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CHAPTER 1

INTRODUCTION

At points in complex-valued scalar fields where the amplitude is zero, the phase of the

field is undetermined or singular [1]. Singular optics is concerned with the description and

classification of the different kinds of singularities that can occur in wave fields [2, 3]. Ex-

amples of such singularities are the zeros of intensity that are found in focused fields [4]. In

real-valued, two-dimensional vector fields, the orientation of the vector is singular wherever

the vector vanishes. Such singularities of the Poynting vector field in two-dimensional ge-

ometries are studied in Refs. [5, 6, 7]. Complex-valued vector fields can display singularities

of the vector components. Examples of these are singularities of the longitudinal component

of the electric field in strongly focused, linearly polarized beams [8]. Recently, the two-point

correlation functions that describe spatially partially coherent light were shown to posses

singularities as well [9, 10, 11, 12]. All types of singularities mentioned above can be created

or annihilated when a system parameter, such as the wavelength of the field, is smoothly

varied.

Because of their use in, for example, optical trapping, the properties of focused, radially

polarized beams have been studied extensively in the past few years (see, e.g., [13] and the

references therein).

This thesis is an expansion of two previously published papers [14, 15]. As will be shown

in Ch. 2, the electric field in the focal region of a radially polarized beam has two non-zero

parts, namely, a radial component and a longitudinal component. The magnetic field re-

mains azimuthal upon focusing. To analyze radially polarized beams in more detail, this

thesis considers the case of the superposition of two orthogonal, Hermite-Gauss beams. The
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system parameters, the semiaperture angle and the beam width, will be varied to create

and annihilate various singularities. The two components of the electric field and the one

component of the magnetic field will be analyzed through the methods of singular optics.

The electric field, however, cannot be treated as a scalar. At every point in a time-harmonic

electromagnetic field, the end point of the electric field vector traces out an ellipse as time

progresses [16, Sec. 1.4]. The polarization is said to be singular at points where this ellipse

degenerates into a circle (at so-called C-points) or into a line (at so-called L-lines). Polar-

ization singularities in wave fields are described in Refs. [2], and [17, 18, 19, 20, 21]. These

polarization singularities will be analyzed in Ch. 4. In Ch. 5, singularities of the Poynting

vector for such radially polarized fields will be examined and related to the phase singularities

and polarization singularities previously studied.
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CHAPTER 2

FOCUSING AND SINGULAR OPTICS

The structure of the total electomagnetic field is, generally, a very complicated topic.

There are three components for the electric and magnetic fields, and they are related through

Maxwell’s equations [16]. In the case of paraxial electromagnetics, in which the z-component

of both the electric and magnetic fields is assumed to be zero (or at least insignificant),

there are four nonzero components that must be dealt with. The focusing of such fields

has been thoroughly studied under the DeBye approximation for many years [13, 16, 22].

The process of focusing a paraxial field introduces nontrivial electric and magnetic fields in

the z-direction in the focal region, and the longitudinal fields have been of much interest

recently [13, 23, 24, 25, 26]. In the case of a radially polarized beam, it has been found

that the electric field has two nonzero components - a radial component and a longitudinal

component. The associated magnetic field is nonzero only for the azimuthal component (all

in cylindrical coordinates). With only three nontrivial field components, radially polarized

fields (and, likewise, azimuthally polarized fields, which are not discussed in this thesis) are

ideal for study because of their relative simplicity.

2.1 Focusing

Consider an aplanatic focusing system L, as depicted in Fig. 2.1. The system has a focal

length f and a semiaperture angle α. The origin O of a right-handed Cartesian coordinate

system is taken to be at the geometrical focus. A monochromatic, radially polarized beam

is incident on the system. The electric and magnetic fields at time t at position r are given
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Figure 2.1: Illustration of a high numerical aperture system focusing a radially polarized
beam.

by the expressions

E(r, t) = Re [e(r) exp(−iωt)] , (2.1)

H(r, t) = Re [h(r) exp(−iωt)] , (2.2)

respectively, where Re denotes the real part. The longitudinal component ez and the radial

component eρ of the electric field at a point P = (ρP , zP ) in the focal region are given by

the equations [13]

ez(ρP , zP ) = −ikf

∫ α

0

l(θ) sin2 θ cos1/2 θ

× exp(ikzP cos θ)J0 (kρP sin θ) dθ, (2.3)

eρ(ρP , zP ) = −kf
∫ α

0

l(θ) sin θ cos3/2 θ

× exp(ikzP cos θ)J1 (kρP sin θ) dθ, (2.4)

where Ji is the Bessel function of the first kind of order i. Also, l(θ) denotes the angular

amplitude function

l(θ) = f sin θ exp(−f 2 sin2 θ/w2
0), (2.5)

where w0 is the spot size of the beam in the waist plane, which is assumed to coincide

with the entrance plane of the focusing system. As stated above, the electric field has no

azimuthal component. On using the dimensionless optical coordinates (sometimes referred
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to as Lommel variables)

u = kzP sin2 α, (2.6)

v = kρP sinα, (2.7)

to specify the position of the observation point P , Eqs. (2.3) and (2.4) can be rewritten as

ez(u, v) = −ikf 2

∫ α

0

sin3 θ cos1/2 θ exp(−β2 sin2 θ)

× exp(iu cos θ/ sin2 α)J0

(

v sin θ

sinα

)

dθ, (2.8)

eρ(u, v) = −kf 2

∫ α

0

sin2 θ cos3/2 θ exp(−β2 sin2 θ)

× exp(iu cos θ/ sin2 α)J1

(

v sin θ

sinα

)

dθ, (2.9)

where the parameter β = f/w0 denotes the ratio of the focal length of the system and the

spot size of the beam in the waist plane.

The magnetic field can then be found through Maxwell’s Equations in free space [16, Sec.

3.1.1 Eqs. (2-3)]

∇× H + ikǫE = 0 (2.10)

∇× E − ikµH = 0 (2.11)

and Eqs. (2.3-2.4):

hφ(ρP , zP ) =
−i

kµ

(

∂eρ
∂zP

− ∂ez
∂ρP

)

=
−kf
µ

∫ α

0

l(θ) sin(θ) cos1/2 θ

× exp(ikzP cos θ)J1 (kρP sin θ) dθ. (2.12)

The form of the magnetic field in optical coordinates is thus

hφ(u, v) =
−kf 2

µ

∫ α

0

sin2(θ) cos1/2 θ exp(−β2 sin2 θ)

× exp(iu cos θ/ sin2 α)J1

(

v sin θ

sinα

)

dθ. (2.13)

Equations (2.8-2.9) and (2.13), with coordinates (u, v) and system parameters α and β are

fields that will be analyzed in the rest of this thesis.
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2.2 Singular Optics for Scalar Fields

Singular optics [2, 3] deals with the way in which fields behave around singular points

- points where quantities such as phase angles of a wave field or the orientation angle of

the polarization ellipse are indeterminate. Each component of the electromagnetic field can

be described as a complex scalar quantity with both magnitude and phase. In the rest of

this chapter, each of the three nonzero components will be briefly discussed in terms of its

singular points.

Any complex number can be represented in a variety of forms. One particularly useful

representation is to express it as an amplitude and associated phase

A(r) = |A(r)| exp[iφ(r)], (2.14)

where |A| is the magnitude of the complex number A and φ is the phase. When |A| is

identically zero, the real scalar φ has no meaning - it is singular! However, in the vicinity

of such a singular point, the phase behaves in one of a few well-established ways [2]. These

singularities have a so-called topological charge s defined by

s =
1

2π

∮

C

∇φ(r) · dr (2.15)

and a topological index t defined as the topological charge of the vector field ∇φ(r). The

direction in which the contour integral is taken is somewhat arbitrary, although it should

be consistent throughout any analysis. The direction will only affect the values of s, not t.

Phase singularities have charge s = ±1 and index t = 1. Phase saddles - points where the

phase is defined but its gradient is not - have s = 0 and t = −1.

Singular points can be created and annihilated through the process of changing a sys-

tem parameter. In the case of this thesis, that usually involves changing the semiaperture

angle α. Singularities cannot be annihilated or created singly, however. There must be a

conservation of both charge and index. Therefore, the simplest annihilation involves two

phase singularities and two phase saddles such that stotal = 0 and ttotal = 0 when summed

among all four singularities. Of course, more involved annihilations are possible, but these

can always be recast as multiple separate annihilations occurring at the same point.
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Figure 2.2: Illustration of the stable singularities of the electromagnetic field for α = π/4 and
β = 1. The magnitudes of eρ, ez, and hφ are shown. All three components are normalized
by ℑ{ez(0, 0)}.

For a radially polarized field, all three components possess singularities in the focal plane

(u = 0). These manifest themselves as Airy-like rings. In the focal plane, hφ and eρ are

purely real and ez is purely imaginary. In Fig. 2.2, the real scalars hφ(0, v), eρ(0, v) and

ℑ{ez(0, v)} are shown. The zero crossing of each line represents a stable singularity of that

component. Technically, these singularities are unstable in the sense that an aberration of

the lens can cause them to annihilate, as can a perturbation of the input field, but since

these are not system parameters in this thesis, these rings will exist for all values of α and

β.

It should be noted that, while ez is nonzero along the optical axis (v = 0), both eρ and hφ

are zero. The optical axis is, in fact, a stable singular line for these two components. The

previously mentioned singularities all have their basis in a symmetry of the system. Non-

aberrated focusing has certain symmetry properties about the focal plane (see Sec. 3.1).
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Figure 2.3: The phase of ez(u, v) for α = π/4 and β = 1.

Also, the ρ̂ and φ̂ directions are undefined when ρ = 0. These symmetry properties are the

at the root of these singularities.

There are, however, phase singularities that are not based only on symmetry arguments.

Figures 2.3-2.5 show the phase of each component. Although the three images are quite

similar, there are notable differences in the location of the singularities along u = 0 and

the location of the off-axis singularities, identifiable by the swirling of phase around them.

The hφ and eρ components are remarkably similar, which is not surprising given the form of

Eq. (2.9) and Eq. (2.13).

It is important to note at this point that these figures are two-dimensional mappings of

three-dimensional fields. The singular points are, in fact, rings. Consider, for example, the

singular point in Fig. 2.3 at (u, v) = (12.5, 2.5). The total phase-field for the ez component

can be thought of as a rotation of this figure about the optical axis. Consider, now, a plane

y = 0 cutting through the field. There will now be two singularities - one at (u, x′) =

(12.5, 2.5) and another at (12.5,−2.5). Notice the change from v to x′, where x′ = x sinα

in the original coordinate system. These singularities have opposite charge! As the system
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Figure 2.4: The phase of eρ(u, v) for α = π/4 and β = 1.
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Figure 2.5: The phase of hφ(u, v) for α = π/4 and β = 1.

9



parameter α is increased, this ring will shrink around the optical axis. As the radius goes

to zero, these singularities will annihilate pair-wise across the optical axis, thus conserving

charge. What appeared to be one singularity was actually an infinite number of them formed

in a ring with zero cumulative charge. Movies of these ring annihilations can be found online

[14].

There can also be unstable, nongeneric singularities in a wavefield. Because of the high

degree of symmetry in this focusing problem, they do not appear in the scalar fields. However,

as will be shown in Ch. 3, unstable, higher order singularities do exist.

An exhaustive cataloging of the various locations and annihilation events of singularities

for these three components is beyond the scope of this thesis. Rather, the phase singularities

were introduced and briefly commented on so that they are recognizable in the final chapters

when the interrelation between these field components is discussed.
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CHAPTER 3

POLARIZATION SINGULARITIES

The standard description of the state of polarization in terms of Stokes parameters [16]

applies to plane waves, i.e., to fields in which the electric field only has two nonzero Cartesian

components, both perpendicular to the direction of propagation. On focusing a plane wave,

the electric field acquires a third nonzero component which is directed along the direction

of propagation (the so-called longitudinal field component) [27]. Under the assumption of

paraxiality (i.e., assuming the semiaperture angle of the focusing system to be small), this

third component may be neglected. The configuration examined in this thesis is not a parax-

ial one, but in cylindrical coordinates only two components of the electric field are nonzero.

This means that with a suitable change in the definition of the Stokes parameters, the usual

description of the state of polarization and, in particular, of polarization singularities can be

applied.

3.1 The State of Polarization

The electric field in the focal region is given by the formula

e(u, v) = ez(u, v)ẑ + eρ(u, v)ρ̂ρρ, (3.1)
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with the components ez(u, v) and eρ(u, v) given by Eqs. (2.8) and (2.9), and with ẑ and ρ̂ρρ

unit vectors in the longitudinal and radial direction, respectively. Defining the variables

a1 = |ez(u, v)| , (3.2)

δ1 = arg[ez(u, v)], (3.3)

a2 = |eρ(u, v)| , (3.4)

δ2 = arg[eρ(u, v)], (3.5)

the state of polarization of the field may then be characterized by the four Stokes parame-

ters (cf. [16, Sec. 1.4] for a similar definition with respect to a Cartesian coordinate system):

S0 = a2
1 + a2

2, (3.6)

S1 = a2
1 − a2

2, (3.7)

S2 = 2a1a2 cos δ, (3.8)

S3 = 2a1a2 sin δ, (3.9)

with the phase difference δ given by

δ = δ2 − δ1. (3.10)

For any given intensity (i.e., S0 = constant), the normalized Stokes parameters si = Si/S0

may be represented as a point on the Poincaré sphere (see Fig. 3.1). On the north pole

(s1 = s2 = 0, s3 = 1), the polarization is circular. We adopt the convention of calling

this state right-handed because, according to Eq. (2.1), the ellipse is being traversed in a

clockwise manner in the (ez, eρ)-plane. The polarization is right-handed for points on the

northern hemisphere, and left-handed on the southern hemisphere. It easily verified that

at the south pole (s1 = s2 = 0, s3 = −1), the polarization is circular and left-handed. For

all points on the equator (s3 = 0), the polarization is linear. At (s1 = 1, s2 = s3 = 0) the

field is purely z-polarized, whereas at (s1 = −1, s2 = s3 = 0) it is purely ρ-polarized. At

(s1 = 0, s2 = 1, s3 = 0) and (s1 = 0, s2 = −1, s3 = 0), finally, the linear polarization is under

angle of +π/4 and −π/4 in the (ez, eρ)-plane, respectively. For the case that a1 ≥ a2, the

orientation of the ellipse is described by the angle ψ between the major semiaxis and the

12



s
1

s
2

s
3

eρ

ez

Figure 3.1: The Poincaré sphere with cartesian axes (s1, s2, s3).

z-direction. It is given by the expression [16, Sec. 1.4.2, Eq. (46)]

ψ =
1

2
tan−1

(

s2

s1

)

. (3.11)

It follows from Eqs. (2.8) and (2.9) that at any two points (u, v) and (−u, v) that are sym-

metrically located with respect to the focal plane, the field components satisfy the symmetry

relations

ez(−u, v) = −e∗z(u, v), (3.12)

eρ(−u, v) = e∗ρ(u, v), (3.13)

where the asterisk denotes complex conjugation. Clearly, the variables a1 and a2 remain

unchanged under reflection of the point of observation in the focal plane. The behavior of

the other quantities that describe the state of polarization is summarized in Table 3.1. The

antisymmetrical behavior of the second Stokes parameter and the angle ψ implies that they

both vanish identically in the focal plane, i.e.,

s2(0, v) = 0; ψ(0, v) = 0. (3.14)

The symmetry properties of the polarization ellipse are illustrated in Fig. 3.2. If, for example,
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Table 3.1: The behavior of various quantities that characterize the state of polarization
under reflection of the point of observation in the focal plane.

(u,v) δ1 δ2 δ s0 s1 s2 s3 ψ

(-u,v) π − δ1 −δ2 −δ − π s0 s1 −s2 s3 −ψ

the major semiaxis of the polarization ellipse at a point (z, x) makes an angle ψ with the

positive z-axis, then at a point (−z, x) the orientation angle will be −ψ. The handedness,

however, is the same at both positions. The orientation of the ellipse and its handedness at

(z,−x) and (−z,−x) follow from considering the rotational symmetry of the field.

x

z

(z, x)

(z, −x)

(−z, x)

(−z, −x)

ψ

O

z = 0

Figure 3.2: Illustrating the symmetry properties of the polarization ellipse.

3.2 Polarization Singularities

At points where the polarization ellipse degenerates into a circle or into a line, the polar-

ization is said to be singular. At C-points (i.e., s3 = ±1), where the polarization is circular,

the orientation angle ψ of the ellipse, as given by Eq. (3.11), is undetermined. At C-points

the polarization can either be left-handed or right-handed. At L -lines (i.e., s3 = 0), where

the polarization is linear, the handedness of the ellipse is undetermined. In the remainder of
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this chapter, these two types of polarization singularities are examined. It should be noted

that, because of rotational symmetry, points and closed lines in the (u, v)-plane are circles

and tori, respectively, in three-dimensional space.

3.2.1 Linear polarization

It follows from Eq. (3.9) that linear polarization generically occurs at points (u, v) at

which

ℜ{ez(u, v)} ∗ ℑ{eρ(u, v)} = ℑ{ez(u, v)} ∗ ℜ{eρ(u, v)}. (3.15)

This single condition is typically satisfied on a line in (u, v)-space. A subset of these points

consists of locations where one of the two field components is zero, i.e., at phase singularities

of either field component. For example, for the longitudinal component these occur at points

at which

ℜ{ez(u, v)} = ℑ{ez(u, v)} = 0. (3.16)

These two conditions are typically satisfied at isolated points in (u, v)-space. Phase singu-

larities of both field components are found in the focal plane and at other points in space.

They can be created or annihilated by smoothly varying the width of the incident beam or

the semiaperture angle [14].

By drawing the contours of s3 = 0, a multitude of L -surfaces is found. As can be seen

in Fig. 3.3, the phase singularities of the two electric field components all lie on L -surfaces.

Notice that there is a surface of linear polarization that connects each Airy ring of ez in

the focal plane to the adjacent Airy ring of eρ. On traversing these closed surfaces in the

(u, v)-plane, the Stokes vector makes a complete rotatation along the equator of the Poincaré

sphere.

It is seen from Eq. (2.9) that on the central axis (i.e., v = 0) the radial electric field

component vanishes. Therefore this axis constitutes an L -line. It follows from rotational

symmetry that its index is +1 (see [2, Sec. 13.3]).
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Figure 3.3: The loci of linear polarization, i.e., contours of s3 = 0, in the focal region. Because
of the rotational symmetry of the field, these are tori centered on the u-axis. The contours
are superposed on a color-coded phase map of ez. Phase singularities of ez are located at
points where all different colors converge. The open circles indicate phase singularities of
the other field component, eρ. In this example α = π/4 and β = 0.5.

3.2.2 Circular polarization

It follows from the definitions (3.7)–(3.9) that circular polarization generically occurs at

points rather than lines in the (u, v)-plane. One way of locating C-points is to represent

the field in a circular polarization basis (cf. [28] for an similar decomposition in cartesian

coordinates), i.e.,

e(u, v) = e+(u, v)ĉ+(u, v) + e−(u, v)ĉ−(u, v), (3.17)

where

e± = (ez ∓ ieρ)/
√

2, ĉ± = (ẑ ± iρ̂)/
√

2. (3.18)

Thus e+ (e−) represents the amplitude of the right- (left-) handed circular component of the

field. In this way, C-points correspond to phase singularities of either circular component.

An example is presented in Fig. 3.4. It is seen that the number of right- and left-handed

C-points is approximately the same. However, there is a line (a cylindrical sheet in three-

16
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Figure 3.4: A color-coded phase map of (a) e+ and (b) e−, both with lines of linear po-
larization (solid black curves) superposed. Left-handed C-points are phase singularities of
e+ in panel (a), whereas right-handed C-points are singularities of e− in panel (b). In this
example β = 0.5 and α = π/4.

dimensional space) of left-handed circular polarization at approximately v = 1.4. This is a

nongeneric surface that appears to be only weakly dependent on the parameters u and β.

To understand this feature more fully, it is instructive to apply a Taylor expansion in θ to

Eqs. (2.8) and (2.9). These expressions then become

ez(u, v) = −ikf 2

∫ α

0

θ3(1 − β2θ2) exp(iu/ sin2 α) dθ, (3.19)

eρ(u, v) = −kf 2

∫ α

0

θ3(1 − β2θ2) exp(iu/ sin2 α)
v

2 sinα
dθ. (3.20)

Thus, e+ can be written as

e+(u, v) = − ikf 2

√
2

exp(iu/ sin2 α)
[

1 − v

2 sinα

]

∫ α

0

θ3(1 − β2θ2) dθ. (3.21)

It is readily apparent that left-handed circular polarization occurs when v = 2 sinα. Also,

because the zero of e+ is independent of the longitudinal variable u, this phase singularity

is line-shaped. Notice that there is no corresponding C-surface for right-handed circular

polarization because the resulting equation would yield (at first order) v = −2 sinα, whereas

v is positive definite. To test the validity of this approximation, the computed location of the

C-surface is compared to the approximate values in Table 3.2. Even when the semiaperture

angle α = 60◦, the approximation is seen to hold quite well.
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Apart from their handedness, C-points can be classified into three distinct types based

on the local behavior of the polarization ellipses (see [2, Secs. 4.10 and 12.2] and Ref. [29]).

These types are stars (with index −1/2), monstars (index 1/2), and lemons (index 1/2).

This local behavior is shown in Fig. 3.5 for the pair of C-points seen in Fig. 3.4 (b) near

(u, v) ≈ (28, 5) for three different values of the semiaperture angle α. Indicated in red are

the local straight-line orientations of the major axis of the nearby ellipses (a single line for

lemons, and three lines for stars and monstars). In Fig. 3.5(a) both a star (top) and a lemon

(bottom) can be seen. The lemon-type polarization singularity has evolved into a monstar

in Fig. 3.5(b). In Fig. 3.5 (c) the situation is shown after the star and the monstar have

annihilated.

3.2.3 Relationship between L -lines and C-points

There is a strong connection between L -lines and C-points. The former separate space

into regions of different handedness. In agreement with this, the left-handed C-points in

Fig. 3.4 (a) are all located outside the closed L -lines, whereas the right-handed C-points in

Fig. 3.4 (b) are all located within them. As reported by Freund et al. [19], there is a relation

between the charge of component singularities on a closed L -line and the total charge of

C-points enclosed by it. For this specific case Eq. (5) of [19] can be rewritten (see Appendix

A.1) as

2
∑

∈L

q− =
∑

L

qρ +
∑

L

qz, (3.22)

Table 3.2: Comparison of the approximate location of the C-surface to its actual location.
In these examples β = 0.5.

α actual v v = 2 sinα Error

15◦ 0.515 0.517 0.50%

30◦ 1.005 1.000 0.50%

45◦ 1.425 1.414 0.76%

60◦ 1.765 1.732 1.87%
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Figure 3.5: Local orientation of the major axis of the electric polarization ellipse shown for
three different values of the semiaperture angle α with the beam parameter β kept fixed
at 0.5. The local straight-line orientations of the major axes are shown in red. In panel
(a) (α = 52◦), a star (above) and a lemon (below) are seen. In panel (b) (α = 61◦), the
lemon has transitioned into a monstar. In panel (c) (α = 65◦), the annihilation leaves only
a straight-line orientation of the major axis.

where the summation on the left-hand side is over all topological charges of C-points enclosed

by the L -line, and the right-hand summations are over the charges of the two electric field

components on the L -line. For example, it was verified that the two L -lines that contain

the points (0, 4) and (22, 7) in Figs. 3.3 and 3.4 both satisfy this sum rule.

Figure 3.6 is the first in a series of figures that show the evolution of the left-handed field

component e− and the L -lines as the semiaperture angle α is increased. The whole series of

figures can be seen online [15]. In that series, the L -lines deform, separate, and merge. A

small L -line that contains a C-point in its interior can be seen to break off when α ≈ 43◦,

and unite with another L -line when α ≈ 46.5◦. In addition, a C-point annihilation is seen

near α ≈ 61◦. The upper singularity is a star and the lower singularity is a lemon that evolves
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Figure 3.6: A color-coded phase map of the left-handed component e− with L -lines, shown
in black, superposed. The semiaperture angle α is 35◦ and β is 0.5.

into a monstar before the annihilation takes place. Figure 3.5 shows the corresponding local

ellipse behavior for this event.

3.2.4 Vector singularities

In addition to the different kinds of singularities mentioned in Ch. 1, there exist also points

where the two-dimensional complex electric vector field e is identically zero. Such points are

referred to as V -points [30]. V -points are necessarily a phase singularity of both cylindrical

components and of both components in the circular polarization basis. They are to be

distinguished from singularities of real-valued vector fields such as the Poynting vector [5]-

[7]. Since the complex electric field given by Eqs. (2.8) and (2.9) is an analytic function,

its zeros are isolated points in the (u, v) plane [31]. Because the condition e(u, v) = 0 has

codimension four, V -points do not generically occur. However, as will be demonstrated, they

do appear in the focal region of radially polarized beams.

In this configuration V -points occur, for example, when the longitudinal component ez is

zero on the optical axis (where the radial component eρ is identically zero). In Fig. 3.7 the

real and imaginary parts of ez are shown. In a movie located online [15] their intersection

near u = 11.5 is seen to move towards and eventually below the horizontal axis when the

semiaperture angle α is increased in a continuous manner. At approximately α = 56.6◦,

20



this intersection crosses the horizontal axis, i.e., ℜ{ez} = ℑ{ez} = 0 near (u, v) = (11.5, 0).

Clearly this V -point is unstable under perturbations.
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Figure 3.7: The real and imaginary parts of ez along the optical axis normalized to
ℑ{ez(0, 0)}. In this frame, α = 55.0◦ and β = 1.5.

Another way in which vector singularities may occur is through the collision of an L -

line and a C-point [17]. Although the field at a V -point is neither linearly nor circularly

polarized, the condition for linear polarization (S3 = 0) combined with the two conditions

for circular polarization (S1 = S2 = 0) results in the necessary condition that S0 = 0; i.e.,

the electric field vanishes at the collision point. An example of such an event is shown in

Appendix B in which the semiaperture angle α is gradually increased. In the upper frames,

the L -line that is seen to break apart moves downwards towards the horizontal C-line near

v = 1.6. In this process, shown in the lower frames, the L -line shrinks and collapses to a

point at the moment of collision. On further increasing α, this point changes back into an

L -line that approaches the optical axis. The C-line remains essentially stationary while the

L -line passes through it. A movie of this annihilation is found in [15].

It is worth mentioning that the L -line of interest in Fig. 3.8 intersects one phase singu-

larity of each cylindrical component and encloses one point of pure right-handed circular

polarization. When the L -line collapses to a point at the line of pure left-handed polariza-

tion (at approximately v = 1.6), both cylindrical singularities coincide, creating a V -point.
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Figure 3.8: A color-coded phase map of e+ with L-lines (solid black curves) superposed with
the semiaperture angle α = 50.0◦ and with β kept fixed at 1.5.

Alternatively, the V -point can be be considered as the collision of phase singularities of

the circular components e+ and e−. In fact, because L -surfaces separate space into regions

of right- and left-handedness, the only way in which C-points of opposite handedness can

collide is when the L-line separating them collapses to a point.
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CHAPTER 4

THE POYNTING VECTOR

Singularities of the Poynting vector have been studied previously [5, 6, 7]. In these studies,

a two-dimensional geometry is assumed and the analysis is separated into TE and TM

polarizations. The Poynting vector is then written in terms of the transverse field component

only. Analogously, radially symmetric, focused fields can be separated into a TE and TM

basis, where the transverse-like component is the azimuthal one. Thus, radially polarized

electric fields are TM. Likewise, for an azimuthally polarized electric field, knowledge of the

electric field alone defines the system after focusing.

As shown in Appendix A.2, the Poynting vector for a focused radially polarized field is

given by

< S(ρ, z) >=
c

8πǫk
|hφ(ρ, z)|2∇ψh(ρ, z). (4.1)

Likewise, the Poynting vector for a focused, azimuthally polarized field is given by

< S(ρ, z) >=
c

8πµk
|eφ(ρ, z)|2∇ψe(ρ, z). (4.2)

An angle, Θ, that serves to define the direction of the Poynting vector with respect to the

z-direction (the direction of propagation before focusing), is given by

Θ = tan−1 Sρ
Sz
. (4.3)

At points where the Poynting vector is zero, this angle is not defined. These are referred

to as singular points of the real-valued vector field < S >. These singular points can be

separated into two types: points where the magnitude of hφ (eφ) is zero and points where

the gradient of the phase of hφ (eφ) is zero. The latter type are referred to as stationary
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Figure 4.1: Θ for α = π/4 and β = 1.

points of the phase, whereas the former are the phase singularities of previous chapters.

More importantly, the type of field component singularity associated with the power flow

singularity can easily be deduced. A left-circulating phase singularity of hφ corresponds to

a left-circulating singularity of < S >, and likewise for a right-circulating phase singularity.

Phase saddles (the only type of stationary point found in this system) of hφ correspond to

power flow saddles.

In Fig. 4.1, the angle Θ(u, v) is displayed. The fact that Θ is generally around zero implies

that the Poynting vector mostly points in the positive u-direction, as one would expect. There

are six singularities present in this figure: four are in the focal plane and correspond to the

Airy-like rings discussed in Sec. 2.2; two more are around (u, v) = (12.5, 2.5). The upper of

these two is associated with a phase singularity of the magnetic field (see Fig. 2.5) and the

lower with a phase saddle. This can be more easily seen in Fig. 4.2.

As one would expect from the definition of the Poynting vector [see Eq. (A.12)], V -points

correspond to power flow singularities just as zeros of the magnetic field (phase singularities

of hφ) do. More specifically, V -points correspond to power flow saddles. However, as was
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Figure 4.2: Direction lines of < S > for α = π/4 and β = 1. The upper arrow points to a
point of power flow circulation and the lower arrow points to a power flow saddle.

pointed out in Sec. 3.2.4, V -points are quite rare, whereas power flow saddles are not. Points

where there is a power flow saddle are not necessarily V -points. As a system parameter is

smoothly changed, a power flow saddle can momentarily correspond to a V -point. The

rest of the time, the phase saddle merely corresponds to a point where both electric field

components are 90◦ out of phase with the azimuthal magnetic field component, which is the

most general condition for the Poynting vector to be zero.
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CHAPTER 5

CONCLUSION

This thesis represents a thorough analysis of focused, radially symmetric fields through

the tools of singular optics. Each field component was briefly analyzed separately using

scalar, singular optics methods. The electric field, however, is not amenable to a scalar

treatment and was analyzed more fully with the help of the Stokes parameters. A variety of

different singularities were seen to exist: lines and surfaces of linear polarization, lines and a

single surface of circular polarization, and lines and points of zero electric field. It was shown

how these types of singularities interact as a system parameter was changed. Finally, the

Poynting vector was introduced and analyzed, and certain relationships between previously

discussed singular points and the singularities of the Poynting vector were examined.

Although the analysis in this thesis was specific to radially polarized fields, the method

can be used to consider any type of field one wishes. However, the high degree of symmetry

in radially polarized fields allows for the use of a modified form of paraxial singular optics

(polarization singularities) to study the electric field and scalar singular optics to study

the magnetic field. More involved calculations are needed to analyze fields without this

symmetry and much work still needs to be done to formulate a framework for analyzing all

the singular points in an electromagnetic field.

26



APPENDIX A

MATHEMATICAL DERIVATIONS

A.1 The Sign Rule

The general sign rule, as written in [19], is

2σk
∑

(k)

qij =

(k)
∑

σiqjk, (A.1)

where
∑

(k) is used to denote the sum of singularities enclosed by the line Zk (level curves

Sk = 0) and
∑(k) is used to denote the sum of singularities on the line Zk. Also, σi =sign(Si)

and qij is the topological charge of a singularity of the Stokes scalar Sij = Si+iSj. In looking

for the relationship between L-lines and C-points, only k = 3 (L-lines) are of importance. In

the configuration specific to this class of problems, L-lines enclose only right-handed circular

points (singularities of e−); therefore, σ3 = 1. Equation (A.1) then simplifies to

2
∑

∈L

q12 =
∑

L

σ1q23. (A.2)

By rewriting the Stokes parameters from Eqs. (3.7)-(3.9)

S1 = |ez|2 − |eρ|2, (A.3)

S2 = 2ℜ{e∗zeρ}, (A.4)

S3 = 2ℑ{e∗zeρ}, (A.5)

it is obvious that σ1 = 1 for singularities of eρ and σ1 = −1 for singularities of ez. Also, it is

readily apparent that S23 = 2e∗zeρ. Thus, q23 = qρ when the singularity is in eρ and q23 = −qz
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when the singularity is in ez. Finally, it is necessary to find the relationship between q12 and

singularities in e−. By writing

eρ =
e− − e+

i
√

2
, (A.6)

ez =
e− + e+√

2
, (A.7)

and inserting these relations into Eqs. (A.3-A.5) it is seen that

S1 = 2ℜ{e∗+e−), (A.8)

S2 = 2ℑ{e∗+e−), (A.9)

S3 = |e−|2 − |e+|2, (A.10)

and that S12 = 2e∗+e−. Therefore, q12 = q− when the singularity is in e− and the sum rule is

2
∑

enclosed

q− =
∑

on

qρ +
∑

on

qz. (A.11)

A.2 The Poynting Vector for Radially Symmetric Fields

The fields considered in this thesis are all radially symmetric so that there is no φ-

dependence for any field quantities. From [16, Section 1.4.3 Eq. (56)], the Poynting vector

is defined as

< S >=
c

8π
ℜ{E× H∗}. (A.12)

Based on the above equations and the assumption of rotational symmetry, it can be shown

with the help of Eqs. (2.10-2.11) that

H =
−i

kµ

(

∂eρ
∂z

− ∂ez
∂ρ

)

φ̂

= hφφ̂ (A.13)

in cylindrical coordinates. Then, writing E in terms of only hφ,

E =
i

kǫ

(

−∂hφ
∂z

ρ̂+
1

ρ

∂(ρhφ)

∂ρ
ẑ

)

, (A.14)
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the following simplification can be made:

E ×H∗ =
−i

kǫ
h∗φ

(

1

ρ

∂(ρhφ)

∂ρ
ρ̂+

∂hφ
∂z

ẑ

)

=
−i

kǫ
h∗φ

(

∇hφ +
hφ
ρ
ρ̂

)

. (A.15)

Upon taking the real part of Eq. (A.15) the Poynting vector for a radially polarized field can

be given by

< S >=
c

8πǫk
ℑ{h∗φ∇hφ}. (A.16)

By writing

hφ(ρ, z) = |hφ(ρ, z)|eiψh(ρ,z), (A.17)

and substituting Eq. (A.17) into Eq. (A.16), the Poynting vector may be expressed as

< S >=
c

8πǫk
|hφ(ρ, z)|2∇ψh(ρ, z). (A.18)

Through a similar exercise, the Poynting vector for an azimuthally polarized field can be

found in terms of only one field component, i.e.,

< S >=
c

8πµk
|eφ(ρ, z)|2∇ψe(ρ, z). (A.19)
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APPENDIX B

CREATION OF A V -POINT

Figures B.1-B.65 show the evolution of a C-point as it crosses a C-line. The resultant

crossing yields a V -point.
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Figure B.1: A color-coded phase map of e+ with L-lines (solid black curves) superposed and
the semiaperture angle 50.00◦ with β kept fixed at 1.5.
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Figure B.2: A color-coded phase map of e+ with L-lines (solid black curves) superposed and
the semiaperture angle 50.25◦ with β kept fixed at 1.5.
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Figure B.3: A color-coded phase map of e+ with L-lines (solid black curves) superposed and
the semiaperture angle 58.25◦ with β kept fixed at 1.5.
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Figure B.4: A color-coded phase map of e+ with L-lines (solid black curves) superposed and
the semiaperture angle 50.50◦ with β kept fixed at 1.5.
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Figure B.5: A color-coded phase map of e+ with L-lines (solid black curves) superposed and
the semiaperture angle 58.50◦ with β kept fixed at 1.5.
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Figure B.6: A color-coded phase map of e+ with L-lines (solid black curves) superposed and
the semiaperture angle 50.75◦ with β kept fixed at 1.5.
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Figure B.7: A color-coded phase map of e+ with L-lines (solid black curves) superposed and
the semiaperture angle 58.75◦ with β kept fixed at 1.5.
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Figure B.8: A color-coded phase map of e+ with L-lines (solid black curves) superposed and
the semiaperture angle 51.00◦ with β kept fixed at 1.5.
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Figure B.9: A color-coded phase map of e+ with L-lines (solid black curves) superposed and
the semiaperture angle 59.00◦ with β kept fixed at 1.5.
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Figure B.10: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 51.25◦ with β kept fixed at 1.5.

u →

v 
→

Contours of s
3
 = 0 for α = 59.25°

5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

−3

−2

−1

0

1

2

3

Figure B.11: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 59.25◦ with β kept fixed at 1.5.
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Figure B.12: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 51.50◦ with β kept fixed at 1.5.
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Figure B.13: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 59.50◦ with β kept fixed at 1.5.
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Figure B.14: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 51.75◦ with β kept fixed at 1.5.
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Figure B.15: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 59.75◦ with β kept fixed at 1.5.
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Figure B.16: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 52.00◦ with β kept fixed at 1.5.
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Figure B.17: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 60.00◦ with β kept fixed at 1.5.
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Figure B.18: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 52.25◦ with β kept fixed at 1.5.
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Figure B.19: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 60.25◦ with β kept fixed at 1.5.
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Figure B.20: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 52.50◦ with β kept fixed at 1.5.
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Figure B.21: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 60.50◦ with β kept fixed at 1.5.
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Figure B.22: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 52.75◦ with β kept fixed at 1.5.
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Figure B.23: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 60.75◦ with β kept fixed at 1.5.
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Figure B.24: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 53.00◦ with β kept fixed at 1.5.
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Figure B.25: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 61.00◦ with β kept fixed at 1.5.
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Figure B.26: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 53.25◦ with β kept fixed at 1.5.
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Figure B.27: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 61.25◦ with β kept fixed at 1.5.
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Figure B.28: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 53.50◦ with β kept fixed at 1.5.
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Figure B.29: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 61.50◦ with β kept fixed at 1.5.
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Figure B.30: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 53.75◦ with β kept fixed at 1.5.
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Figure B.31: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 61.75◦ with β kept fixed at 1.5.
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Figure B.32: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 54.00◦ with β kept fixed at 1.5.
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Figure B.33: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 62.00◦ with β kept fixed at 1.5.
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Figure B.34: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 54.25◦ with β kept fixed at 1.5.
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Figure B.35: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 62.25◦ with β kept fixed at 1.5.
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Figure B.36: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 54.50◦ with β kept fixed at 1.5.
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Figure B.37: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 62.50◦ with β kept fixed at 1.5.
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Figure B.38: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 54.75◦ with β kept fixed at 1.5.
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Figure B.39: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 62.75◦ with β kept fixed at 1.5.
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Figure B.40: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 55.00◦ with β kept fixed at 1.5.
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Figure B.41: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 63.00◦ with β kept fixed at 1.5.
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Figure B.42: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 55.25◦ with β kept fixed at 1.5.
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Figure B.43: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 63.25◦ with β kept fixed at 1.5.
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Figure B.44: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 55.50◦ with β kept fixed at 1.5.
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Figure B.45: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 63.50◦ with β kept fixed at 1.5.
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Figure B.46: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 55.75◦ with β kept fixed at 1.5.

u →

v 
→

Contours of s
3
 = 0 for α = 63.75°

5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

−3

−2

−1

0

1

2

3

Figure B.47: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 63.75◦ with β kept fixed at 1.5.
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Figure B.48: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 56.00◦ with β kept fixed at 1.5.
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Figure B.49: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 64.00◦ with β kept fixed at 1.5.
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Figure B.50: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 56.25◦ with β kept fixed at 1.5.
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Figure B.51: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 64.25◦ with β kept fixed at 1.5.
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Figure B.52: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 56.50◦ with β kept fixed at 1.5.

u →

v 
→

Contours of s
3
 = 0 for α = 64.50°

5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

−3

−2

−1

0

1

2

3

Figure B.53: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 64.50◦ with β kept fixed at 1.5.
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Figure B.54: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 56.75◦ with β kept fixed at 1.5.
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Figure B.55: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 64.75◦ with β kept fixed at 1.5.
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Figure B.56: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 57.00◦ with β kept fixed at 1.5.
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Figure B.57: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 65.00◦ with β kept fixed at 1.5.
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Figure B.58: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 57.25◦ with β kept fixed at 1.5.
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Figure B.59: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 65.25◦ with β kept fixed at 1.5.
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Figure B.60: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 57.50◦ with β kept fixed at 1.5.
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Figure B.61: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 65.50◦ with β kept fixed at 1.5.
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Figure B.62: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 57.75◦ with β kept fixed at 1.5.
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Figure B.63: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 65.75◦ with β kept fixed at 1.5.
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Figure B.64: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 58.00◦ with β kept fixed at 1.5.
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Figure B.65: A color-coded phase map of e+ with L-lines (solid black curves) superposed
and the semiaperture angle 66.00◦ with β kept fixed at 1.5.
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