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Abstract

The scattering from bodies exhibiting a non-local dielectric response is investigated within the weak scattering limit. A quasi-
homogeneous approximation is introduced and investigated. A qualitative change in the scattering pattern of scattered radiation
is seen to emerge with the onset of a non-local response.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction ity, exciton resonances, anomalous skin effects, super-
conductivity) it is necessary to go beyond the macro-
scopic framework and include local-field phenomena.
The dielectric tensor now becomes a two-point quan-
tity €(r, r’; w) relating the microscopic dielectric dis-
placement field to the prevailing electric fielé& in a
spatially non-local manner, i.e.,

Theoretical investigations of the scattering of elec-
tromagnetic fields from condensed matter media often
are carried out on the basis of macroscopic electrody-
namics. In the macroscopic approach, local-field ef-
fects are neglected, and for non-magnetic media the
linear electromagnetic response may be characterized
by the local dielectric tens@(r, w), a complex quan-
tity which, as indicated, can depend on position and

angular frequency. In certain cases, (e.g., optical activ- 10 determinee(r, r’; ), quantum mechanical calcu-
lations, based, for example, on the density matrix for-

malism, usually have to be carried out. If the medium
* Corresponding author. under study can be assumed to possess translational
E-mail address: rschoono@uiuc.ed(R.W. Schoonover). invariance in space, then the dielectric tensor can only

D(r, ) =eo/d3r€(r,r/;a))E(r/,w). (1)
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depend on the difference betweenand r’; that is
E(r,r'’; w) = &(r —r’; ). With this simplification, the
constitutive relation in Eq1) takes the local form
Dk, ®) = egé (K, w)E(K, w) (2)

in the wave-vector domain. Media exhibiting a non-
local response of the simple form given in ER) are
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derived that included reflection and transmission co-
efficients, as well the aforementioned mode-coupling
conditions. The approach in R¢&] was applied to a
spherical geometry, but a set of mode-coupling condi-
tions that are specific to this geometry was not found
[6].

The papers in Ref$1-6] made use of an isotropic

called spatially dispersive and these media can supportfrequency and wave-number dependent dielectric func-

the propagation of monochromatic plane waves.

It is clear that the translational invariance crite-
rion is broken near surfaces and interfaces, and if sur-
facel/interface phenomena are important, the reduction
from Eq. (1) to Eq. (2) most often cannot be em-
ployed. There are some situations where the reduction
is meaningful even in the presence of surfaces, thus,
in a free electron-like metallic object, E) is an ad-
equate starting point for the analysis provided (i) the

potential barrier at the surface can be considered to be

infinitely high (no photoemission), and (ii) the conduc-
tion electrons are scattered specularly on the surface.
In the context of electromagnetic wave scatter-
ing, the spatial dispersion phenomenon was inves-
tigated in a paper published by Pekar in 1983.
Pekar noted that spatial dispersion might give rise
to the existence of propagating longitudinal electro-
magnetic waves. The excitation of a longitudinal field
mode complicates the solution of the electromagnetic
boundary problem somewhat. Many investigated this
problem, citing an apparent mismatch between the de-
grees of freedom in the problem and boundary condi-
tions to constrain therjf2—4]. Ostensibly, the problem
with boundary conditions in spatially dispersive me-
dia arises as a result of the reduction from Eb.to
Eq. (2) also in the surface region. For objects of finite
extent, the integro-differential equation for the elec-
tric field which comes out of the Maxwell equation
with the constitutive relation in Eq1) does not trans-
form in any simple way when going to momentum
(wave-vector) space. For material with a strictly local
response, the-field scattering is governed by a differ-
ential equation and relatively simple numerical meth-

tion of the form

2
4mxa)o

©)

ew =€+ —"""7"7"——.
(@) 0 w(z) —w?—ilw
By assuming that the non-local response emerges near
a resonance in the exciton bandat= w, and that
k >~ 0, the effective mass approximatidmg ~ fiw, +

%, may be made and yields the expression
X
K, )= -, 4
ek, w) 60+k2—u2(w) (4)

where x = 4namjweh71, and p2(w) = m;f(a)z -
wf +1wI") (hw,)~L. The constitutive relation is then

X

By transformation to the spatial domain, it is seen that

D(r, w) = 0E(r, ) + 4neo/d3r/ n(r,r', EI, w),

(6)
where the integral is taken over all space and
X glir=r'lu
r,r'y= - 7
n(r.r) Aeg |r — 1| )

It may be seen immediately that the susceptibility
given in Eq.(7) describes an object infinite in extent.

This basic problem may be addressed by simply de-
manding that a support constraint be imposed in the
spatial domain. Of course this leads to a modifica-
tion of the dispersion relation and calls into question
the basic approach to deriving the particular form in

ods are available for solving the scattering problem. Eg. (7). It may also be noted that this susceptibility
When theapproximation €(r,r’; w) = €(r — r’; w) is implies that the material constituents exhibit very long
used right up to the boundary, it is not necessary to in- range quantum correlations and so seems unreason-
troduceextra boundary conditions as long as one care- able on these grounds. One might expect that even near
fully addresses certain mode-coupling relationships an exciton resonance, long range correlations would
that are specific to the geometry of the probl&h In be limited by thermal decorrelation over length scales
Ref.[5], a result for a semi-infinite slab geometry was determined by the temperature.
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Rather than considering the problem first in mo-
mentum space and then trying to fix the boundary
conditions, one may consider the spatial domain to
be of the fundamental importance. Thus, in this Let-
ter, Eq.(6) will be taken as a starting point. A model
for n(r,r’) will be considered that is consistent with
an object of finite extent and exhibits more rapid fall-
off of the non-local response in the bulk material. The

effects of an emergent non-local response on the ra-

diation pattern of light scattered from such an object
will be investigated. An approximation, valid as the

length-scale of the non-local response becomes small

compared to the object size, and that makes calcula-
tion of the scattered field for arbitrary objects more
tractable, is introduced.

2. Scattering model

Maxwell's equations together with E(p) yield an
integro-differential wave equation,

VxVxE —k§E=4nk3/d3r’n(r, rME), (8)
\%

wherekg = w?l0e0. The material is chosen to possess

a bulk non-local response that is Gaussian in form and
homogeneously distributed throughout a sphere of ra-

diusb so that

72
n(r,r/)z(z';%exr(—' 5 'l )B(r)B(r) ©)
JT o
where
B(r)={é’ oy (10)

describes the distribution of material in the scatterer.
The scattered field is determined through the normal
method of Green’s dyadics. By writing the total elec-

tric field as

EM)=ED 1) +E®(r) (11)

and inserting this into Eq(8), the scattered field is
seen to be given by the expression

(5)(r)—k2/d3r”Go(r r”)/d3r/n(r” rE@r).

Y (12)
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This field necessarily satisfies the radiation condition
and the boundary conditions, continuity of the tangen-
tial components of the electric and magnetic fields. For
objects of finite extent, the integral equati(#?) has

no known exact analytic solutions even for cases of
high symmetry. A series solution for small values of
the scattered field (the Born series) may be obtained
by standard perturbative methods. To first order, the
total field in Eq.(12)is replaced by the incident field.
In the far-field the dyadic Green'’s function takes the
asymptotic forn{7],

ikor

e
Go(r r'y ~ (1 —t)—

Ikof'-l”
9

(13)

wheret is the unit vector pointing in the direc-
tion. The incident field may be decomposed into plane
waves and so without loss of generality we consider
the incident field to be an arbitrary plane wave,

adkT,

Thus Eq.(12) approximately reduces to the form

/ d3r” —ikof-r”

EQ(r) = (14)

ikor

EO(r) =k50 — if)a

1%
/d3r'n(r” e dkr’, (15)
\%4
which may be rewritten
gkor
EC(r) = k§(a— (7 - &) ——7i(—kof, k), (16)

where 7(k1, ko) is the double Fourier transform of
n(ry,r2). For the choice of; in this Letter, the Fourier
transform cannot be computed analytically due to the
truncation of the Gaussian by the blocking functions.
The response was simulated for a variety of values of
o andb.

As can be seen above, the change in the size pa-
rameter results in a marked change in the scattering
profile. Beginning with the local response (a) and pro-
ceeding to cases that exhibit increasing non-locality
(b)—(d), Fig. 1 shows an appreciable amount of back
scattering as the size parameter increases. Also, as the
size parameter becomes on the order of the radius of
the sphere, oblique scattering emerges. This is a sig-
nificant change from the forward scattering normally
caused by spheres of this size with local response.
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Fig. 1. Normalized scattering by a sphere of radius 101 and size
parameter (ay =0, (b) 0 = 1A, (c) o = 34, (d) o = 61. Note:
forward scatteringq = 0) is normalized to 1.

3. Quasi-homogeneous approximation

The non-local response may be written

n(r.r)=ns(r —r"HS(r,r), (17)
where

(r r’)—Lex <_|r—r’|2) (18)
ns(r, = (27.[)30.3 pi 202
and
S(r,r'y=B(r)B(). (19)

Then,

Ir+r’| [r+r’|
r.r'y=RB = )

This gives a quasi-homogeneous approximation

n(r,r’y=ns(r —r’)SQ<r J;r )

As shown in Eq.(16), the scattering amplitude
for the non-local scatterer is proportional to the dou-
ble Fourier transform ofy(r,r’). Under the quasi-
homogeneous approximation,

K + kof

(21)

(22)

fi(—kof, k) = ﬁa( )SQ(k — ko). (23)
This result is general to any(r, r’) that can be factor-
ized or approximated by E§22). Finding the scatter-
ing amplitude to lowest order reduces to the calcula-
tion of two Fourier transforms.

In Fig. 2, the results of three simulations are shown.
In (a)—(c) the numeric result calculated with the exact
form of the susceptibility, Eq(9), is shown. In (d)-
(f), the quasi-homogeneous approximation is made.
The non-local susceptibility, simulated with either
method, gives rise to a significant increase in scat-
tering in the backward direction as the non-locality
increases. The quasi-homogeneous result compares
favorably with the numeric result in terms of predict-
ing the distribution of back-scattered light. However,
the quasi-homogeneous result predicts the amplitude
of the back-scattering to be about three times larger
than the numerical result in the final simulation (c),
(f). The range of validity for the quasi-homogeneous
approximation corresponds approximately to the local
limit: the size parameter is very small and the sphere
size is large in relatiof8]. Thus, as the non-locality
becomes more pronounced, the quasi-homogeneous
approximation breaks down.

It can be seen that the susceptibility is in part due to the 4. Concluding remarks

form of the non-locality and in part due to the density

of non-local material. IfB(r) is a broad function of
its arguments compared tg, then it can be replaced
with

B(r)%B(W)%B(|r J;r |).

(20)

In cases where a local, macroscopic model of an
object is insufficient to describe its interaction of the
material with an applied electromagnetic field, a non-
local model for the constitutive relations is necessary.
This mesoscopic model takes into account quantum
correlations within the material. When the object is of
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Fig. 2. Normalized scattering by a sphere of radius 8 for (a) the numeric result fos = 0.005; (b) the numeric result fos = 0.05x;

(c) the numeric result fos = 0.54; (d) the quasi-homogeneous approximationdos 0.0054; (e) the quasi-homogeneous approximation for
o =0.05%; (f) the quasi-homogeneous approximationdos 0.51. Note: forward scatteringd(= 0) is normalized to 1. In this close-up view
of the back-scattering, the outer ring represents0.05 on the normalized scale.

finite extent, or boundary effects are important, a mo- termine the form of the non-local response function
mentum space description of the interaction by a spa- ns(r —r’).
tial dispersion relation is unsatisfactory. Rather, a co-
ordinate space integral equation describes the interac-
tion, including the boundaries. As has been shown, the Acknowledgements
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quasi-homogeneous approximation is a valid substi-
tute for determining the scattered field.
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