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Abstract: Correlation dependent, propagation-induced shifts in the gen-
eralized spectra of cyclostationary, random fields are predicted. This result
generalizes the Wolf shift for stationary fields and is applicable to periodic
trains of fast pulses such as might be generated in comb spectroscopy or
other mode-locked pulsed systems. Examples illustrate these shifts for
intrinsically stationary fields and the fields generated by a mode-locked
laser.
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1. Cyclostationary fields
The theory of statistically stationary optical fields, coherence theory [1, 2], provides a means to relate
time-averaged measurements of optical intensities to the statistical properties of a scatterer or source.
However, as ultrafast optical devices become more common and applications of short pulses become
more wide-spread, it is clear that the theory of stationary fields alone is not sufficient to interpret measure-
ments of optical fields or intensities [3]. A framework for analyzing physically realizable measurements
from statistically periodic sequences of fast pulses based on the theory of cyclostationary processes [4]
has recently been presented [5]. Cyclostationary signals differ from stationary signals in that the field may
be correlated across distinct temporal frequencies. Thus the Wiener-Khintchine theorem [2] that defines
the power spectrum must be generalized for cyclostationary processes, resulting in a sequence of gener-
alized spectra. It has been shown that, for stationary optical sources, the power spectrum may undergo
correlation-induced changes on propagation, the so-called Wolf shift [6, 7]. In this article, changes in the
generalized power spectra and the two-frequency cross-spectral density are predicted for fields generated
by cyclostationary sources.
Consider a stochastic, cyclostationary source σ(r, t) with mutual coherence function

Γσ (r1,r2, t− τ, t) = 〈σ∗(r1, t− τ)σ(r2, t)〉, (1)

where the brackets denote an ensemble average. Cycloergodicity is assumed, so the appropriate ensem-
ble averages and long time averages are equivalent. Cyclostationary processes exhibit a discrete time
translation symmetry rather than the continuous symmetry of stationary processes, so Γ(r1,r2, t− τ, t) =
Γ(r1,r2, t− τ +T0, t+T0), i.e. the absolute time is only important modulo T0. Because of this statistical
periodicity, the mutual coherence function admits the Fourier series representation

Γσ (r1,r2, t− τ, t) =
∞
∑

n=−∞
Cn(r1,r2,τ)e−iω0nt , (2)

where ω0 = 2π/T0.
The Fourier transform of the mutual coherence function is the two-frequency cross-spectral density,

viz.,

Wσ (r1,r2,ω1,ω2) =
∫
dt1dt2Γσ (r1,r2, t1, t2)ei(ω2t2−ω1t1). (3)

From Eq. (2) and Eq. (3), one finds that

Wσ (r1,r2,ω,ω +Ω) = ∑
n
C̃n(r1,r2,ω)δ (Ω−nω0), (4)

where C̃n is the Fourier transform ofCn. Equation (4) is a generalization of theWiener-Khintchine theorem
as may be seen by taking the T0 → ∞ (ω0 → 0) limit. The C̃n(r,r,ω) are generalized spectra and the
C̃n(r1,r2,ω) are generalized cross-spectra. In the usual form of the Wiener-Khintchine theorem, the delta
function δ (Ω) indicates that the field is uncorrelated across frequencies. In this generalized form, it is
clear that the field is correlated only at discretely-spaced frequencies.
The measurement of the standard spectrum, whereΩ = 0, may be accomplished by means such as grat-

ing spectroscopy or Fourier transform spectroscopy. The spectral density of a source, secondary source, or
field is given by the expression S(r,ω) =W (r,r,ω,ω) [8], which implies that for cyclostationary fields
the spectrum as would be measured in a standard spectrometer is given by the zeroth-order generalized
spectra S(r,ω) = C̃0(r,r,ω) [5]. In Sec. 2, the propagation laws for the cross-spectra are examined and
the generalized Wolf shifts are identified. Examples are used to illustrate the Wolf shift for cyclostationary
fields in Sec. 3. A scheme to measure the generalized spectra and cross-spectra by heterodyne techniques
is proposed in Sec. 4.
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2. Propagation of generalized cross-spectra
In general, the spectrum, or for cyclostationary processes, the generalized spectra, cannot be determined
at arbitrary points from the known spectra of the source or even the spectra on some plane. Instead, it
is necessary to propagate the two-point, and for nonstationary processes, two-frequency, cross-spectral
density. It has been shown that the two-point, two-frequency cross-spectral density satisfies the Wolf
equation [2, 9],

(∇21+ k21)(∇22+ k22)WR(r1,r2,ω,ω +Ω) = (4π)2Wσ (r1,r2,ω,ω +Ω), (5)

whereWσ is the source cross-spectral density andWR is the cross-spectral density for the radiated field,
k1 = ω/c and k2 = (ω + Ω)/c. The radiated field can thus be found by the method of Green functions,
and the cross-spectral density for the radiated field in the far zone takes the form

W (∞)(r1,r2,ω,ω +Ω) =
ei(k2r2−k1r1)

r1r2
Wσ (−k1r̂1,k2r̂2,ω,ω +Ω), (6)

where ri = rir̂i and Wσ is the six-dimensional spatial Fourier transform ofWσ . For stationary fields [6],
the peak of the spectrum of the radiated field generally shifts compared to the source spectrum as a direct
consequence of the correlations in the source. From Eqs. (4) and (6) and using the sifting property of the
δ -function, one obtains

W (∞)(r1,r2,ω,ω +Ω) = ∑
n

ei(k2,nr2−k1r1)

r1r2
C̃n(−k1r̂1,k2,nr̂2,ω)

×δ (Ω−nω0), (7)

where k2,n = (ω +nω0)/c and C̃n is the six-dimensional spatial Fourier transform of C̃n. Note that Eq. (7)
is of the same form as Eq. (4), with C̃n(r1,r2,ω) → exp(ik2,nr2− ik1r1)C̃n(−k1r̂1,k2,nr̂2,ω)/(r1r2). Be-
cause C̃n and k2,n differ for each n, each generalized spectrum may experience a different spectral shift.
Thus the standard Wolf shift may be seen in C̃0, and a sequence of generalized Wolf shifts may be seen in
each of these generalized spectra. This is the main result of this article, which is illustrated below through
example.
The measured spectrum in the far zone is given by

S(∞)(r,ω) =
C̃0(−kr̂,kr̂,ω)

r2
. (8)

Equation (8) is of the same form as the propagation rule for the spectrum in the stationary case [2],
where C̃0 takes the place of the one-frequency cross-spectral density. There is no equivalent expression
for the propagation rule for the generalized spectra in the theory of stationary fields. It is also important
to note that all of the generalized spectra contribute to the optical intensity I(r, t) = Γ(r,r, t, t), and thus
the propagated pulse shape.

3. Examples
As a model for a cyclostationary field, consider a stationary source with mutual coherence function
Γ̄(r1,r2,τ) that is modulated periodically in time with period T0. Such a field is called intrinsically station-
ary [10, 11]. Let the periodic modulation function be given by h(t) with period T0. The Fourier transform
of the underlying stationary mutual coherence function is the single frequency cross-spectral density,

W̄ (r1,r2,ω) =
∫
dτ Γ̄(r1,r2,τ)eiωτ . (9)

The modulation function has a Fourier representation h(t) = ∑n hn exp(−iω0nt), where ω0 =
2π/T0. After modulation, the source has a two-time mutual coherence function, Γ(r1,r2, t − τ, t) =
Γ̄(r1,r2,τ)h(t)h∗(t − τ). Inserting this expression for the mutual coherence function into Eq. (3) and
using Eq. (8), the measured spectrum in the far zone is found to be

S(∞)(r,ω) =
1
r2 ∑

n
|hn|2W̄ (−kr̂,kr̂,ω −nω0), (10)
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where W̄ is the six-dimensional Fourier transform of the stationary cross-spectral density of the source W̄
and k= ω/c. The modulation and the propagation both affect the spectrum in the far zone in a complicated
manner for a general source. When the source can be factorized W̄ (r1,r2,ω) = A(ω)D(r1,r2), the effects
of modulation and propagation can be separated:

S(∞)(r,ω) =
D(−kr̂,kr̂)

r2 ∑
n
|hn|2A(ω −nω0). (11)

The original spectrum, A, is broadened by the modulation, and then shifted in the course of propagation
as a result of the factor D .
As an example, consider a collection of M point-sources that are identically modulated. The source

density for this system is given by the expression

σ(r, t) =
∞
∑

n=−∞

M

∑
p=1

σp(t)hn exp(−inω0t)δ (3)(r− r(p)), (12)

where σp(t) is the source density at point r(p). The underlying sources, σp, are assumed to be partially
correlated, stationary, random processes. The frequency-domain correlation function for the {σp} is writ-
ten

〈σ̃∗
p(ω)σ̃q(ω ′)〉 = S(ω)µpq(ω)δ (ω −ω ′), (13)

where 〈·〉 denotes an ensemble average and µpq is the spectral degree of coherence between the point
sources at r(p) and r(q), respectively. Each point source is taken to have the same spectrum, S(ω). The
field radiated from the collection of modulated sources has a two-frequency cross-spectral density

W (∞)(r1,r2,ω,ω +Ω) = ∑
m,n

M

∑
p,q=1

h∗nhm+n
e−ik1|r1−r(p)|

|r1− r(p)|
eik2,m|r2−r(q)|

|r2− r(q)|

×S(ω −nω0)µpq(ω −nω0)δ (Ω−mω0). (14)

In Fig. 1 the normalized spectra, C̃0 and |C̃4|, are shown at both the sources and at a point far away for a
collection of three sources, located along the x-axis at x= 100 mm, x= 0 mm, and x=−100 mm, respec-
tively. The {hn} represent a square wave with a 10% duty cycle, S(ω) is taken to be a Gaussian function
with 20% bandwidth and center frequency ωc = 5× 1015 rad/s, and the spectral degree of coherence is
taken to be

µi j(ω) =

{
1 i= j
µ exp

(
− (ω−ωc)2

2χ2
)

i (= j, (15)

where χ is the bandwidth of the coherence function, assumed to be the bandwidth of the spectrum for this
example. In the top two panels, the normalized generalized spectra for C̃0 and |C4| are shown for sources
that are highly correlated (µ = 0.8). The middle two panels show simulations of the same system as in
the top two panels, except that the sources are less correlated (µ = 0.1). The peak frequency for both
C̃0(ω) and |C̃4(ω)| are each less red-shifted in the lower-coherence case. In the bottom panels of Fig. 1,
C̃0 and |C4| are shown for the same system as in the middle two panels, except that the repetition rate
of the system has been changed from 1% of the center frequency to 5% of the center frequency. In this
case, the length of the pulse is two optical cycles. Note that while the plot for C̃0 is only slightly changed
on propagation at the higher repetition rate, the plot for C̃4 is much changed, with the secondary peak
red-shifted instead of blue-shifted from the primary peak.
The example above may be realized in experiments in which a partially spatially coherent, cyclosta-

tionary, optical field illuminates small, point-like objects, for example in imaging of nanoparticles and
quantum dots [12, 13, 14]. The objects are then secondary sources, and the field scattered from those
objects can exhibit shifts in the generalized spectra.
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Fig. 1. (Color online) The normalized spectral density C̃0(ω) and the spectral correlation
function |C̃4(ω|) normalized by its peak, at the source (dashed lines in red) and at a point
in the far zone P= (100,0,12000) mm (shown in black) for the case when there are three
sources, located at (-100,0,0) mm, (0,0,0) mm, and (100,0,0) mm. The peak of C̃0(ω) is at
a higher frequency than the peak of |C̃4(ω)|. The top two panels contain plots of C̃0 and
|C̃4| for a three-source system with µ = 0.8, the repetition frequency is taken to be 5×1013
rad/s, the bandwidth of the coherence and the bandwidth of the spectrum are both 20% of
the center frequency ωc = 5× 1015 rad/s. The middle two panels contain plots of C̃0 and
|C̃4| for the same three-source system as above, only with µ = 0.1. The bottom two panels
contain plots of C̃0 and |C̃4| for a three-source system that differs from the one in the middle
panels by changing the repetition frequency from 5×1013 rad/s to 2.5×1014 rad/s.
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As another model for the generation of cyclostationary light, consider a mode-locked laser in which
the carrier envelope has phase fluctuations. The electric field at the output of a mode-locked laser can
be modeled by U(r, t) = f (r)∑n An exp[i(ωc + nω0)t] [15], where {An} describe the periodic envelope
around the carrier wave centered at ωc. While in the idealized case the phase between the carrier wave
and the envelope can be perfectly matched [16], in reality, there is some random phase between the output
comb lines. The {An} are random coefficients with correlation matrix αnm = 〈A∗nAm〉. The two-frequency
cross-spectral density at the output plane can be put in the form of Eq. (4) with

C̃m(r1,r2,ω) = F(r1,r2)∑
n

αnn+mδ (ω −ωc+nω0) (16)

and F(r1,r2) = f ∗(r1) f (r2). If the phase fluctuations at the output plane are depend on position, the
function F(r1,r2) will not be separable and the source will be spatially partially coherent. The field that
propagates away from the output plane will then exhibit the correlation-induced shifts presented in this
article.

4. Detection of the generalized cross-correlation functions
Interferometric measurements are often made to determine the statistical properties of stationary fields.
Because of the increase in the dimensionality in the case of cyclostationary fields (two time variables
instead of one), conventional interferometric measurements must be augmented in some manner to make
possible the inference of the statistical properties of the field [5]. For a cyclostationary field with cor-
relation function Γ(ρρρ1,ρρρ2, t − τ, t) = ∑mCm(ρρρ1,ρρρ2,τ)exp(−imω0t) at the plane z = 0 of a Sagnac or
Mach-Zehnder interferometer [17, see Ch. 2], the intensity at the output of the interferometer is given by
the expression

I(ρρρ, t;τ) ∝ C0(ρρρ,ρρρ,0)+ |C0(ρρρ,ρρρ,τ)|cosα0(ρρρ,τ) (17)

+ 2
∞
∑
m=1

{|Cm(ρρρ,ρρρ,0)|cos
(mω0τ

2

)
cos[mω0(t− τ/2)−αm(ρρρ,0)]

+ |Cm(ρρρ,ρρρ,τ)|cos[mω0t−αm(ρρρ,τ)]+ |C−m(ρρρ,ρρρ,τ)|cos[mω0t+α−m(ρρρ,τ)]},

where ρρρ is the planar coordinate on the detector, αm(ρρρ,τ) = arg[Cm(ρρρ,ρρρ,τ)] and τ is the delay in one of
the interferometer arms. Since the time dependence is purely sinusoidal, a heterodyne detection scheme
[18, 19] at the output of the interferometer allows each term in the sum in Eq. (17) to be determined
individually. In heterodyne detection, the electrical signal from a detector is mixed with a sinusoidal
electrical signal (the local oscillator). The output of a heterodyne detector is the amplitude of the original
signal at the frequency of the local oscillator. The local oscillator frequency may be tuned to values
mω0 = 2πm/T0 to obtain each term in Eq. (17) separately.
At the observation plane of a Young’s two-pinhole interferometer [20], the measured intensity of an

incident cyclostationary field is given by the expression

I12(t;τ) ∝ C(11)
0 (0)+C(22)

0 (0)+2
∣∣∣C(12)
0 (τ)

∣∣∣cos
[
α(12)
0 (τ)

]
(18)

+ 2
∞
∑
m=1

{
|C(11)
m (0)|cos[mω0(t−R1/c)+α(11)

m (0)]

+ |C(22)
m (0)|cos[mω0(t−R2/c)+α(22)

m (0)]

+ |C(12)
m (τ)|cos[mω0(t−R2/c)+α(12)

m (τ)]

+ |C(21)
m (−τ)|cos[mω0(t−R1/c)+α(21)

m (−τ)]
}

,

where C(i j)
m (τ) =Cm(Pi,Pj,τ), Pi is the location of the pinhole i, α(i j)

m (τ) = arg[C(i j)
m (τ)] and τ = (R1−

R2)/c, with Ri being the distance between the pinhole located at Pi. Again, a heterodyne detection scheme
will yield each term in the sum in Eq. (18) individually. By varying the locations of the pinholes, the
generalized correlation functionsCm may be recovered.
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The correlation induced changes in the field upon propagation are observable in the de-
tection scheme described above. Suppose the field with correlation function Γ(ρρρ,ρρρ, t − τ, t) =
∑mCm(ρρρ,ρρρ,τ)exp(−imω0t) on a plane z = 0 is allowed to propagate to a plane z = z′,z′ ) 0 where
another Mach-Zahnder interferometer is present. The intensity at the output of the interferometer is given
by

r2I(ρρρ, t;τ) ∝ F0(r̂,0)+ |F0(r̂,τ)|cosφ0(r̂,τ) (19)

+ 2
∞
∑
m=1

{
|Fm(r̂,0)|cos

(mω0τ
2

)
cos[mω0(t− τ/2− r/c)−φm(r̂,0)]

+ |Fm(r̂,τ)|cos[mω0(t− r/c)−φm(r̂,τ)]
+ |F−m(r̂,τ)cos[mω0(t− r/c)+φ−m(r̂,τ)]}

where Fm(r̂,τ) = 1
2π

∫
C̃m(−k1r̂,k2,mr̂,ω)exp(−iωτ)dω , φm(r̂,τ) = arg[Fm(r̂,τ)], r is the distance be-

tween the detector and the source, and the mapping between r̂ and ρρρ is ρρρ/r = r̂⊥. Heterodyne detection
can then be used to find each term in the sum. The coherence-induced changes in the field can then be
determined by comparison of the terms at frequency mω0 at the planes z= 0 and z= z′.
In this article, it has been shown that the Wolf shift from the theory of stationary, partially-coherent

fields, can be seen as well in fields governed by the theory of cyclostationary, partially coherent random
processes. In this more general setting, a new set of phenomena are predicted: distinct generalized Wolf
shifts for each of the generalized spectra. The spectral correlation functions for cyclostationary fields, each
representing a correlation between distinct frequencies, undergo separate shifts based on the repetition
frequency of the system and the spatial properties of the source. These correlation-dependent, propagation-
induced shifts will each contribute separately to changes in the measured intensity of the field far from the
source, and may be seen individually in a combined interferometric-heterodyne detection scheme.
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