coherent and linearly polarized. The two angles of polarization are under an angle
α with each other. Let the electric fields at frequency ω that are incident on the
two pinholes be given by the expressions

E(r′1, ω) = E exp(−iωt)x̂, (4.24)

E(r′2, ω) = E exp(−iωt)[cosα x̂ + sinα ŷ], (4.25)

where t denotes the time, and x̂ and ŷ are unit vectors in the x and y-direction,
respectively, and E ∈ R. The electric field at an observation point P (r) is then,
again assuming small angles of incidence and diffraction, given by the formula

E(r, ω) = K1E(r′1, ω) +K2E(r′2, ω), (4.26)

with

K1 = − i

λ
dAeik|r−r′1|

|r− r′1|
≈ − idA

λ∆
eikRe−ikdx/∆, (4.27)

K2 = − i

λ
dAeik|r−r′2|

|r− r′2|
≈ − idA

λ∆
eikReikdx/∆, (4.28)

where r = (x, y,∆), and R = |r|. On substituting from Eqs. (4.24) and (4.25) into
Eq. (4.26) while using the approximations (4.27) and (4.28), we obtain for the field
on the screen the expression

E(r, ω) = −i
EdA
λ∆

ei(kR−ωt)
[(

e−ikdx/∆ + cosα eikdx/∆
)

x̂ + sinα eikdx/∆ŷ
]

. (4.29)
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Figure 4.2: The position of four correlation singularities, i.e., the pairs of obser-
vation points (−x+

1 , x
+
1 ), (−x−1 , x−1 ), (−x+

0 , x
+
0 ), and (−x−0 , x−0 ) at which the fields

are completely uncorrelated, for selected values of Re[µ
(inc)
12 (ω)]. The pairs are in-

dicated by equally-colored bars. In panels (a) and (b) it is seen how each half of a
singularity moves towards a neighboring half. In panel (c) the incident fields are
fully coherent and co-phasal. The four correlation singularities have annihilated
and four dark lines have been created at −x1, −x0, x0, and x1. In this example
λ = 632.8 nm, ∆ = 2m, and 2d = 2mm.
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If we define

a1 = |Ex(r, ω)| , a2 = |Ey(r, ω)| , (4.30)

δ1 = argEx(r, ω), δ2 = argEy(r, ω), (4.31)

then the Stokes parameters that characterize the state of polarization of the field
at P (r) can be expressed as [Born and Wolf, 1999]

S0 = a2
1 + a2

2, S1 = a2
1 − a2

2, (4.32)

S2 = 2a1a2 cos δ, S3 = 2a1a2 sin δ, (4.33)

where δ = δ2 − δ1. The first parameter, S0, is proportional to the intensity of
the field. The normalized Stokes vector (s1, s2, s3), with si = Si/S0 and i =
1, 2, 3, indicates a point on the Poincaré sphere. The north pole (s3 = 1) and
south pole (s3 = −1) correspond to circular polarization. Points on the equator
(s3 = 0) correspond to linear polarization. All other points correspond to elliptical
polarization. At points above the equator (s3 > 0) the polarization is right-handed,
whereas as at points below the equator (s3 < 0) the polarization is left-handed.
The smallest angle between the major axis of the polarization ellipse and the
positive x-axis equals

Ψ =
1

2
arctan

(

s2

s1

)

. (4.34)

Let us now study the behavior of the Stokes parameters in the vicinity of a
dark line (with near-zero intensity) that occurs when the two directions of polar-
ization are parallel, i.e. when α = 0. In that case the field everywhere is linearly
polarized along the x-direction (s1 = 1, s2 = s3 = 0). This situation is depicted in
Figs. 4.3(a)and (b). Also, according to Eqs. (4.32) and (4.29),

S0 =

[

2EdA
λ∆

cos(kdx/∆)

]2

. (4.35)

Hence we find as before that (albeit it only in the paraxial approximation) the
intensity vanishes at the points xn given by Eq. (4.20). If we consider the field
around the point x0 and apply a Taylor expansion to Eq. (4.29) for small values
of the angle α, we find that

Ex(x0, ω) = 0, (4.36)

Ey(x0, ω) = i
αEdA
λ∆

. (4.37)

Hence, on changing α from zero to a finite value, the x-component of the electric
field remains approximately zero, whereas the y-component obtains a finite imagi-
nary value. Thus, the dark line at x0 evolves into a polarization singularity, namely
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Figure 4.3: The Stokes parameters s1 and s3 as a function of position for selected
values of the orientation angle α. In this example λ = 632.8 nm, ∆ = 2m, and
2d = 2mm.
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an L-line with s1 = −1. We also note that the first term in the square brackets
of Eq. (4.29) is approximately real near x0, whereas the second term is approxi-
mately imaginary. That implies that the Stokes parameter s2, remains unaffected,
i.e. close to zero, under small changes in the angle α. To study the behavior of
the parameter s3, it is useful to expand the electric field given by Eq. (4.29) in the
circular polarization basis [Jackson, 1975] as

e±(r, ω) = −i
EdA
λ∆

√
2
ei(kR−ωt)

[

e−ikdx/∆ + cosα eikdx/∆ ∓ i sinα eikdx/∆
]

(4.38)

= −i
EdA
λ∆

√
2
ei(kR−ωt)

[

eikdx/∆e∓iα + e−ikdx/∆
]

, (4.39)

where e+ and e− are the amplitudes for the left-handed and right-handed circular
polarization basis, respectively. The zeros of these quantities occur when

kdx±/∆ ∓ α = −kdx±/∆ + π, (4.40)

i.e. at positions

x± = x0 ±
α∆

2kd
. (4.41)

From Eq. (4.41) it follows that two C-lines of opposite handedness are located
symmetrically around x0. Thus we conclude that on changing the polarization an-
gle α from zero to a finite value, each dark line unfolds into a triplet of polarization
singularities, namely an L-line with two C-lines of opposite handedness on either
side. It is to be noted that according to Eq. (4.41) the polarization singularities
move away from each other when the angle α is increased, but they remain in
existence. In other words, they are structurally stable. We emphasize that, since
our system is approximately invariant along the y-direction, we are dealing with
C-lines rather than the generically occuring C-points [Bogatyryova et al., 2003;
Soskin et al., 2004; Bogatyryova et al., 2004]. Also, this unfolding is reminis-
cent of a similar process in crystal optics [Flossmann et al., 2005; Flossmann

et al., 2006].
An example of the unfolding process is shown in Fig. 4.3. There the behavior

of the Stokes parameters s1 and s3 in the vicinity of the dark line at x0 is depicted
for selected values of the angle α. In calculating the plots the exact expressions
for the factors Kj are used, rather than their approximate forms. In Figs. 4.3(a)
and (b) the case of two perfectly aligned directions of polarization (α = 0) is
shown. It is seen that s1 = 1 and s3 = 0 over the entire range, i.e. the field
is everywhere linearly polarized along the x-direction. Figs. 4.3(c) and (d) show
the state of polarization when the two polarization directions are under an angle
α = 0.005 with each other. Precisely at the location of the vanished dark line (at
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x0 = 0.316 mm) an L-line with s1 ≈ −1 has appeared. Also, the behavior of the
Stokes parameter s3 has drastically changed: to the left of x0 a right-handed C-line
(s3 = 1) has appeared, together with a left-handed C-line (s3 = −1) to the right
of x0. In Figs. 4.3(e) and (f) the same Stokes parameters are shown for a larger
value of the angle α. It is seen that the triplet of polarization singularities still
occurs, but with the two C-lines further separated from each other, as is suggested
by Eq. (4.41). Also, the behavior of the parameters in the neighborhood of the
former dark line has become smoother. In all numerical calculations it was found
that |s2| < 0.01.

The effects predicted in this paper can be produced, for example, by using
a setup described by Thompson and Wolf [Thompson and Wolf, 1957] that
produces a field with a variable spectral degree of coherence. By adding two
polarizers, the angle α between the two directions of polarization of the incident
fields can be controlled.

4.4 Conclusions

An analysis of Young’s interference experiment for the case when two correlated
beams of identical linear polarization are used was presented. It was found that
correlation singularities are always present. When the two beams become fully
coherent and co-phasal, the correlation singularities annihilate in a cross-pair wise
manner, and dark lines are created. On changing the polarization directions with
respect to each other, each dark line unfolds into a triplet of polarization singu-
larities.



Chapter 5

Polarization Singularities in an

N-Pinhole Interferometer

This Chapter is based on the following publication:

• R.W. Schoonover, T.D. Visser, “Creating polarization singularities with
an N -pinhole interferometer,” Phys. Rev. A 79, 043809 (2009).

Abstract

Recent studies of singularities in scalar wave fields in Young’s classic experiment
are extended to electromagnetic fields diffracted by an N -pinhole interferometer.
Linearly polarized fields whose direction of polarization may be different at each
pinhole are examined. It is shown that for two pinholes, only surfaces of linear
polarization are created. For N larger than two, a rich structure of polarization
singularities is found even when the location of the pinholes is arbitrary. In addi-
tion, there can be regions where the spectral density of the field is zero.
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5.1 Introduction

Singular optics [Nye, 1999; Soskin and Vasnetsov, 2001] is a relatively new
branch of physical optics that analyzes topological features in the vicinity of sin-
gular points in wave fields. Originally it dealt with phase singularities and polar-
ization singularities in monochromatic fields [Berry and Dennis, 2001; Dennis,
2002; Freund et al., 2002; Mokhun et al., 2002; Soskin et al., 2003; Schoon-

over and Visser, 2006]. Later it expanded to include spatially coherent, poly-
chromatic fields in which spectral anomalies can occur [Gbur et al., 2001]. More
recently, coherence singularities in partially coherent fields have also been stud-
ied [Fischer and Visser, 2004; Palacios et al., 2004; Swartzlander and

Schmit, 2004; Wang et al., 2006; Maleev and Swartzlander, 2008; Gbur

and Swartzlander, 2008].
Several studies have been dedicated to identifying different kinds of field sin-

gularities that can occur in Young’s interference experiment. Phase singularities
of the correlation function of the field resulting from the illumination of a multi-
pinhole interferometer with a partially coherent field have been predicted [Schouten

et al., 2003a; Gbur et al., 2004a; Gan and Gbur, 2007] and observed [Basano

and Ottonello, 2005; Ambrosini et al., 2005]. Optical vortices produced in
a three-pinhole experiment with monochromatic scalar fields have also been ana-
lyzed [Ruben and Paganin, 2007]. Furthermore, the evolution of different types
of singularities in a two-slit configuration – phase singularities of monochromatic
scalar fields, coherence singularities of partially coherent scalar fields, and polar-
ization singularities of vector fields – has recently been described [Visser and

Schoonover, 2008].
It is the aim of the present paper to elucidate the different types of polarization

singularities that can occur in an N -pinhole experiment. Polarization singularities
in monochromatic fields occur at positions (typically lines) where the polariza-
tion ellipse is circular and hence its orientation angle is undefined (C-lines), and
at positions (typically surfaces) where the ellipse has degenerated into a line and
therefore its handedness is undefined (L-surfaces) [Nye, 1999]. Often, these sin-
gular structures are examined in a specific plane, which leads to the identification
of C-points and L-lines. We show that in the two-pinhole setup, with the field at
each pinhole being linearly polarized, surfaces of linear polarization are created,
but that circular polarization can only be created on, at most, a single surface.
In the three-pinhole configuration, surfaces of linear polarization can be created,
as can lines of circular polarization. These results are displayed only for planes
perpendicular to the interferometer screen, resulting in lines and points rather
than surfaces and lines. We show that for N = 3 a rich polarization topology
occurs, even when the location of the pinholes lack symmetry. The extension to
an N -pinhole setup is also discussed, and field structures for N = 4 and N = 7
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are presented for symmetric pinhole configurations.
Our analysis does not only shed light on Young’s interference experiment, one

of the seminal experiments in physics, but it can also be applied to spatial control
of the state of polarization. Having this capability is essential in Quantum Op-
tics [Loudon, 2003], but also in Classical Optics [Brosseau, 1998] where many
components and samples [Davis and Carney, 2008] are birefringent.

5.2 The two-pinhole interferometer

Consider an opaque screen occupying the plane z = 0 that is perforated by two
identical pinholes. The pinholes are located at

r1 = (d, 0, 0), and r2 = (−d, 0, 0). (5.1)

The field incident upon the pinholes is taken to be monochromatic with frequency
ω, and linearly polarized. It is also assumed that the field at each pinhole is of
equal amplitude and co-phasal. Let us write the electric field at the j-th pinhole
as

Ej(ω) = E0e
iωtêj , (j = 1, 2) (5.2)

where E0 ∈ Re, t denotes the time and êj is a real unit vector that denotes the
direction of polarization. The field at an observation point r = (x, y, z) then
equals [Born and Wolf, 1999, Sec. 8.8]

E(r, ω) = Ē(ω)
2
∑

j=1

eikRj

Rj

êj , (5.3)

where Rj = |r − rj|, Ē(ω) = −iE0dA exp(iωt)/λ, dA is the area of each pinhole,
and k = ω/c = 2π/λ is the wavenumber associated with frequency ω, c being the
speed of light in vacuum. Obviously, if ê1 ‖ ê2, the resultant field will be linearly
polarized everywhere. As is shown in the Appendix, all polarization choices except
ê1 ‖ ê2 result in the same topological structure. We will therefore consider the
case of two orthogonally polarized fields, namely ê1 = x̂ and ê2 = ŷ. Using this
choice in Eq. (5.3), and by denoting

|Ex(r, ω)| = E0dA/λR1, (5.4)

|Ey(r, ω)| = E0dA/λR2, (5.5)

δ = arg [Ey(r, ω)] − arg [Ex(r, ω)] ,

= k(R2 − R1), (5.6)
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the Stokes parameters that characterize the state of polarization of the field at
position r can be expressed as [Born and Wolf, 1999, Sec. 1.4.2]

S0(r, ω) = |Ex(r, ω)|2 + |Ey(r, ω)|2, (5.7)

S1(r, ω) = |Ex(r, ω)|2 − |Ey(r, ω)|2, (5.8)

S2(r, ω) = 2 Re{E∗
x(r, ω)Ey(r, ω)}, (5.9)

S3(r, ω) = 2 Im{E∗
x(r, ω)Ey(r, ω)}. (5.10)

The parameter S0(r, ω) is proportional to the spectral density (or ’intensity at
frequency ω’) of the field. The normalized Stokes vector (s1, s2, s3), with si = Si/S0

and i = 1, 2, 3 indicates a point on the Poincaré sphere. The North Pole (s3 = 1)
and South Pole (s3 = −1) both correspond to circular polarization. Points on the
Equator (s3 = 0) correspond to linear polarization. All other points correspond to
elliptical polarization. The orientation of the polarization ellipse also follows from
the Stokes parameters.

Linear polarization occurs at positions where s3 = 0. This implies that

δ = k(R2 − R1) = nπ, (5.11)

with n an integer. Substitution of the definitions of R1 and R2 results in the
equation

x2

a2
n

− y2

b2n
− z2

b2n
= 1, (5.12)

where

a2
n = n2λ2/16, (5.13)

b2n = d2 − a2
n, (n = 1, 2, . . . , nmax). (5.14)

Since |R2 − R1| < 2d it follows that

nmax < 4d/λ ≤ nmax + 1, (5.15)

and hence the coefficients b2n are all positive. Equation (5.12) represents a set of
nmax semi-hyperboloids of two sheets in the half-space z > 0, with their symmetry
axis along the line connecting the two pinholes. The distance beween the two x-
intercepts of each hyperbola equals 2an = nλ/2. These intercepts all lie in between
the two pinholes. An example of the first two hyperbolas (n = 1, 2) is shown in
Figs. 5.1 and 5.2. Putting n = 0 in Eq. (5.11) yields an additional surface on which
the field is linearly polarized, namely the plane x = 0.
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Figure 5.1: Semi-hyperbolas on which the polarization of the field in a two-pinhole
interferometer is linear (L-surfaces). In this example λ = 632.8 nm and 2d = 2mm.
Notice that the horizontal scale is in microns, whereas the vertical scale is in
millimeters.
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Figure 5.2: Semi-hyperbolas on which the polarization of the field in a two-pinhole
interferometer is linear (L-surfaces). In this example z = 0.5m. All other param-
eters are as in Fig. 5.1. Notice that the horizontal scale is in millimeters, whereas
the vertical scale is in meters.

Circular polarization occurs at positions where both s1 = 0 and s2 = 0. The
first condition implies that R1 = R2, i.e., x = 0. From the second condition it
follows that

δ = k(R2 − R1) = (m+ 1/2)π, (5.16)

with m an integer. Substitution of the definitions of R1 and R2 results in the
equation

x2

c2m
− y2

d2
m

− z2

d2
m

= 1, (5.17)

where

c2m =

(

m+
1

2

)2

λ2/16, (5.18)

d2
m = d2 − c2m, (m = 0, 1, . . . , mmax), (5.19)

with

mmax <
4d

λ
− 1

2
≤ mmax + 1, (5.20)
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and the coefficients d2
m therefore all positive. Equation (5.17) represents a set

of mmax + 1 semi-hyperboloids of two sheets in the half-space z > 0, with their
symmetry axis along the line connecting the two pinholes. The distance beween the
two x-intercepts of each hyperbola equals 2cm = (m + 1/2)λ/2. These intercepts
too all lie in between the two pinholes. Since the surfaces of Eq. (5.17) and the
plane x = 0 do not intersect, the two conditions for circular polarization cannot be
satisfied simultaneously and so there is no location at which the field is circularly
polarized. It is shown in the Appendix A.2 that under more general conditions
than discussed here, C-points can occur in a N = 2 configuration.

5.3 The three-pinhole interferometer

An example of a symmetric three-pinhole interferometer configuration is one in
which the pinholes are located at the vertices of an equilateral triangle with sides√

3d:

r1 = d(0, 1, 0), r2 = d

(

−
√

3

2
,
−1

2
, 0

)

, r3 = d

(√
3

2
,
−1

2
, 0

)

. (5.21)

The field at each pinhole is taken to have amplitude E0 and to be linearly polarized
along the radial direction, i.e., êj = r̂j . This may be achieved, for example, by
illuminating the screen with a radially polarized beam that propagates along the
z-axis [Youngworth and Brown, 2000]. In the region of superposition the
field is given by

E(r, ω) = Ē(ω)

3
∑

j=1

eikRj

Rj
êj . (5.22)

By inserting Eq. (5.22) into Eqs. (5.10), one may again analyze the Stokes pa-
rameters of the field in an observation plane. In Fig. 5.3, the color-coded spectral
density is shown in the transverse plane z = 1 m, with contours of s3 = 0 (lines
of linear polarization) superposed. A honeycomb pattern with many locations of
near-zero spectral density is clearly visible. We also note that the line x = y = 0
is a so-called V -line, a line on which the total electric field is identically zero
[Nye, 1999]. Both observations are a consequence of the particular choice of the
pinhole positions. The appearance of a V -line is reminiscent of the complete de-
structive interference of partially coherent, scalar fields that has been predicted
and observed for the same configuration [Gbur et al., 2004a; Basano and Ot-

tonello, 2005; Ambrosini et al., 2005].
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There are three distinct sets of parallel L-lines in the plane shown in Fig. 5.3.
This structure may be understood as follows. If we apply the paraxial approxima-
tion

eikRj/Rj ≈ eikre−ikr̂·rj/r, (5.23)

where r = |r| in Eq. (5.22), then the Stokes parameter S3(r, ω) is given by the
expression

S3(r, ω) =

√
3|Ē(ω)|2
r2

{sin[kr̂ · (r1 − r2)] + sin[kr̂ · (r2 − r3)]

+ sin[kr̂ · (r3 − r1)]}. (5.24)

By using the identity sin u+sin v = 2 cos[(u−v)/2] sin[(u+v)/2] together with the
relation r1 + r2 + r3 = 0, the first two terms on the right-hand side of Eq. (5.24)
can be combined to give

S3(r, ω) =

√
3|Ē(ω)|2
r2

{−2 cos(3kr̂ · r2/2) sin[kr̂ · (r3 − r1)/2]

+ sin[kr̂ · (r3 − r1)]}. (5.25)

In this case, S3(r, ω) vanishes when kr̂ · (r3 − r1)/2 is a multiple of π. Any two of
the three sine terms in Eq. (5.24) can be combined to simplify the equation, and
the condition S3(r, ω) = 0 can thus be generalized to

r̂ · (ri − rj) = pλ (i, j = 1, 2, 3 and i 6= j), (5.26)

with p an integer. For each value of p this gives us 3 equations that approximate
lines in a transverse observation plane z = z0. Consider first the case i = 2, j = 3,
for which ri − rj = sx̂, with s = −

√
3d. Inserting this into Eq. (5.26) yields the

condition

x2
p

(

1 − p2λ2

s2

)

=
p2λ2

s2
(y2

p + z2
0), (5.27)

where xp and yp are the locations of the pth L-line in the plane z = z0. The number
of L-lines is bounded since |p| ≤ s/λ. For z0 = 1 m ≫ yp, and taking d = 1 mm,
λ = 0.6328µm, Eq. (5.27) reduces to

xp ≈ p 0.365 mm, (5.28)

the solutions of which correspond to the equidistant vertical L-lines. On setting
i = 1, j = 3 in Eq. (5.26), a similar derivation yields

y0 ≈
x0√
3

+ p 0.422 mm. (5.29)



Chapter 5. Polarization Singularities in an N -Pinhole Interferometer 69

Figure 5.3: The spectral density (in arbitrary units) for the symmetric three-
pinhole interferometer in the z = 1 m plane. The solid black curves are lines of
linear polarization. In this example d = 1 mm and λ = 632.8 nm.

This expression describes the parallel L-lines that run from the bottom left corner
to the top right corner in Fig. 5.3. It is easily verified that by setting i = 1, j = 2
in Eq. (5.26) one obtains the approximation

y0 ≈ − x0√
3

+ p 0.422 mm, (5.30)

which corresponds to the remaining set of L-lines.
Unlike the two-pinhole case, circular polarization states do exist in the three-

pinhole configuration. Right(Left)-handed circular polarization may be thought
of as the condition when the field amplitude in the left(right)-handed polarization
basis state vanishes. The electric field amplitudes for any two orthogonal basis
states are generally complex, and so the location of phase singularities of the
right(left)-handed amplitudes correspond to states of complete left(right)-handed
polarization. By decomposing the field as [Jackson, 1975, Sec. 7.2]

E(r, ω) = E+(r, ω)ĉ+ + E−(r, ω)ĉ−, (5.31)
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where

E±(r, ω) =
Ex(r, ω) ∓ iEy(r, ω)√

2
, (5.32)

ĉ± =
x̂ ± iŷ√

2
, (5.33)

the phase singularities of E+(r, ω) and E−(r, ω) may be found. In a color-coded
plot of their phase, phase singularities are points where all colors meet. In Figs. 5.4
and 5.5, the phases are shown in the plane z = 1 m. The location of the C-points
may be found approximately by again using Eq. (5.23) and solving for cases when
E± = 0. These are points (x, y) in the plane z = z0 that simultaneously satisfy
the two conditions

y

z0
=

mλ

3d
, (5.34)

x

z0
=

βmnλ

π
√

3d
, (5.35)

where βmn is the nth solution to |
√

3 sin βmn| = |1 − (−1)m cos βmn| and m and n
are integers. Each m and n label a C-point in the region of interest.

The condition for L-lines and C-points are trivially met by the case E = 0 (a V -
point). In fact, co-location of phase singularities for both E+ and E− is a necessary
and sufficient condition for the existence of a V -point. Likewise, a V -point can be
thought of as the intersection of an L-line with a C-point. Inspection of Figs. 5.4
and 5.5 shows many locations beyond (x, y) = (0, 0) that seem likely candidates
for a V -point. However, it follows from symmetry considerations that such a point
can only occur on the z-axis. Indeed it is found that the C-points are all slightly
off to the side of the L-lines. The two types of singularities can only be shown to be
co-located within the validity of the paraxial approximation — when sin βmn = 0
in Eq. (5.35). The pairs of C-points that are adjacent to the intersection of three
L-lines are of opposite topological charge — their phases circulate in opposite
directions. This implies that half of them are ‘star’-type C-points and the other
half are either ‘lemon’- or ‘’monstar’-type C-points [Dennis, 2008]. The C-points
that are not near an L-line intersection alternate between being ‘stars’ and ‘lemons’
along any of the three axes of symmetry. For example, between the two vertical
L-lines located near x = −0.7 mm and x = −0.4 mm, the C-point near y = −0.9
mm is a ‘lemon’, the one above it is a ’star’, and they alternate as the vertical
position increases.

An alternative way of locating C-points is by plotting the phase of the quantity
ψ = E(r, ω) · E(r, ω) [Berry and Dennis, 2001]. This is done in Fig. 5.6. The
advantage of this approach is that both left-handed and right-handed C-points are
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Figure 5.4: The phase of E+(r, ω) in the z = 1 m plane for the symmetric three-
pinhole experiment. In this example d = 1 mm and λ = 632.8 nm. The phase
singularities, points where all colors meet, correspond to to C-points, i.e., points
of left-handed circular polarization.
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Figure 5.5: The phase of E−(r, ω) in the z = 1 m plane for the symmetric three-
pinhole experiment. In this example d = 1 mm and λ = 632.8 nm. The phase
singularities, points where all colors meet, correspond to C-points, i.e., points of
right-handed circular polarization.
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now simultaneously visible as phase singularities of ψ. These singularities have a
charge that is twice the C-point charge, with the sign of the charge being positive
(negative) for right-handed (left-handed) polarization.

The symmetry in the three-pinhole arrangement as presented above is not
necessary to create such a rich topology of singular structures. As an example of a
configuration where the pinhole locations are not symmetric, we consider the case
where

r1 = d(0.8, 1, 0), r2 = d (1, 0, 0) , r3 = d (0, 0, 0) . (5.36)

and

ê1 = (0, 1, 0), ê2 = (0.8,−0.6, 0) , ê3 =

(√
3

2
,
−1

2
, 0

)

. (5.37)

Again, the field at each pinhole is taken to be of equal amplitude and co-phasal, and
so Eq. (5.22) still applies. In Fig. 5.7, the spectral density of the field is shown in
the plane z = 1 m. The V -point (a point of zero spectral density) has disappeared.
Also, the pattern of L-lines is changed as compared to the symmetric case, with the
lines no longer crossing each other. In Fig. 5.8, the phases of E+(r, ω) and E−(r, ω)
are shown. Breaking the symmetry in pinhole locations changes the number of C-
points and L-lines in a region, but it does not result in their disappearance. The
occurence of L-lines and C-points may therefore be said to be generic. Note that
the two figures are no longer mirror images of one another - the location of a phase
singularity of E+(r, ω) is no longer indicative of a location of a phase singularity of
E−(r, ω). It is seen that linear polarization and both types of circular polarization
can all occur in the vicinity of points of near-zero spectral density.

5.4 An N-pinhole interferometer

Young’s experiment can be easily generalized from Eqs. (5.3) and (5.22) by chang-
ing the bound on the summation to N . The number of free parameters (e.g., the
state of polarization of the electric field at each pinhole, and the location of the
pinholes) make any absolute statement about the scalability of the previous anal-
ysis impossible. However, if the phase and amplitude of the field at each pinhole
are the same, and the direction of linear polarization and the location of the pin-
holes are radially symmetric, a pattern does emerge. The V -line x = 0, y = 0 is
present for all N ≥ 3. In any transverse observation plane, an N -fold symmetry
exists in the location of L-lines and C-points. This is illustrated in Fig. 5.9 where
plots of S0 and the phase of E−(r, ω) are shown for the cases N = 4 and N = 7.
The phase of E+(r, ω) can be inferred from the phase of E− through symmetry
considerations.
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Figure 5.6: The phase of ψ = E ·E. All C-points coincide with phase singularities
of the quantity ψ. In this example d = 1 mm and λ = 632.8 nm.
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Figure 5.7: The spectral density in the z = 1 m plane for an asymmetric three-
pinhole experiment. The solid black curves are lines of linear polarization. In this
example d = 1 mm and λ = 632.8 nm.
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Figure 5.8: ( The phase of E−(r, ω) [panel (a)], and the phase of E+(r, ω) [panel(b)]
in the z = 1 m plane for an asymmetric three-pinhole configuration with d = 1
mm and λ = 632.8 nm.

5.5 Conclusion

We have studied the superposition of N linearly polarized fields in an N -pinhole
interferometer. Despite the absence of interference fringes when fields with two or-
thogonal polarization states are used, the two-pinhole case still yields an interesting
structure of a finite number of semi-hyperboloids on which the state of polariza-
tion is linear. The three-pinhole interferometer gives a much richer topological
behaviour. L-lines and C-points were identified, and their occurence was found
to be generic. The generalization to an N -pinhole configuration was discussed for
the case of a radially symmetric system.
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Figure 5.9: The spectral density (a) and the phase of E−(r, ω) (b) for the four-
pinhole case, and for the seven-pinhole case (panels c,d), both in the z = 1 m
plane with d = 1 mm and λ = 632.8 nm.
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Appendix A

Mathematical Derivations

A.1 The sign rule

The general sign rule, as derived in [Freund et al., 2002], is

2σk

∑

(k)

qij =

(k)
∑

σiqjk, (A.1)

where
∑

(k) is used to denote the sum of singularities enclosed by the line Zk (level

curves Sk = 0) and
∑(k) is used to denote the sum of singularities on the line Zk.

Also, σi =sign(Si) and qij is the topological charge of a singularity of the Stokes
scalar Sij = Si + iSj. In looking for the relationship between L-lines and C-points,
only k = 3 (L-lines) are of importance. In the configuration specific to this class
of problems, L-lines enclose only right-handed circular points (singularities of e−);
therefore, σ3 = 1. Equation (A.1) then simplifies to

2
∑

∈L

q12 =
∑

L

σ1q23. (A.2)

By rewriting the Stokes parameters from Eqs. (3.19)-(5.10)

S1 = |ez|2 − |eρ|2, (A.3)

S2 = 2Re{e∗zeρ}, (A.4)

S3 = 2Im{e∗zeρ}, (A.5)

it is obvious that σ1 = 1 for singularities of eρ and σ1 = −1 for singularities of ez.
Also, it is readily apparent that S23 = 2e∗zeρ. Thus, q23 = qρ when the singularity
is in eρ and q23 = −qz when the singularity is in ez. Finally, it is necessary to find
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the relationship between q12 and singularities in e−. By writing

eρ =
e− − e+

i
√

2
, (A.6)

ez =
e− + e+√

2
, (A.7)

and inserting these relations into Eqs. (A.3-A.5) it is seen that

S1 = 2Re{e∗+e−), (A.8)

S2 = 2Im{e∗+e−), (A.9)

S3 = |e−|2 − |e+|2, (A.10)

and that S12 = 2e∗+e−. Therefore, q12 = q− when the singularity is in e− and the
sum rule is

2
∑

enclosed

q− =
∑

on

qρ +
∑

on

qz. (A.11)

A.2 Degeneracy of linear polarization states for

the two-pinhole interferometer

Any choice for the direction of linear polarization of the electric field at the two
pinholes may, without loss of generality, be described as

ê1 = x̂, ê2 = cosαx̂ + sinαŷ. (A.12)

On substitution in Eqs. (3.11) and (5.10), and imposing the condition for linear
polarization (i.e. S3 = 0), we obtain the expression

sinα sin[k(R2 −R1)] = 0. (A.13)

This condition can be satisfied when α = 0, which is the trivial case in which the
field at both pinholes is x-polarized. The second solution, k(R2 −R1) = mπ, with
n an integer, is identical to Eq. (5.11), and results in surfaces of linear polarization.
Note that relaxing the condition that the field in each pinhole is co-phasal with
each other changes the condition for linear polarization to kR1 − kR2 = nπ + β,
where β is the relative phase. This equation still yields a collection of hyperboloids,
although the plane at x = 0 is now no longer an L-surface.

For circular polarization to occur, the field must satisfy Ex(r, ω) = ±iEy(r, ω).
Again using Eq. (A.12), a simple calculation yields the conditions R1 = R2 and
α = π. These two conditions actually result in E = 0 on the plane x = 0. A
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surface of circular polarization can be created by relaxing the condition that that
the field in each pinhole is of equal amplitude. Instead, if the field amplitudes
in the two pinholes have a ratio |Ex|/|Ey| = γ such that γ simultaneously solves
R1 = γR2 and (γ − 1)kR2 = (2n+ 1)π/2 for some integer n at a point r, then the
conditions for circular polarization can be met on, at most, a single hyperboloid.
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Summary

In this Thesis, a broad class of optical phenomena have been investigated, includ-
ing the power radiated by two correlated sources, the fine structure of an optical
field in the focal region, the relationship between singular structures for various
types of optical fields, and the state of polarization in a three-pinhole experiment.
The topics are all related through the unified theory of coherence and polariza-
tion, and the investigations are aided by the using the tools of singular optics.
Singular optics allows for an investigation into the smallest structures in an op-
tical field - phenomena occurring on a scale well below the diffraction limit, yet
made ‘observable’ through knowledge of the field patterns near a singular point.

The total power radiated by two correlated sources is investigated in Chapter 2.
It is shown that the total power for two primary or secondary sources is a function
of both the distance between the two sources and the spectral degree of coherence
between the two sources. When two primary sources are highly correlated and
close (say, on the order of a wavelength), the total power radiated by the system
approaches double the power radiated when the two sources are either separated
by a large distance or if the two sources are uncorrelated. One notes that in the
case of a planar, secondary source, the total power obeys a similar relationship,
although the functional dependence is slightly different.

In Chapter 3, the fine structure of radially polarized optical fields in the focal
region are investigated. First, the energy density is shown to be a strong function
of the semi-aperture angle of the lens (the numerical aperture). Using the tools of
singular optics, the phase structure of each field component is explored, and the
creation and annihilation of phase singularities are observed. The state of polar-
ization is investigated in the focal region. It is shown that the field in the focal
region has a number of polarization singularities, including points of circular po-
larization and lines of linear polarization, and creation and annihilation of circular
polarization states are observed. It is also shown that a V -point, a point where
there is no electric field, may exist in the focal region.

The relationship between the various types of singular structures is found in
Chapter 4. In this Chapter, a two-pinhole interferometer is illuminated by three
different types of fields - a scalar, stochastic field; a scalar, deterministic field; and
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a polarized, deterministic field - and the resulting field patterns are investigated.
It is shown that, as the magnitude of the degree of coherence between the field in
the two pinholes is increased from zero to one, a pair of coherence vortices move
closer together. In the deterministic limit, the pairs of coherence vortices merge
into phase vortices. The scalar, deterministic model is often valid when the field
is linearly polarized in an isotropic medium. By changing the state of polarization
in the pinholes, the field at the location of the phase singularity unfolds into three
vector singularities, two oppositely-handed points of circular polarization and a
point of linear polarization.

The state of polarization emanating from an N -pinhole interferometer is ex-
amined in Chapter 5. It is shown that circular polarization states do not exist for
a two-pinhole interferometer, except in a contrived case. A collection of surfaces
(hyberboloids) on which the field is linearly polarized exist generically in the two-
pinhole case. For a three-pinhole interferometer, linear and circular polarization
states exist generically. For a highly symmetric configuration - when the pinholes
are placed at the vertex of an equilateral triangle and the field at each pinhole
is polarized in a direction parallel to the line between the origin and the vertex -
the field on a plane parallel to the interferometer plane contains a regular pattern
of lines of linear polarization and points of circular polarization. The center of
the observation plane contains a single V -point. For more than three pinholes,
it is shown that a highly symmetric configuration still yields a regular pattern of
circular and linear polarization states, with a single V -point at the origin.

These previous investigations in singular optics are unified through the theory
of coherence and polarization. Using Maxwell’s equations and coherence theory,
the fine structure of optical fields has been examined for a number of optical
systems, particularly interferometers and lenses, and a number of relationships
have been established between the singular structures and the fields that generate
them.
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