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Abstract

We analyze Young’s interference experiment for the case that two correlated, linearly polarized beams are used. It is shown that even
when the incident fields are partially coherent, there are always correlation singularities (pairs of lines where the fields are completely
uncorrelated) on the observation screen. These correlation singularities evolve in a non-trivial manner into dark lines (phase singularities
in the paraxial approximation). The latter in turn each unfold into a triplet of polarization singularities, namely an L-line and two C-lines
of opposite handedness.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

More than two centuries after its conception, Thomas
Young’s interference experiment [1–3] remains a source
of novel insights. Several new effects have been predicted
[4,5] or observed [6,7]. Also, so-called correlation singular-
ities [8–11], pairs of points at which the fields are com-
pletely uncorrelated, have been identified in Young’s
interference pattern [12]. Several recent studies are con-
cerned with the state of polarization of the field [13–15].
This aspect allows the study of a new kind of singular
behavior [16]. Everywhere in a monochromatic field, the
end-point of the electric vector traces out an ellipse over
time. This polarization ellipse is characterized by three
parameters describing its eccentricity, orientation and
handedness. Polarization singularities [17–24], points
where the ellipse has degenerated into a circle (so-called
C-points, where the orientation of the ellipse is undefined)
or into a line (so-called L-points, where the handedness is
undefined), have, to the best of our knowledge, never been
charted in the context of Young’s experiment.
0030-4018/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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It has recently become apparent that different types of
optical singularities are connected [25]. In the present
paper, the relation between correlation singularities, dark
lines, and polarization singularities is discussed. It is shown
how each of them may occur in Young’s double-slit exper-
iment. Also, the continuous evolution of correlation singu-
larities into dark lines and their subsequent unfolding into
polarization singularities is described. This is done by ana-
lyzing the field that results from the superposition of two
correlated beams with identical linear polarization. By
gradually increasing the state of coherence of the two
beams until they are fully coherent and co-phasal, pairs
of correlation singularities are shown to transform into
pairs of dark lines. If then the two directions of polariza-
tion are changed in a continuous manner from being paral-
lel to making a finite angle with each other, each dark line
is found to unfold into a pair of C-lines of opposite hand-
edness plus an L-line. A possible experimental realization
of this ‘cascade’ of field patterns is proposed.

2. Correlation singularities and dark lines

Consider a plane, opaque screen A with two identi-
cal, small apertures located at Q1ðr01Þ and Q2ðr02Þ, that are
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Fig. 1. Illustrating the notation.

2 T.D. Visser, R.W. Schoonover / Optics Communications 281 (2008) 1–6
separated by a distance 2d (see Fig. 1). At each aperture a
linearly polarized beam is incident. The two beams are par-
tially coherent, and their directions of polarization are for
now taken to be parallel. The latter assumption allows us
to use scalar diffraction theory. An interference pattern is
formed on a second screen B that is parallel to A and a dis-
tance D away from it. Let

r01 ¼ ðd; 0; 0Þ r02 ¼ ð�d; 0; 0Þ; ð1Þ
and let the two incident fields at frequency x be given by
U ðincÞðr01;xÞ and U ðincÞðr02;xÞ. The second-order coherence
properties of the incident fields may be characterized by
the cross-spectral density function [26], i.e.

W ðincÞðr01; r02; xÞ ¼ hU ðincÞ�ðr01;xÞU ðincÞðr02;xÞi; ð2Þ
where the angle brackets denote averaging over an ensem-
ble of field realizations. The spectral degree of coherence is
the normalized version of the cross-spectral density func-
tion, viz.

lðincÞ
12 ðxÞ ¼

W ðincÞðr01; r02; xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðincÞðr01;xÞSðincÞðr02;xÞ

q ; ð3Þ

where

SðincÞðr0i;xÞ ¼ W ðincÞðr0i; r0i; xÞ; ði ¼ 1; 2Þ ð4Þ

is the spectral density of the field at pinhole i. We assume
the two spectral densities to be equal, i.e. SðincÞðr01;xÞ ¼
SðincÞðr02;xÞ ¼ SðincÞðxÞ.

It can be shown that the modulus of the spectral degree
of coherence is bounded:

0 6 lðincÞ
12 ðxÞ

��� ��� 6 1: ð5Þ

The lower bound corresponds to completely uncorrelated
light, whereas the upper bound corresponds to fully coher-
ent light. For all intermediate values the light is said to be
partially coherent.

The field at two observation points P(r1) and P(r2) on
screen B is, assuming small angles of incidence and diffrac-
tion, given by the formulae [3, Sec. 8.8]

Uðr1;xÞ ¼ K11U ðincÞðr01;xÞ þ K21U ðincÞðr02;xÞ; ð6Þ
Uðr2;xÞ ¼ K12U ðincÞðr01;xÞ þ K22U ðincÞðr02;xÞ; ð7Þ
where

Kij ¼ �
i
k

dA
eikRij

Rij
; ði; j ¼ 1; 2Þ ð8Þ

and dA denotes the area of each pinhole, Rij the distance
QiPj and k = 2p/k = x/c is the wavenumber associated
with frequency x, k being the wavelength and c the speed
of light.

It is convenient to use the customary paraxial approxi-
mations [3, Sec.8.8.1] for the factors Kij, viz.

K1j � �
idA
kR1j

eikRj e�ikr0
1
�̂rj � � idA

kD
eikRj e�ikdxj=D; ð9Þ

K2j � �
idA
kR2j

eikRj e�ikr0
2
�̂rj � � idA

kD
eikRj eikdxj=D; ð10Þ

where rj = (xj,yj,zj), Rj = jrjj and r̂j ¼ rj=R. It is to be noted
that the vector products appearing in Eqs. (9) and (10)
imply that the observed field is, in the vicinity of the x-axis,
essentially invariant in the direction perpendicular to the
line connecting the two pinholes, i.e. in the y-direction.
We will therefore restrict our analysis to observation points
along the x-axis. It should be noted however, that the field
behavior we discuss occurs along lines.

The cross-spectral density function of the field on screen
B is defined, strictly analogous to Eq. (2), as

W ðr1; r2; xÞ ¼ hU �ðr1;xÞUðr2;xÞi; ð11Þ
with its spectral degree of coherence given by the
expression

lðr1; r2; xÞ ¼
W ðr1; r2; xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sðr1;xÞSðr2;xÞ
p ; ð12Þ

where S(ri,x) = W(ri,ri;x) is the spectral density at P(ri).
The modulus of the spectral degree of coherence of the field
on the observation screen is again bounded, i.e.

0 6 jlðr1; r2; xÞj 6 1; ð13Þ
with the bounds having the same meaning as for lðincÞ

12 ðxÞ.
As mentioned before, we consider observation points

that lie on the x-axis. As a further specialization, we will
analyze pairs of points that are located symmetrically with
respect to the z-axis, i.e. we take

r1 ¼ ðx; 0;DÞ; ð14Þ
r2 ¼ ð�x; 0;DÞ: ð15Þ

On substituting from Eqs. (6) and (7) into Eq. (11) while
using the approximations (9) and (10) we then obtain for
the spectral density and the cross-spectral density the
expressions

Sðr1;xÞ¼2
dA

kD

� �2

SðincÞðxÞ 1þ lðincÞ
12 ðxÞ

��� ���cosðbþ2kdx=DÞ
n o

;

ð16Þ

Sðr2;xÞ¼2
dA

kD

� �2

SðincÞðxÞ 1þ lðincÞ
12 ðxÞ

��� ���cosðb�2kdx=DÞ
n o

;

ð17Þ
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Fig. 2. The position of four correlation singularities, i.e. the pairs of
observation points ð�xþ1 ; x

þ
1 Þ, ð�x�1 ; x

�
1 Þ, ð�xþ0 ; x

þ
0 Þ, and ð�x�0 ; x

�
0 Þ at which

the fields are completely uncorrelated, for selected values of R½lðincÞ
12 ðxÞ�.

The pairs are indicated by equally-colored bars. In panels (a) and (b) it is
seen how each half of a singularity moves towards a neighboring half. In
panel (c) the incident fields are fully coherent and co-phasal. The four
correlation singularities have annihilated and four dark lines have been
created at �x1, �x0, x0, and x1. In this example k = 632.8 nm, D = 2 m,
and 2d = 2 mm.
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W ðr1;r2;xÞ¼2
dA

kD

� �2

SðincÞðxÞ R½lðincÞ
12 ðxÞ�þcosð2kdx=DÞ

n o
;

ð18Þ

where b denotes the argument (phase) of lðincÞ
12 ðxÞ. We note

that S(r1,x) 5 S(r2,x) because, in general, lðincÞ
12 ðxÞ 6¼

lðincÞ
21 ðxÞ.

As is well known, there are no observation points where
the spectral density vanishes when Young’s experiment is
performed using partially coherent light. (However, this
is not necessarily true when three partially coherent beams
are made to interfere. [27–29]) In the present case this fol-
lows from the fact that j lðincÞ

12 ðxÞ j< 1 for partially coherent
light, and therefore the terms in braces in Eqs. (16) and (17)
have no zeros.

It is seen from Eqs. (16) and (17) that in the limit
R½lðincÞ

12 ðxÞ� ! 1, i.e. when the two incident fields are fully
coherent and co-phasal, the spectral density vanishes at
points

r ¼ ðxn; 0;DÞ; ð19Þ
where

xn ¼ �
pD
kd
ðnþ 1=2Þ; ðn ¼ 0; 1; 2; . . .Þ ð20Þ

It is to be noted that the complete destructive interference
that leads to the spectral density to be zero at these points
is a direct consequence of the use of the paraxial approxi-
mation [Eqs. (9) and (10)]. In reality, rather than phase sin-
gularities, there will be dark lines on the observation screen
with a vanishing but non-zero intensity.

In contrast to the field amplitude, the behavior of the cor-
relation functions is more subtle. There are pairs of observa-
tion points at which the fields are completely incoherent (i.e.
pairs of points for which W(r1,r2;x) = l(r1,r2;x) = 0) even if
the incident is partially coherent. A necessary and sufficient
condition for this to occur is for the term in braces in
Eq. (18) to become zero, i.e

cosð2kdx=DÞ ¼ �R½lðincÞ
12 ðxÞ�: ð21Þ

In view of the relation (5) it follows that Eq. (21) can al-
ways be satisfied. So we conclude that even if the two inci-
dent fields are partially coherent, there are pairs of
observation points r1 = (x,0,D), r2 = (�x,0,D) at which
the fields at frequency x are completely uncorrelated. Let
us now examine the behavior of the solutions of Eq. (21)
for the case that R½lðincÞ

12 ðxÞ� is positive. We can write the
positive solutions for the position x as

x�n ¼
pD
kd
ð�dþ nþ 1=2Þ; ðn ¼ 0; 1; 2; . . .Þ; ð22Þ

with d a positive constant that depends on the value of
R½lðincÞ

12 ðxÞ�, and the superscript ± indicating whether the
plus or minus sign is taken in front of d. If R½lðincÞ

12 ðxÞ�
tends to unity, d becomes smaller and the points xþn and
x�n , that are each part of two different correlation singular-
ities, namely the pairs of points ð�xþn ; x

þ
n Þ and ð�x�n ; x

�
n Þ,
move closer to each other. In the limit of the two incident
fields becoming fully coherent and co-phasal, the points xþn
and x�n merge and both correlation singularities disappear,
i.e.

lim
R½lðincÞ

12
ðxÞ�!1

xþn ¼ x�n ¼ xn: ð23Þ

In this limit the points �x�n become the dark lines given by
Eq. (19). Hence, we conclude that in the limit of the two
incident fields becoming fully coherent and co-phasal (i.e.
lðincÞ

12 ðxÞ ¼ 1), each half of the correlation singularity
ð�xþn ; x

þ
n Þ annihilates with a neighboring half of the corre-

lation singularity ð�x�n ; x
�
n Þ. The result of this ‘cross-pair’

annihilation of correlation singularities is a dark line at
xn. (Only in the idealized paraxial case are these dark lines
true zeros of intensity, i.e. phase singularities.)

An example is shown in Fig. 2 in which four coherence
singularities (i.e. four pairs of points) are shown for
selected values of the real part of the spectral degree of
coherence, R½lðincÞ

12 ðxÞ�. In panel (a) the equally-colored
pairs ð�x�0 ; x

�
0 Þ, ð�xþ0 ; x

þ
0 Þ, ð�x�1 ; x

�
1 Þ and ð�xþ1 ; x

þ
1 Þ each

form a coherence singularity, in other words lð�x�0 ; x
�
0 ;

xÞ ¼ lð�xþ0 ; x
þ
0 ; xÞ ¼ lð�x�1 ; x

�
1 ; xÞ ¼ lð�xþ1 ; xþ1 ; xÞ ¼ 0.

In panel b, the same four coherence singularities are shown
for a higher value of R½lðincÞ

12 ðxÞ�. It is seen that each half of
a correlation singularity, like e.g. x�0 , moves closer to a
neighboring half of another correlation singularity, in this
case xþ0 . In panel c, the limiting case of R½lðincÞ

12 ðxÞ� ¼ 1 is
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shown. Now the four correlation singularities have annihi-
lated, and four dark lines at �x1, �x0, x0, and x1 have been
created.
3. Dark lines and polarization singularities

In order to study polarization effects, we must use a vec-
tor description rather than the scalar description we used
thus far. The incident fields are assumed to be fully coher-
ent and linearly polarized. The two angles of polarization
are under an angle a with each other. Let the electric fields
at frequency x that are incident on the two pinholes be
given by the expressions

Eðr01;xÞ ¼ E expð�ixtÞx̂; ð24Þ
Eðr02;xÞ ¼ E expð�ixtÞ½cos ax̂þ sin aŷ�; ð25Þ

where t denotes the time, and x̂ and ŷ are unit vectors in the
x and y-direction, respectively, and E 2 R. The electric field
at an observation point P(r) is then, again assuming small
angles of incidence and diffraction, given by the formula

Eðr;xÞ ¼ K1Eðr01;xÞ þ K2Eðr02;xÞ; ð26Þ
with

K1 ¼ �
i
k

dA
eik r�r0

1j j
r� r01j j � �

idA
kD

eikRe�ikdx=D; ð27Þ

K2 ¼ �
i
k

dA
eik r�r0

2j j
r� r02j j � �

idA
kD

eikReikdx=D; ð28Þ

where r = (x,y,D), and R = jrj. On substituting from Eqs.
(24) and (25) into Eq. (26) while using the approximations
(27) and (28), we obtain for the field on the screen the
expression

Eðr;xÞ ¼ �i
EdA

kD
eiðkR�xtÞ½ðe�ikdx=D þ cos aeikdx=DÞx̂

þ sin aeikdx=Dŷ�: ð29Þ

If we define

a1 ¼ jExðr;xÞj; a2 ¼ jEyðr;xÞj; ð30Þ
d1 ¼ arg Exðr;xÞ; d2 ¼ arg Eyðr;xÞ; ð31Þ

then the Stokes parameters that characterize the state of
polarization of the field at P(r) can be expressed as [3]

S0 ¼ a2
1 þ a2

2; S1 ¼ a2
1 � a2

2; ð32Þ
S2 ¼ 2a1a2 cos d; S3 ¼ 2a1a2 sin d; ð33Þ

where d = d2 � d1. The first parameter, S0, is proportional
to the intensity of the field. The normalized Stokes vector
(s1,s2,s3), with si = Si/S0 and i = 1,2,3, indicates a point
on the Poincaré sphere. The north pole (s3 = 1) and south
pole (s3 = �1) correspond to circular polarization. Points
on the equator (s3 = 0) correspond to linear polarization.
All other points correspond to elliptical polarization. At
points above the equator (s3 > 0) the polarization is right-
handed, whereas as at points below the equator (s3 < 0)
the polarization is left-handed. The smallest angle between
the major axis of the polarization ellipse and the positive
x-axis equals

W ¼ 1

2
arctan

s2

s1

� �
: ð34Þ

Let us now study the behavior of the Stokes parameters in
the vicinity of a dark line (with near-zero intensity) that oc-
curs when the two directions of polarization are parallel,
i.e. when a = 0. In that case, the field everywhere is linearly
polarized along the x-direction (s1 = 1, s2 = s3 = 0). This
situation is depicted in Fig. 3a and b. Also, according to
Eqs. (32) and (29),

S0 ¼
2EdA

kD
cosðkdx=DÞ

� �2

: ð35Þ

Hence, we find as before that (albeit it only in the paraxial
approximation) the intensity vanishes at the points xn given
by Eq. (20). If we consider the field around the point x0 and
apply a Taylor expansion to Eq. (29) for small values of the
angle a, we find that

Exðx0;xÞ ¼ 0; ð36Þ

Eyðx0;xÞ ¼ i
aEdA

kD
: ð37Þ

Hence, on changing a from zero to a finite value, the
x-component of the electric field remains approximately
zero, whereas the y-component obtains a finite imaginary
value. Thus, the dark line at x0 evolves into a polarization
singularity, namely an L-line with s1 = �1. We also note that
the first term in the square brackets of Eq. (29) is approxi-
mately real near x0, whereas the second term is approxi-
mately imaginary. That implies that the Stokes parameter
s2, remains unaffected, i.e. close to zero, under small changes
in the angle a. To study the behavior of the parameter s3, it is
useful to expand the electric field given by Eq. (29) in the
circular polarization basis [30] as

e�ðr;xÞ ¼ �i
EdA

kD
ffiffiffi
2
p eiðkR�xtÞ

� e�ikdx=D þ cos aeikdx=D 	 i sin aeikdx=D
� 	

ð38Þ

¼ �i
EdA

kD
ffiffiffi
2
p eiðkR�xtÞ eikdx=De	ia þ e�ikdx=D

� 	
; ð39Þ

where e+ and e� are the amplitudes for the left-handed and
right-handed circular polarization basis, respectively. The
zeros of these quantities occur when

kdx�=D	 a ¼ �kdx�=Dþ p; ð40Þ
i.e. at positions

x� ¼ x0 �
aD
2kd

: ð41Þ

From Eq. (41) it follows that two C-lines of opposite hand-
edness are located symmetrically around x0. Thus we con-
clude that on changing the polarization angle a from zero
to a finite value, each dark line unfolds into a triplet of
polarization singularities, namely an L-line with two C-lines
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of opposite handedness on either side. It is to be noted that
according to Eq. (41) the polarization singularities move
away from each other when the angle a is increased, but
they remain in existence. In other words, they are structur-
ally stable. We emphasize that, since our system is approx-
imately invariant along the y-direction, we are dealing with
C-lines rather than the generically occurring C-points
[31–33]. Also, this unfolding is reminiscent of a similar
process in crystal optics [34,35].

An example of the unfolding process is shown in Fig. 3.
There the behavior of the Stokes parameters s1 and s3 in
the vicinity of the dark line at x0 is depicted for selected
values of the angle a. In calculating the plots the exact
expressions for the factors Kj are used, rather than their
approximate forms. In Fig. 3a and b, the case of two per-
fectly aligned directions of polarization (a = 0) is shown.
It is seen that s1 = 1 and s3 = 0 over the entire range,
i.e. the field is everywhere linearly polarized along the
x-direction. Fig. 3c and d show the state of polarization
when the two polarization directions are under an angle
a = 0.005 with each other. Precisely at the location of
the vanished dark line (at x0 = 0.316 mm) an L-line with
s1 � �1 has appeared. Also, the behavior of the Stokes
parameter s3 has drastically changed: to the left of x0 a
right-handed C-line (s3 = 1) has appeared, together with
a left-handed C-line (s3 = �1) to the right of x0. In
Fig. 3e and f the same Stokes parameters are shown for
a larger value of the angle a. It is seen that the triplet of
polarization singularities still occurs, but with the two
C-lines further separated from each other, as is suggested
by Eq. (41). Also, the behavior of the parameters in the
neighborhood of the former dark line has become
smoother. In all numerical calculations it was found that
js2j < 0.01.

The effects predicted in this paper can be produced, for
example, by using a setup described by Thompson and
Wolf [36] that produces a field with a variable spectral
degree of coherence. By adding two polarizers, the angle
a between the two directions of polarization of the incident
fields can be controlled.

4. Conclusions

An analysis of Young’s interference experiment for the
case when two correlated beams of identical linear polariza-
tion are used was presented. It was found that correlation
singularities are always present. When the two beams
become fully coherent and co-phasal, the correlation singu-
larities annihilate in a cross-pair wise manner, and dark
lines are created. On changing the polarization directions



6 T.D. Visser, R.W. Schoonover / Optics Communications 281 (2008) 1–6
with respect to each other, each dark line unfolds into a trip-
let of polarization singularities.
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