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1. INTRODUCTION
Statistical optics and coherence theory [1,2] provide a
means to interpret and predict the results of experiments
involving random fields. Those random optical fields are
often taken to be statistically stationary, at least in the
wide sense. The assumptions of stationarity and ergodic-
ity allow time-averaged quantities to be related to
ensemble-averaged quantities and, using the Wiener–
Khintchine–Einstein theorem, allow the temporal auto-
correlation of the field to be related to the power spectrum
of the field [3–5]. When the assumption of stationarity
does not hold, the correlation functions that describe the
field become two-time or two-frequency correlation func-
tions, and the Wiener–Khintchine–Einstein theorem no
longer holds. For these reasons and others, the time-
averaged measurements made with an interferometer or
a spectrometer have a more complicated relationship with
the nonstationary sources that generated them [6–8] than
in the stationary case. Some sort of prior knowledge is
necessary to make unambiguous estimates of the statisti-
cal properties of the sources based on the measured data.

While stationary fields are not strictly realizable, e.g.,.
they are random processes without beginning or end, the
stationary model often well describes measurements.
However, recent advances in short pulse generation have
moved the frontier of statistical optics into a regime
where the stationary model clearly fails. Ultrashort
pulses and high-repetition-rate lasers are increasingly
common, and their use in metrology is becoming ubiqui-
tous [9,10]. By definition, a pulsed source is nonstation-
ary. As the use of such devices grows, so to does the need
to understand measurements using nonstationary theory.

In recent experiments, attempts have been made to
measure the coherence properties of pulsed optical sys-
tems, including estimating coherence properties [11,12],
the degree of spatial coherence of a beam [13–18], and the
power spectrum [8,19]. However, the interpretation of
these results is based either on the theory of stationary
random processes or on a completely general theory of

nonstationary fields ([8] being an exception in which cy-
clostationarity is invoked). It is not clear that notions of
coherence or power spectra even apply in some such ex-
periments and where they do, it is in a generalized sense.

Generalized spectra and cross-spectral densities for a
number of classes of nonstationary fields have been de-
fined and investigated [6,20,21]. In many of the experi-
ments described above, the field is made up of a large
number of stochastic pulses with a periodic probability
density function exhibiting a fixed temporal period. The
random field may then be well modeled as a cyclostation-
ary random process [22–24]. While accommodating
pulses, such a model retains many of the advantages of
the more restrictive theory of stationary random pro-
cesses. In particular, if the fields are also cycloergodic,
certain time averages may be exchanged for the appropri-
ate ensemble averages; spectra and cross-spectra emerge
from clear generalizations of the Wiener–Khintchine–
Einstein theorem, and these quantities may be related to
the observable, physical spectra [24,25].

It is clear that real experiments are conducted with
fields of finite temporal support, which are to some degree
stochastic with varying fluctuations at different points in
space. The methods used to generate fast pulses, e.g.,
high harmonic generation [13,26], may also produce dif-
fering fluctuations at distinct locations in the source. For
this reason, a spatiotemporal stochastic model is devel-
oped here. Within the context of the stationary, ergodic
theory, such fields are commonly called partially spatially
coherent. In order to provide a framework of analysis for
experiments involving pulsed stochastic fields, a particu-
lar model, not completely general, for pulsed, partially
spatially coherent fields is presented and explored. Spe-
cifically, a partially spatially coherent stationary field is
deterministically temporally modulated. The mathemati-
cal framework presented is used to relate measurable
quantites to properties of the source. It is shown that the
interference pattern created in a Young’s experiment de-
pends on the deterministic properties of the modulation
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that determined the pulse shape, chirp, duration, and
pulse repetition period; the distance between the source
and the Young’s interferometer; and the statistical prop-
erties of the underlying stationary source.

This paper is organized as follows: in the remainder of
Section 1, the basic theory of cyclostationary optical fields
is described. In Section 2, the propagation of fields in free
space is described, and measurements of the field are dis-
cussed in the context of interferometry. In Section 3,
simulations illustrate the results. These simulations in-
clude interferometric measurements made in different re-
gions of space away from the source. Potential uses of
these interferometric techniques in elucidating statistical
properties of the original source are discussed. Conclu-
sions are drawn in Section 4.

The pulsed, stochastic fields considered in this paper
arise from a stationary optical source that is allowed to
radiate at discrete, well-described intervals by some ex-
ternal means, such as a shutter. The term shutter is used
throughout this paper to generically describe the mecha-
nism of shaping the pulse. The resulting field forms a
pulse train with a fixed time between pulses. This model
encompasses only a small subset of possible cyclostation-
ary fields, but may model the field well for certain meth-
ods of short pulse generation. For example, in high har-
monic generation, a laser pulse is incident on an atomic
gas, which then emits at harmonics of the impinging laser
frequency. The collection of atoms serve as the stochastic
source, and the impinging laser field acts as a kind of
modulation. Likewise, optical pulses produced by
Q-switching [27] may be considered cyclostationary when
the modulation of the loss in the cavity is periodic. Timing
jitter, which has been treated elsewhere [28], can be cast
as a cyclostationary phenomena, although it does not fit
into the intrinsically stationary, cyclostationary model in
this paper. To provide a context for analysis, the second-
order moments of the field, the mutual coherence func-
tion, the cross-spectral density, and the generalized cross-
spectral density are developed below.

A stochastic, statistically stationary, planar, secondary
source has the mutual coherence function

!̄P!!1,!2,"" = #Ū*!!1,t − ""Ū!!2,t"$, !1"

where Ū!! , t" is the random field at position ! and time t
and the angle brackets denote an ensemble average over
the fluctuating scalar field. Stationarity ensures that the
coherence function is not dependent on the time t. The
field is assumed to be ergodic, so the ensemble average is
the same as the long-time average. This source is as-
sumed to be modulated in time such that the resulting
field is no longer stationary. The two-time correlation
function, !P, of the nonstationary field on a plane (usually
the exit plane of the optical system) is related to the sta-
tionary mutual coherence function by the expression

!P!!1,!2,t − ",t" = #U*!!1,t − ""U!!2,t"$

= !̄P!!1,!2,""h*!t − ""h!t", !2"

where U!! , t"=Ū!! , t"h!t", h!t" is a deterministic modula-
tion function that describes the modulation of the source
and the angle brackets denote an average over the en-

semble of the underlying stationary process as in Eq. (1).
The overbar denotes quantities associated with the un-
derlying stationary field.

Suppose the modulation function is periodic, thus hav-
ing the representation

h!t" = %
n

hne−i#0nt, #0 =
2$

T0
, !3"

where &hn' are complex coefficients and T0 is the repeti-
tion time of the system. It is possible to choose the modu-
lation h!t" to incorporate the pulse shape, chirp, etc. This
modulation function, when multiplied by the field at the
source, yields a source that is cyclostationary. Cyclosta-
tionary random processes exhibit a discrete time transla-
tion symmetry, !!!1 ,!2 , t−" , t"=!!!1 ,!2 , t−"+T0 , t+T0"
for some T0, the cyclostationary period. This is in contrast
to stationary random processes, in which the time trans-
lation symmetry holds for any value of T0. In many prac-
tical cases, cycloergodicity can be invoked to give a rela-
tion between measurements and field statistics.

Since the underlying source is assumed to be station-
ary, the cross-spectal density, W, and the mutual coher-
ence function, !, are simply related by a Fourier trans-
form,

W̄P!!1,!2,#" =(
−%

%

d" !̄P!!1,!2,""ei#". !4"

The two-frequency cross-spectral density for the modu-
lated field is given by the two-time Fourier transform of
the two-time mutual coherence function [1],

WP!!1,!2,#,# + &"

=(( dtd" !P!!1,!2,t − ",t"ei!#"+&t"

= %
m,n

hn
*hm+nW̄!!1,!2,# − #0n"'!& − m#0", !5"

where, again, the overbar denotes the cross-spectral den-
sity of the underlying stationary source. The two-
frequency correlations are nonzero only when the fre-
quencies differ by multiples of the repetition frequency of
the system, a generalization of the Wiener–Khintchine–
Einstein theorem [21].

For fields of the type described in this paper, there are
three important time scales: the coherence time of the un-
derlying source, "c; the duration of a single pulse, T; and
the pulse repetition period, T0. These values all affect the
statistical properties of the cyclostationary field. Based on
the relative scales of these three quantities, there are
three qualitatively distinct regimes into which most real-
izable systems fall [7]:

• Regime I is defined by T(T0)"c. Pulses separated
by several T0 exhibit significant correlations in this re-
gime.

• Regime II is defined by T("c(T0. Pulses separated
by the pulse period T0 may exhibit a significant statistical
relationship, but pulses separated by multiple repetition
periods are statistically uncorrelated.
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• Regime III is defined by "c)T(T0, In this limit, the
pulses are separated by significantly more than "c and so
separate pulses are not statistically related. Additionally,
the condition "c)T indicates that the field at the begin-
ning of any pulse is uncorrelated with the field at the end
of that pulse.

2. PROPAGATION OF CORRELATIONS AND
INTERFEROMETRY
In works on nonstationary fields [6,7,20], the emphasis
has been on sources that are spatially fully coherent and
of infinite extent. Such sources produce polychromatic
plane waves. Real sources are of finite extent and can
fluctuate independently at different points in space. An
analysis of such partially spatially coherent sources and
the fields they produce cannot be performed by analyzing
a single polychromatic plane wave. Other works [20,29]
have dealt with spatial correlation functions of nonsta-
tionary fields within the context of coherent mode decom-
positions or the one-dimensional behavior of the two-
frequency cross-spectral density function. Here, the
propagation of partially spatially coherent cyclostationary
statistical quantities is addressed.

A random field can be characterized by the ensemble of
possible realizations of that field. For optical fields, each
member of the ensemble obeys the wave equation (Helm-
holtz equation). Each member of the ensemble may then
be propagated individually using the standard method of
Green functions. In the time domain, the propagated field
is

US!r,t" =( dt!d3r!G!r,r!,t,t!"UP!r!,t!" + b.c., !6"

where the causal Green function in free space is

G!r,r!,t,t!" =

')t − t! −
*r − r!*

c +
*r − r!*

, !7"

UP is a member of the ensemble of the source distribution,
US is the corresponding member of the ensemble propa-
gated from the source, c is the speed of light, and b.c.
stands for the terms resulting from satisfying boundary
conditions. In the frequency domain, the propagated field
is

ŨS!r,#" =( d3r!G̃!r,r!;k"ŨP!r!,#" + b.c., !8"

where the spectral Green function in free space is

G̃!r,r!;k" =
eik*r−r!*

*r − r!*
, !9"

and k=# /c. The tilde denotes a Fourier transform on the
temporal variable. After propagating the fields, the aver-
age over the members of the ensemble can then be taken
to obtain the resultant mutual coherence function (cross-
spectral density) for the propagated field. The terms re-

sulting from boundary conditions are taken to be zero for
the rest of this paper.

The averaging process may be carried out before propa-
gation, in which case the Green functions are given by

K!r1,r1!,r2,r2!,t1,t1!,t2,t2!" = G*!r1,r1!,t1,t1!"G!r2,r2!,t2,t2!",

!10"

K̃!r1,r1!,r2,r2! ;k1,k2" = G̃*!r1,r1! ;k1"G̃!r2,r2! ;k2". !11"

The propagated second-order coherence functions are
then given by the integrals

!S!r1,r2,t1,t2" =( dt1!dt2!d
3r1!d

3r2! K!r1,r1!,r2,r2!,t1,t1!,t2,t2!"

*!P!r1!,r2!,t1!,t2
e" !12"

and

WS!r1,r2,#1,#2" =( d3r1!d
3r2! K̃!r1,r1!,r2,r2!,k1,k2"

*WP!r1!,r2!,#1,#2". !13"

The field, or moments and correlations of the field may
be measured with some form of interferometry. Young’s
classic interference experiment [30] is used even today to
measure two-point correlations of optical fields ([31], see
Chap. 15 and references therein). The utility of such an
experiment springs from the fact that, for stationary
fields, the visibility of the interferogram is equal to the
magnitude of the spatial degree of coherence of the field
at the two apertures. The interferogram produced in such
an experiment also can be used to determine the approxi-
mate coherence time (and thus the bandwidth) of the im-
pinging field. For cyclostationary plane waves, it has been
shown that in a Young’s interferometer the meaning of
the interferogram is changed and there is some ambiguity
in connecting the results to the source parameters [7].
Specifically, it was shown that the smaller of the pulse du-
ration, T, and the coherence time, "c, sets the width of the
primary peak in the interferograms. The extent to which
spatial correlation properties of the field, or the source
that generated the field, may be investigated through in-
terferometric measurements has not been established
elsewhere and is addressed below.

The Young’s two-pinhole interferometer, as shown in
Fig. 1, contains a screen A that includes two pinhole ap-
ertures and a detector in the plane D, parallel to A. The
screen A is chosen to be parallel to the source plane, here
defined by the shutter, and is a distance z! away from the
source.

For points P on the detection screen, the ensemble av-
erage of the instantaneous intensity as a function of time
is related to the fields in the two pinholes by the equation
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!D!P,P,t,t" = *+1*2!A!Q1,Q1,t − R1/c,t − R1/c"

+ *+2*2!A!Q2,Q2,t − R2/c,t − R2/c"

+ +1
*+2!A!Q1,Q2,t − R1/c,t − R2/c"

+ +1+2
*!A!Q2,Q1,t − R2/c,t − R1/c", !14"

where !A is the mutual coherence function at plane A, the
+i are constant (for observation points close to the optical
axis) factors that depend on the area of the pinholes and
the distance Ri from the ith pinhole to the point P (see
Fig. 1). For fields that are quasi-monochromatic, +i=
−idA / ,̄Ri [32], where ,̄=2$c /#c and dA is the area of the
pinhole. Using Eq. (14), the interferogram created by a
field with a known cross-spectral density at the pinholes
may be computed.

The visibility in an interferometric measurement [1] is

V =
Imax − Imin

Imax + Imin
. !15"

For stationary fields, when the intensity in each pinhole
is approximately the same, the visibility is related to the
complex degree of coherence, -, via V= *-,Q1 ,Q2 , !R2
−R1" /c-*, where -!Q1 ,Q2 ,""=!!Q1 ,Q2 ,"" /
.!!Q1 ,Q1 ,0"!!Q2 ,Q2 ,0" is a normalized measure of sta-
tistical similarity between two points. The visibility
ranges from zero to unity as the field goes from incoherent
to fully coherent.

3. SIMULATIONS
Numerical simulations were performed to illustrate the
observable effects of cyclostationarity and their connec-
tion to the parameters of the source in pulsed, spatially
partially coherent fields. Closely following the method
outlined in [33], realizations of a discrete random process
were generated to model the stationary source, which is
assumed to be planar. For all of the simulations in this
manuscript, the modulation function was taken to be
square waves with duration T and duty cycle T /T0. The
correlation function of the field at the shutter was as-
sumed to be factorizable in time and space, viz.,

!̄!r1,r2,"" = !!!""F!r1,r2", !16"

where F is a function of the two position coordinates r1
and r2 that lie in the shutter plane and expresses the spa-
tial correlations of the source and the amplitudes across
the source plane. For the simulations, ! and F were taken
to be Gaussian:

!!!"" = exp!− "2/2"c
2"exp!− i#c"", !17"

F!r1,r2" = exp!− r1
2/4.s

2"exp!− r2
2/4.s

2"exp!− *r1 − r2*2/2.g
2",

!18"

where .s and .g are the beam width and coherence length
at the secondary source, respectively, #c is the central fre-
quency, and "c is the coherence time. For all simulations,
except where noted, the central frequency is #c=1
*1015 rad/s !,c=1.88 /m", the interferometer has pin-
hole separation s=2 mm and the distance between the
screen and the detection plane is d=50 mm. The beam
width and coherence lengths were chosen throughout this
paper to ensure that the resultant field is always beam-
like, that is, both of the length parameters, .s and .g, are
much larger than the largest wavelength for which the
cross-spectral density is not negligible. The source plane
was discretized, and an independent zero-mean, complex
Gaussian random variable was generated for each spatial
point for each time step in the simulation. A two-
dimensional spatial filter was applied to the complex
Gaussian random variable for each time step to give the
chosen spatial coherence properties, while a one-
dimensional temporal filter was applied at each position
in the discretized source to give the chosen temporal co-
herence properties. The random process at each point
source was then weighted to give the chosen field ampli-
tude. The coherence properties and amplitude used in
these simulations are defined in Eqs. (16)–(18).

Following the simulation of the source in the plane, the
temporal modulation, defined by h, was applied to the
source, and the field was propagated using the causal
Green function [see Eq. (6)], treating each point in the
plane as a primary point source. The total field at each
pinhole, assumed infinitely small, was calculated by sum-
ming the contributions from each source point. It was as-
sumed that the detector was frequency independent, i.e.,
that the measured intensity in the detection plane was
the square magnitude of the sum of the two incident
fields. Long-time averages were taken of the instanta-
neous intensity in the detection plane and plotted for a
variety of source distributions.

Simulations were run for sources in the different tem-
poral regimes described above, with different spatial co-
herence and intensity profiles. The resultant fields gener-
ated by such sources were then propagated numerically,
using Eq. (6), to the two pinholes, and the resultant inter-
ferograms were calculated. In these simulations, a
Young’s interferometer (i.e., a planar screen with two pin-
holes, A, and a detection plane, D, as seen in Fig. 1) was
placed at three different distances from the source—one
near the source, one in an intermediate (Fresnel) zone,
and one in the far zone—to help discern different propa-
gation effects.

Fig. 1. (Color online) Diagrammatic sketch of the source and
interferometer.
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In Figs. 2–7, 18 interferograms are shown for a source
characterized by three time scales (the pulse duration, T;
the repetition period, T0; and the coherence time, "c), two
sets of spatial parameters (the coherence length, .g; and
the beam width in the plane, .s), and in three separate
detection regions (zones). A change in zone denotes a
change in the distance between the shutter and the plane
A in Fig. 1. It may be noted that as the spatial coherence
of the source is increased, the visibility of the fringes in-
creases as measured in both the Fresnel and near zones.
In the far zone, the interferograms appear to have unit
visibility, regardless of the spatial coherence properties of
the source. This is because propagation to the far zone
produces a spatially coherent field across the pinholes.

Far zone. Much like in the theory of stationary fields,

the cross-spectral density in the far zone is related to the
Fourier transform of the source cross-spectral density
function F. The far zone is defined as any distance in
which the source appears pointlike [[32], see Eq. (33) in
Sec. 8.3], or when

z0

a
0

a

4,
, !19"

where z0 is the distance between the object and interfer-
ometer, a is the cross section of the source, and , is the
wavelength. The spectral Green function in Eq. (9) can be
replaced by G̃!r ,r! ;k"/exp!ikr"exp!−ikr̂ ·r!" /r when Eq.
(19) applies. For the specific geometry described in this
paper, the field incident on the two pinholes in the far
zone is indistinguishable from a single polychromatic
plane wave traveling in the ẑ direction with cross-spectral
density

Fig. 2. (Color online) Simulated interferograms for a source
with T0=200 fs, T=50 fs, "c=600 fs, and .g=.s /2=1 mm. The top
panel contains the interferogram as would be measured in the
far zone (100 m away from the source), the middle panel contains
the interferogram as would be measured in the Fresnel zone
(500 mm away from the source), and the bottom panel contains
the interferogram as would be measured in the near zone (2 mm
away from the source). This source is in Regime I.

Fig. 3. (Color online) Simulated interferograms for a source
with T0=200 fs, T=50 fs, "c=600 fs, and .g=2.s=4 mm. Panel
descriptions as for Fig. 2. This source is in Regime I.

Fig. 4. (Color online) Simulated interferograms for a source
with T0=200 fs, T=50 fs, "c=100 fs, and .g=.s /2=1 mm. Panel
descriptions as for Fig. 2. This source is in Regime II.

Fig. 5. (Color online) Simulated interferograms for a source
with T0=200 fs, T=50 fs, "c=100 fs, and .g=2.s=4 mm. Panel
descriptions as for Fig. 2. This source is consistent with being in
Regime II.

Fig. 6. (Color online) Simulated interferograms for a source
with T0=500 fs, T=200 fs, "c=50 fs, and .g=.s /2=1 mm. Panel
descriptions as for Fig. 2. This source is in Regime III.

Fig. 7. (Color online) Simulated interferograms for a source
with T0=500 fs, T=200 fs, "c=50 fs, and .g=2.s=4 mm. Panel
descriptions as for Fig. 2. This source is in Regime III.
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W!%"!#,# + &" = F̃!0,0"A!#,# + &"ei&r/r2, !20"

where F̃ is the four-dimensional Fourier transform of F,
A!# ,#+&" is the two-frequency cross spectral density of
the modulated source [found by taking the double Fourier
transform of !!!t2− t1"h*!t1"h!t2"], and W!%" is position in-
dependent for small pinhole spacings, s. Thus, for sources
that are well described by Eq. (16), only the temporal cor-
relation and modulations, described by the function A,
may be investigated. The spatial correlations of the
source are manifest only in the constant multiplier
F̃!0 ,0". Some of the temporal coherence or modulation
properties of the source may be determined or certain pa-
rameters of it may be estimated. The width of the primary
interference peak is determined by the smaller of T or "c
[7]. The distance between the primary peak and any sec-
ondary peaks (as seen in Figs. 2 and 3) maps to the cy-
clostationary period, T0 [7]. It is noted that in the results
of the simulations shown in the top panels of Figs. 2–7,
the visibility is nearly unity, as should be for the case of a
plane wave incident perpendicular to the plane of the two-
pinhole interferometer. The minor variations from unity
are a result of the very minor variations of the angular
positions of the two pinholes viewed from the source
plane.

Fresnel zone. The Fresnel zone is an intermediate re-
gion away from the source and near the beam axis. In this
region, the spectral Green function, Eq. (9), takes the
form G̃!r ,r! ;k"/exp!ikz" /z exp,ik!!−!!"2 / !2z"-. In this
zone, the radiated field does not appear as a single poly-
chromatic plane wave as in the far zone. The field radi-
ated from different points in the source plane may have
differences in times of flight to the pinholes of up to 15 fs
for the parameters in these simulations. The fields radi-
ated from these points, though, are only partially corre-
lated. Depending on the coherence length at the source,
the contributions to the field at the pinholes from these
points may, upon averaging, interfere, creating an inter-
ferogram that has a central peak wider than is found in
the far zone. For example, in Fig. 5, the major peak in the
interferogram as simulated in the Fresnel zone is wider
than the peaks in the other two zones whereas in Fig. 6,
the interference effects essentially wash out all the
fringes in the Fresnel zone interferogram. In Fig. 8, the
Fresnel-zone interferograms for three sources with iden-
tical temporal properties but different spatial coherence
lengths are displayed. As the coherence length at the
source increases, the field at the two pinholes more
closely resembles the field that would be produced by a
fully spatially coherent source. Note that the central peak
becomes wider and more visible as the coherence length
at the source increases.

Near zone. In the near zone, both the amplitude rolloff
of 1/r and the varying phase accumulations between all
source points and the pinholes are important; thus the
propagator G̃ cannot be simplified. In Figs. 2–7, it is evi-
dent that the central peak has approximately the same
width as in the far zone. This width is determined by the
smaller of the pulse duration or coherence time. This is
due to the fact that the interferometer is essentially sam-
pling the field only at the points nearest the pinholes. The

duration of the pulse in the pinholes is then essentially
the same as at the source. This is in contrast to the
Fresnel zone, where the duration of the pulse has in-
creased because of the varying times of flight to the pin-
holes from the extended source. The visibility of the main
interferogram is an increasing function of the spatial co-
herence length at the source.

In both the near and intermediate zones, the visibility
of the center fringe increases as the spatial coherence of
the source increases. The far zone visibility measure-
ments are, to a good approximation, independent of the
spatial correlation properties of the source. In the Fresnel
zone geometry, the field in each pinhole is dependent on
the fields over a significant area of the source. The vary-
ing times of flight across this area cause the observed
data to exhibit a multiplex dependence on the spatial and
temporal statistics of the source. For a stationary source,
variation of the statistics is independent of the origin of
time. The nonstationary nature of the sources considered
complicates the interpretation of the Fresnel zone data,
as the detection-plane statistics are a function of the
times of flight from each point in the source plane to the
pinholes. Measurements in the near zone, however, may
be sufficient for determining spatial correlation proper-
ties of the source, as will be seen in the next section.

A. Determining Spatial Coherence Properties
It is clear from the near zone analysis that no meaningful
quantitative statements can be made about the spatial co-
herence properties of the source from measurements
made in the far zone and that measurements made in the
Fresnel zone may be useful only for qualitative state-
ments about the spatial partial coherence. However, when
the interferometer is placed near the source (for beamlike
fields, within approximately the width of the intensity in
the source plane), there is a relationship between the vis-
ibility in the interferograms and the complex degree of
spatial coherence of the underlying stationary process
when the stationary process is factorizable, as in in Eq.
(16).

In Fig. 9, the near zone visibility is plotted against the
magnitude of the complex degree of coherence between

Fig. 8. (Color online) Simulated interferograms for three
sources with T0=500 fs, T=200 fs, "c=50 fs and .s=2 mm. In the
top panel, the simulated source has coherence length .g=1 mm,
in the middle panel, the simulated source has coherence length
.g=1.5 mm, and in the bottom panel, the simulated source has
coherence length .g=2 mm.
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the two source points nearest each pinhole. Each “*” de-
notes a different simulation run. In the example consid-
ered here -12!r1 ,r2"=exp!−*r1−r2*2 /2.g

2"=exp!−s2 /2.g
2".

Simulations were run for varying pinhole spacings, s, and
the measured visibility was plotted against -12. When the
interferometer is close to the source, the measurements
are in reasonable agreement. For pairs of points that are
farther from the point of maximal intensity of the beam
(points that result in fields that exhibit lower visibility),
the approximation that the primary contribution to the
field in the pinhole comes from the point in the source di-
rectly across from it becomes less valid. This is because
the field amplitude at that point may be much smaller
than at neighboring points. This explains why the visibil-
ity falls off more slowly in Fig. 9 than the magnitude of
the complex degree of coherence of the field between the
two points nearest the pinholes.

There are, in the literature, several works in which the
preceding analysis may be applied [12,14–18]. In one of
the experiments described in [16,17], a Young’s-style in-
terferometer is used to make visibility measurements of
pulsed fields generated by high harmonic generation,
with the interferometer a distance of 4 cm away from the
source. This experiment is carried out in the Fresnel zone
of the source. The resulting interferograms have visibili-
ties in the range 0.31V10.6. Based on the near zone
analysis, it is not clear that these visibility measurements
say anything about correlations in the near zone of the
source. The experiment in [14] uses a waveguide of radius
75 /m as a source to illuminate pinholes 60 cm away,
with light of wavelength 13 nm. In this case, the terms
appearing on either side of the extreme inequality in in-
equality (19) are of the same order (z0 /a=8*103, a /4,
=5.8*103), so the measurements are again in the Fresnel
zone of the source. The interferogram in Fig. 1 of Ref. [14]
suggests that the source is highly spatially coherent, as
the authors conclude, though some care should be taken
in this interpretation; Fig. 9 shows that the apparent vis-

ibility for experiments with pulsed fields consistently
overestimates the degree of spatial coherence of the
source. The Fresnel zone visibility may be larger or
smaller than the visibility in the near zone of the source,
depending on which of the three regimes these experi-
ments fall into. The measurements in all of these experi-
ments do indicate that the field at the detector is reason-
ably partially coherent, but that cannot be generalized
back to statements about the source. In the experiments
discussed here, a key parameter that differentiates these
regimes is unknown, namely "c, the coherence time. More-
over, in the works mentioned above [12,14–18], the au-
thors do not specify the pulse duration, although this may
be determined from far zone measurements [7]. The as-
sumption of stationarity, which is implicit in cw experi-
ments, restricts the way in which the statistics of the
problem may be manifest in the outcome of the experi-
ments to a degree only appreciated when this assumption
is relaxed. When stationarity is relaxed to cyclostationar-
ity, or relaxed further to general nonstationarity, the out-
come of experiments carried out with the traditional in-
terferometers may be connected to the statistical
properties of the source or the field only when many of the
appropriate parameters are specified. For instance, T0, T,
and "c should all be specified for the cyclostationary case
in order to draw the connection between the outcome of
the two-pinhole experiment and the spatial coherence
properties of the field.

B. Single-Shot Measurements
The fields presented in this paper differ from the stan-
dard stationary theory in that there exists an “on” and
“off” time for the radiated field. Depending on the repeti-
tion rate of the pulses and the type of detector used, this
creates a window in which to collect measurements from
each pulse individually. However, these single-shot mea-
surements of intensity [12,18] are not necessarily indica-
tive of the time-averaged intensity measurements as pre-
sented in previous sections. Only in certain limiting
cases, such as when the pulse time is long compared to
the coherence time and the coherence length is long com-
pared with the beam width, might a single-shot measure-
ment be indicative of the time-averaged behavior. In Fig.
10, the interferograms generated by a single pulse (of
time T), averaged over the repetition period T0 [i.e., the
intensity at a given point is Ī!P"=0ti

ti+T0dt!!P ,P , t , t",
where ti is the time that the pulse reaches the detector],
are shown as would be measured in the Fresnel zone for a
field representative of Regime II. The time-averaged mea-
surement over 800 pulses for the same source is shown in
Fig. 11. Note that the single-shot measurements of the in-
tensity do not resemble the time-averaged intensity, even
though the top panel of Fig. 10 does resemble a tradi-
tional interferogram. Only through observing the shot-to-
shot behavior of the interferograms can one determine
whether a single shot is sufficient to characterize the en-
tire pulse train. The width of the peak in the interfero-
grams for the single-shot measurements are indicative of
the pulse time, T (an interferogram extending out to
±1.5 mm corresponds to a pulse time of 200 fs for this ge-
ometry) in Regimes I and II. The width of the peak in the
time-averaged measurement, though, is indicative of the

Fig. 9. (Color online) Plot of the visibility versus the magnitude
of the complex degree of coherence for a source characterized by
T0=200 fs, T=50 fs, "c=100 fs, .s=2 mm and .g=1 mm. Each ‘*’
denotes a simulation run with 8000 pulses. The interferometer is
simulated to be 2 mm away from the secondary source (one beam
width). The straight line represents a perfect match between the
simulated visibility and the calculated magnitude of the complex
degree of coherence.
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coherence time at the two pinholes (an interferogram ex-
tending out to ±0.5 mm corresponds to a an effective time
of 66 fs for this geometry) in Regimes II and III. The co-
herence time of the field at the pinholes is not the coher-
ence time of the field at the source because of propagation
effects.

4. CONCLUSION
Using a cyclostationary model, diffraction and interfer-
ence effects were illustrated for spatially partially coher-
ent ultrafast pulses. It was shown that single-shot mea-
surements of intensity in an interferometer are not
necessarily indicative of time-averaged measurements,
and thus single-shot measurements cannot necessarily be
used to infer coherence properties of the source. Interfero-
metric data were also analyzed for different regions away
from the source. The field in the far zone results from
equally weighted contributions from all points in the
source plane. The spatial coherence of the source thus af-
fects the coherence function in the far zone only through a
constant multiplier. In the Fresnel zone, the field results
from unequally weighted contributions from multiple
points in the source plane, with each contribution associ-
ated with a different propagation time. In stationary
fields, the statistics are sensitive only to delay differences,
whereas in the case considered here, there is a depen-
dence on absolute time that complicates the results con-
siderably. In the near zone, the Young’s interferometer es-
sentially samples the field at the source plane at points
closest to the pinholes. As a result, the effects of partial
spatial coherence of the source are manifested as a con-
stant multiplier on the interference terms, and the tem-
poral coherence determines unambiguously the shape of
the interferogram. Based on this analysis, it was also
shown that from measurements in the far zone, temporal
properties of the source, i.e., the minimum of the coher-
ence time or pulse length, can be inferred and that the
spatial coherence length of the source can be determined
only from measurements in the near zone.
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