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Inverse scattering theory for optical coherence tomography (OCT) is developed. The results are used to produce
algorithms to resolve three-dimensional object structure, taking into account the finite beam width, diffraction,
and defocusing effects. The resolution normally achieved only in the focal plane of the OCT system is shown to
be available for all illuminated depths in the object without moving the focal plane. Spatially invariant reso-
lution is verified with numerical simulations and indicates an improvement of the high-resolution cross-
sectional imaging capabilities of OCT. © 2006 Optical Society of America

OCIS codes: 170.4500, 110.6960, 110.6880, 110.1650, 100.6950, 100.6890.
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. BACKGROUND AND INTRODUCTION
ptical microscopy has long relied on the design of physi-

al optical elements to produce images of samples. How-
ver, with the advent of scanning modalities such as con-
ocal microcopy, near-field scanning optical microscopy,
nd optical coherence tomography (OCT), image quality is
etermined as much by algorithm development as the
uality of optical elements. Data synthesis and image for-
ation algorithms have been crucial in other nonoptical

maging modalities such as synthetic aperture radar
SAR) where improved algorithms have dramatically in-
reased the performance of such systems. For example,
he modeling of physical parameters has led to enhanced
odes of strip-map and spotlight SAR imaging.1,2

OCT is a high-resolution noncontact optical imaging
odality that can image highly scattering tissues at

epths of up to 3 mm, depending on the tissue type. It is a
ange-finding technique that relies on optical scattering
n biological specimens to form micrometer-scale cross-
ectional images.3–5 Maintaining a relatively uniform
esolution within the sample has been a concern, since
pparent morphology affects the way an object is catego-
ized. For example, a biological specimen with precancer-
us cellular changes may go unnoticed if the cellular pre-
ursors lie in an imaging region having a reduced
esolution,6,7 and a nonuniform resolution may result in
isdiagnosis.8

In OCT, optical hardware such as adaptive optics or
xicon lenses have been utilized to increase the trans-
erse resolution over a large range of depths in a
pecimen.9,10 Such optical techniques and hardware can
elp generate images with high transverse resolution
ver relatively large scanning depths. Dynamic focusing
r focus tracking is useful for en face imaging, imaging in
lanar sections, with optical coherence microscopy,4,11 or
or cross-sectional imaging, where the tight focus is
canned at some depth in the specimen.12 Dynamic focus-
ng techniques in a system design may require specific
ardware modifications that can be difficult to control in
1084-7529/06/051027-11/$15.00 © 2
eal time. Some authors have designed algorithms that
mprove the axial resolution by compensating for the non-
inear dispersion between data in the temporal domain
nd the spatial domain.13–15 Of these methods, some are
sed to correct for the limited bandwidth of the laser spec-
rum, while others correct for the dispersion induced by
he optical system or the specimen. However, modeling of
he physical processes has been limited to a one-
imensional quasi-monochromatic model.16,17 These mod-
ls do not take into account the relationship between data
cquired at different transverse positions of the beam, the
nite transverse extent of the beam, or properties of the
edium. Others have tried to correct for artifacts pro-

uced by refraction, sample positioning, and the scanning
rocedure.18 Furthermore, some authors have detailed a
heoretical model of OCT including a lens and a hetero-
yning model.19

In this paper, we develop a mathematical model con-
ecting the acquired OCT signal with the three-
imensional object structure, taking into account the fi-
ite beam width and focusing. We then solve an inverse
cattering problem and determine the structure of the im-
ged object from the data available. In solving the inverse
roblem, we compensate for spectrum-limited resolution
n the axial direction as well as the Gaussian beam blur-
ing in an optimal (least-squared error) sense.

. DESCRIPTION OF OPTICAL COHERENCE
OMOGRAPHY

n OCT, a narrow, well-collimated beam of light is di-
ected into a sample. The returned, or backscattered,
ight is collected. The time of flight to scatterers within
he sample is determined by coherence gating the re-
urned signal. A Michelson interferometer is used to mea-
ure temporal coherence in a time-domain OCT system;
ee Fig. 1(a). The light arriving at a photodetector shifts
etween states of constructive and destructive interfer-
nce when the mirror in the reference arm is displaced.
006 Optical Society of America
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he collected signal is an interferogram, i.e., the cross-
orrelation signal, or the intensity versus difference in
eference and sample path lengths, and is given by the ex-
ression

S�r0,t� =� dt�Er�t��Es
*�r0,t� − t�, �2.1�

here Er�t� and Es�r0 , t� are the reference and sample
lectromagnetic fields in a scalar model for the received
ignal S�r0 , t�. An interferogram for a single perfect reflec-
or, such as a mirror, is displayed in Fig. 1(b).

The envelope of the interferogram is the point response
unction in the axial direction of the system and corre-
ponds directly to the axial resolution of the system. Axial
esolution is directly proportional to the optical coherence
ength of the light and thus inversely proportional to the
pectral bandwidth of the source. It is often convenient to
ork with the Fourier transform of Eq. (2.1) with respect

o time, which is given by

S�r0,�� = Er���Es
*�r0,��. �2.2�

his signal S�r0 ,�� can be measured directly using
pectral-domain OCT.20,21

The sample under investigation may be known to con-
ist of a semitransparent background with an index of re-

ig. 1. (a) Typical Michelson interferometer for use in OCT. BS
s the beam splitter, PS is the sample path, PR is the reference
ath, and h is the distance traveled by the reference mirror. (b)
nterferogram of an impulse response for an OCT system with a
ow-coherence source having a Gaussian spectrum and a full
idth at half-maximum (FWHM) coherence length Lc.

ig. 2. Geometry of a Gaussian beam for low- and high-
umerical-aperture (NA) lenses. These geometries are con-
rasted with the assumption of a collimated axial OCT scan. b is
he confocal parameter, w0 is the beam radius at the focus, and Lc
s the coherence length of the source.
raction n. In the medium then, the wavenumbers k are
elated to the frequencies � by the dispersion relation
���=�n /c. It will be advantageous to work with data
hat are a function of k rather than �. To preserve energy
ontent of the signal, the data must also be multiplied by
he Jacobian of the transformation,

Sk�r,k� = S��r,����k/���−1. �2.3�

OCT images are formed by assembling adjacent low-
umerical-aperture axial scans to generate two-
imensional, cross-sectional images.4,5 Figure 2 illus-
rates the common assumption among OCT researchers
hat the low-numerical-aperture lens is a tool for generat-
ng collimated planar wavefronts. This assumption ne-
lects the characteristics of the incident Gaussian beam.
herefore a standard OCT system will exhibit transverse
esolution that is not constant, but depends on depth and
he focal properties of the lens. This apparent loss of reso-
ution, or distortion, does not necessarily result in a loss
f signal power. By characterizing this distortion, it is
ossible to correct it and produce images that are com-
ensurate with ideal beam collimation. Lenses of a
igher numerical aperture (NA) are able to focus a beam
o a relatively smaller spot size in the focal plane. How-
ver, high-NA lenses produce a more pronounced distor-
ion of features out of the focal plane. Hence, high-NA
enses are good for optical sectioning in parallel planes (en
ace) such as in multiphoton or confocal microscopy.22

enses with a lower NA are usually used for OCT imag-
ng, since they produce a relatively uniform transverse
esolution over the axial (depth) scan. Furthermore, the
onfocal parameter of the lens (distance around the focus
here the beam profile has a relatively uniform width) is
enerally chosen to closely match the penetration depth of
particular type of tissue.
Many OCT images exhibit poor transverse resolution

utside of the confocal region, manifested as curved and
lurred features imaged in those areas. If a relatively
igh-NA objective is used, where the axial scan length ex-
eeds the length of the confocal region (twice the Rayleigh
ange), then there is a more pronounced apparent loss of
ransverse resolution outside of the confocal region. The
oal of this work is to digitally reduce the distortion out-
ide of the confocal region by solving the inverse problem
ased on the physics of the scattering process. By solving
he inverse problem we are able to produce images with
ore sharply defined features. More importantly, the so-

ution resolves closely adjacent scatterers, even those that
roduce interference in the raw OCT image. This is a cru-
ial advantage of inverse scattering over simple deconvo-
ution of a real-valued point-spread function.

. MATHEMATICAL DESCRIPTION OF THE
XPERIMENT
s discussed in the previous section, to simplify the model

or OCT data acquisition, several assumptions are gener-
lly made about an OCT system. These assumptions do
ot take into account the shape of wavefronts produced by

ens optics, the spectrum of the source, or unbalanced dis-
ersion in the media. The ideal instrument produces a
erfectly collimated beam of zero width at every point in
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he sample. However, real instruments produce a field
ore accurately described as a Gaussian beam of finite
aist size and divergence.
We assume a linear relationship between the sample

usceptibility � and the measured signal S:

S = K�, �3.1�

here K is an operator characterizing the OCT system.
uch a linear model is implicitly the result of taking the
rst Born approximation for the scattering. OCT is espe-
ially amenable to the first Born approximation since con-
ributions from multiple scattering will tend to be delayed
y a longer time and thus may fall outside the coherence
ime of the reference. As depths of penetration increase,
ontributions from multiple scattering in the shallow re-
ion increase.

As previously discussed, there will exist a nontrivial re-
ationship between frequencies � and real-valued wave-
umbers k in the sample described by a dispersion rela-
ion �=kc /n���. Moreover, the field produced by the
ource is an ergodic random process with power spectral
ensity A2�k�. A�k� is assumed to be band-limited such
hat 0�kmin�k�kmax. The signal S is understood to be
he result of ensemble averaging over all realizations of
he source. In each realization of the source, the beam
rojected into the sample is Gaussian and at each fre-
uency has beam waist W0 given by the expression

W0�k� =
�

k
, �3.2�

here �=� /NA, and NA is the numerical aperture of the
utput lens of the system (see Fig. 3). The normalized
eam profile in the waist plane is given by the expression

g0�r,k� =
1

2�W0
2�k�

e−r2/�2W0
2�k��, �3.3�

here r is the position vector transverse to the beam axis.
he beam, displaced by a vector r0, may be written in

erms of the plane-wave decomposition with transverse
patial-frequency coordinates q,

g�r� − r0,k� =
1

�2��2 � d2q eiq·�r�−r0�g̃�q,z� − z0,k�,

�3.4�

here

g̃�q,z,k� = eikz�q�zg̃0�q,k�, �3.5�

kz�q� = �k2 − q2, �3.6�

g̃0�q,k� = e−q2�W0
2�k��/2 = e−q2��2/2k2�. �3.7�

e exclude surface effects with the use of a coherence
ate. The backscattered field in the first Born approxima-
ion is given by the expression
U�r,r0,k� = A�k��
V

d3r�G�r�,r,k�g�r� − r0,k���r��,

�3.8�

here r0 is the transverse position of the beam, G�r� ,r ,k�
s the free-space form of the Green’s function.

The signal S�r0 ,k� coupled back into the fiber is derived
n Appendix A and is given by

S�r0,k� =�
�

d2rU�r,r0,k�g�r − r0,k�, �3.9�

here � is the aperture in the output plane of the optical
ystem.

Substituting Eq. (3.8) for U�r ,r0 ,k�, we obtain

S�r0,k� = A�k��
�

d2r�
V

d3r�G�r�,r,k�g�r� − r0,k���r��

�g�r − r0,k�. �3.10�

he photodetector measures the interferometric cross cor-
elation between the reference and sample signals as a
unction of the relative time delay between the two, as de-
cribed in Section 2. The reference field is well character-
zed and so S may be determined from the measurements.
hus it is assumed that S is the observable.
The forward problem may be cast such that K in Eq.

3.1) takes a diagonal form. The Green’s function
�r� ,r ,k� may be written as a superposition of plane
aves,

G�r�,r,k� =
1

�2��2 � d2q eiq·�r−r��G̃�q,z − z�,k�.

�3.11�

ithout loss of generality, we take z=0 to be the measure-
ent plane. Taking the Fourier transform of S�r0 ,k� with

ig. 3. (Color online) Illustration of the notation and relation to
he scattering and measurement process. The field emerges from
he fiber and is projected by a thin lens in the z=z� plane to pro-
uce a beam with normalized profile g�r�−r0 ,k�. The field inter-
cts with the sample to produce, from each point r� in the
ample, a scattered field U�r ,r0 ,k�=��r��G�r� ,r ,k�. This field is
hen collected and projected back into the fiber to produce the
ignal S�r ,k�.
0
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espect to the transverse components of r0, with spatial-
requency coordinates Q such that S�r0 ,k�
�2��−2�d2Q eiQ·r0S̃�Q ,z0 ,k�, yields

S̃�Q,z0,k� = A�k� � d2q� dz�eikz�q+Q��z�−z0�e−ikz�q�z0

�G̃�q,− z�,k�g̃0�q + Q,k�g̃0�− q,k��̃�Q;z��,

�3.12�

here �̃�q ;z� is the Fourier transform of � with respect to
he transverse components of r. The angular spectrum
mplitude of the free-space Green’s function is given by
he expression23

G̃�q,z − z�,k� =
i2�

kz�q�
e−ikz�q��z−z��, �3.13�

ith kz�q� given by Eq. (3.6). The signal coupled back into
he fiber now becomes

S̃�Q,k� = A�k� � d2q� dz�
i2�

kz�q�
eikz�q�z�eikz�q+Q��z�−z0�e−ikz�q�z0

�g̃0�q + Q,k�g̃0�− q,k��̃�Q;z��. �3.14�

otice that kz�q� is an even symmetric function so that
z�q�=kz�−q�. By separating terms and transforming
↔−q, the relation may be expressed as

S̃�Q,k� = A�k� � d2q� dz�
i2�

kz�q�
eikz�q��z�−z0�g̃0�q,k�

� eikz�Q−q��z�−z0�g̃0�Q − q,k��̃�Q;z��. �3.15�

he signal may now be written more compactly as

S̃�Q,k� = i2�A�k� � dz�H�Q,z�,k��̃�Q;z��, �3.16�

here

H�Q,z,k� =� d2qkz
−1�q�eikz�q��z−z0�g̃0�q,k�

�eikz�Q−q��z−z0�g̃0�Q − q,k�. �3.17a�

n the paraxial approximation, the factor 1/kz�q��1/k so
hat the following simplification is made:

H�q,z,k� = k−1�f̃ � f̃��q,z,k�, �3.17b�

here f̃�q ,z ,k�=eikz�q��z−z0�g̃0�q ,k�, and � denotes convolu-
ion in q.

Using Parseval’s theorem, Eq. (3.16) reduces to a rela-
ively simple relationship,

S�r0,k� = i2�A�k�k−1� d3r f�r − r0,k�2��r�, �3.18�

here

f�r,k� = �2��−2� d2q eiq·rf̃�q,z,k�. �3.19�

aking use of Eq. (3.7) we find that
f̃�q,z,k� = ei�z−z0��k2−q2
e−q2��2/2k2�. �3.20�

dditionally, in the Fresnel zone, when kmin�q, the ap-
roximation for the phase can be used:

�k2 − q2 � k −
1

2

q2

k
, �3.21�

o that

f̃�q,z,k� = ei�z−z0�ke−q2��2/2k2+i�z−z0�/2k�. �3.22�

hus the kernel H takes the form

H�Q,z,k� = �f̃ � f̃��Q,z,k�

=
1

4�
��2

k2 + i
�z − z0�

k �−1

�e2i�z−z0�ke−Q2/2��2/2k2+i�z−z0�/2k�. �3.23�

Equation (3.16) may be seen to be a type I Fredholm in-
egral equation24 and the kernel of the operator K is ap-
arent:

S̃�Q,k� = i2�A�k� � dz�d2Q�	�2��Q − Q��

�H�Q�,z�,k��̃�Q�;z��. �3.24�

ubstituting �̃�Q� ;z��= �1/2���d
 ei
z��5 �Q� ;
�, we obtain
representation for K:

˜ �Q,k�=K�̃̃�Q�;
� = iA�k� � d
d2Q�	�2��Q − Q��

�H̃�Q�,− 
,k��5 �Q�;
�, �3.25�

here H̃�Q ,
 ,k�= �k /2�e−iz0
e�2/k�
−2k�u�−
+2k−Q2 /4k�.
he Heaviside unit step function is denoted by
�
�= 	 1 
�0

0 
�0 
.

. INVERSE PROBLEM
t may be seen in Eq. (3.25) that the Fourier transform of
he observed signal is simply related to the Fourier trans-
orm of the object. Thus it might be expected that the ob-
ect structure may be simply recovered. However, the ob-
erved signal will generally be noisy, band limited, and
ampled. Generally the inverse problem is ill-conditioned,
nd possibly ill-posed. Thus K−1 is not expected to exist.
ather than find a solution of S=K� for �, a suitable sub-
titute, the minimum norm solution of the least-squared
rror problem, will be accepted. That is, an approximate
olution will be sought �+ that is the minimum norm
inimize of �S−K�+�2, where � · � denotes the L2�R2� or

2�R2� norm, whether the data are continuous or discrete,
espectively. This solution may be written

�+ = �K*K�−1K*S = K+S, �4.1�

here K+ is the pseudoinverse of K, K* is the adjoint of K,
nd K*K is the normal operator. In the likely event that
he normal operator K*K has a nontrivial null space,
K*K�−1 is understood to be the inverse of K*K restricted



t
p
t
g
a
u

F

b
t

T

I
(
m
i
a
c
E

A
A
s
s
b
c
f

w

a

t

f
i
G
o
r
p

T

T

a

T

K

s
t

B
A
i
a
t
u

Ralston et al. Vol. 23, No. 5 /May 2006/J. Opt. Soc. Am. A 1031
o the orthogonal complement to the null space. For this
articular problem, it will be seen that the normal opera-
or is approximately diagonal so that K*S gives a very
ood (qualitative) estimate of � and �K*K�−1 acts merely
s a filter. It is thus useful to define the quantity �A, the
nfiltered reconstruction, such that

�A = K*S. �4.2�

rom Eq. (3.25) it may be seen that

�̃A�Q�;
�� = − i� dk d2Q	�2��Q − Q��A�k�

�H̃*�Q,− 
�,k�S̃�Q,k�. �4.3�

The normal operator, whose inverse acts as a filter, may
e constructed from Eq. (3.25) and its kernel is given by
he expression

K*K�Q�,
,Q�,
�� =� dk A�k�2H̃*�Q�,− 
,k�

�H̃�Q�,− 
�,k�	�2��Q� − Q��.

�4.4�

hus an exact solution for the kernel is given by

K*K�Q�,
,Q�,
�� =
1

4 � dk A2�k�k2eiz0�
�−
�e−�2/k�
�+
+4k�

�u�
� + 2k −
Q�2

4k �u�
 + 2k −
Q�2

4k �
�	�2��Q� − Q��. �4.5�

n practice, the operators K* and K*K as specified by Eqs.
4.3) and (4.5), while accurate to the extent of the approxi-
ations made, do not have sparse kernels. Thus comput-

ng the pseudoinverse, Eq. (4.1) will require computation-
lly intensive numerical evaluation of �K*K�−1. In certain
ases, great simplification can be achieved by evaluating
q. (4.5) approximately.

. Thin Samples
s noted above, K*K may be difficult to invert. When the
ample is thin, specifically when the sample thickness is
mall compared to �2 /k, an important simplification may
e achieved. The expression for H�Q ,z ,k� in Eq. (3.23)
ontains a slowly varying factor and a rapidly oscillating
actor:

H�Q,z,k� = I�Q,z,k�ei
�Q,z,k�, �4.6a�

here

I�Q,z,k� =
1

4�
��2

k2 + i
�z − z0�

k �−1

e−Q2/2��2/2k2� �4.6b�

nd


�Q,z,k� = 2�z − z0�k −
Q2�z − z0�

4k
. �4.6c�

The rapidly oscillating component ei
�Q,z,k� accounts for
he diffraction of the Gaussian beam, which results in dif-
raction effects outside of the focal plane. The slowly vary-
ng component I�Q ,z ,k� accounts for the finite NA of the
aussian beam and the attenuation of the signal outside
f the confocal region. If the sample is thin so that the
ange of z−z0 is much less than �2 /k, then to a good ap-
roximation

I�Q,z,k� = Ik�Q,k� =
k2

4��2e−Q2/2��2/2k2�. �4.6d�

hus H̃�Q ,−
 ,k� reduces to

H̃�Q,− 
,k� = Ik�Q,k�eiz0
	�
 + 2k − Q2/4k�. �4.7�

hus Eq. (3.25) just becomes

S̃�Q,k� = iA�k� � d
d2Q�	�2��Q + Q��Ik�Q,k�

�	�
 − �Q�2

4k
− 2k��eiz0
�5 �Q�;
�, �4.8�

nd Eq. (4.3) becomes

�5 A�Q�;
�� = − i� dkd2Q	�2��Q + Q��A�k�Ik�Q,k�

�	�k −
1

2
�
�

2
+��
�

2 �
2

+
Q*2

2
��

��2 +
Q�2

4k2�−1

eiz0�2k−Q�2/4k�S̃�Q,k�. �4.9�

he normal operator is diagonal,

*K�Q�,
,Q�,
��

= 	�2��Q� − Q��	�
 − 
���
��2 +

Q�2

4k2�−1

A�k�2Ik�Q�,k�2�
k=1/2�
/2+��
/2�2+Q�2/2�

,

�4.10�

o that the pseudoinverse solution, �+=K+S, is given by
he expression

�5 +�Q�,
� =� dkd2Q	�2��Q + Q��

�	�k −
1

2
�


2
+��


2�
2

+
Q�2

2
��

� �A�k�Ik�Q�,k��−1eiz0�2k−Q2/4k�S̃�Q,k�.

�4.11�

. Narrowband Illumination
n alternate approximation can be made that will result

n a sparse kernel, but more accurately accounts for the
ttenuation of the reconstructed susceptibility away from
he focal plane. The factor I�Q ,z ,k� consists of the prod-
ct of two terms. The term ��2 /k2+ i�z−z � /k�−1/ �4�� ac-
0
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ounts for the attenuation (and not the blurring) of the re-
onstructed object outside of the confocal region. The
ther term, e−Q2�2/�4k2�, accounts for the transverse resolu-
ion by attenuating transverse frequencies (because it is
ependent on Q). The calculation is greatly simplified by
btaining a separable form for I�Q ,z ,k�, where I�Q ,z ,k�
Iz�z�Ik�Q ,k�. This may be accomplished by setting

�2 /k2+ i�z−z0� /k�−1/ �4�����2 /kk0+ i�z−z0� /k�−1/ �4��,
here the �2 /k2 term has been changed to �2 /kk0 and k0

s the center frequency of the illumination. Such an ap-
roximation is acceptable if the range of k is much
maller than the value of k0. I�Q ,z ,k� may now be fac-
ored as indicated with Iz�z�= ��2 /k0+ i�z−z0��−1 and

k�Q ,k�=k e−Q2�2/�4k2� / �4��. Making use of this approxi-
ation, Eq. (3.24) becomes

S̃�Q,k� = i2�A�k� � dz�d2Q�	�2��Q + Q��Ik�− Q�,k�

�
�̃�Q�;z��Iz�z���. �4.12�

oting that all of the z dependence is in the expression
nside the brackets, we now create an alternate definition
f �5 �Q� ;
� defined implicitly by �̃�Q� ;z��Iz�z��
�1/2���d
 ei
z��5 �Q� ;
�. Given this new definition, we
nd that

H̃�Q,− 
,k� = Ik�Q,k�eiz0
	�
 + 2k −
Q2

4k� . �4.13�

iven this new definition of �5 �Q� ;
� and the fact that
qs. (4.7) and (4.13) are identical, Eqs. (4.8)–(4.10) are

he same for both the thin-sample and narrow-bandwidth
pproximations. Thus, in regions far from the focal plane,
e may correct for the signal attenuation by normalizing

he reconstructed susceptibility by Iz�z�.
Now the action of the pseudoinverse is evident. The ad-

oint K* is a backpropagation operator that resamples the
ata back to the original coordinates in frequency space.

ig. 4. Sampling lattice of the spatial frequencies in the object
pace �Q ,
� on a uniform grid of the spatial frequencies in the
ignal space �Q ,k�. The curves shown are lines of constant 
.
he normal operator K*K is a space-invariant convolu-
ion. Therefore, in principle, the resolution of the recon-
tructed object should be spatially invariant whether the
bject is in focus or not in focus.

The operators K and K* effect a coordinate transforma-
ion in the Fourier space. Figure 4 displays the resulting
esampling lattice pattern. The unfiltered reconstruction
A may be obtained from the signal S by interpolated re-
ampling of S from the grid in Fig. 4 back to a Cartesian
ystem.

The resampling scheme described above may be seen as
nalogous to the Fourier slice theorem. The Fourier slice
heorem states that the Radon transform is inverted by
esampling Fourier projections from polar to Cartesian
oordinates. In a similar manner, the adjoint operator K*

esamples the Fourier space of the projections along the
arabolic curves in Fig. 4.
The normal operator K*K almost certainly will have a

ull space and small singular values due to the fact that
he system does not pass certain frequencies, thus regu-
arization must be used to stabilize the solution. One pos-
ibility for regularization is a Tikhonov regularized
olution,25

�5̂ = �K*K + �L*L�−1K*S̃, �4.14�

here S̃ is the OCT signal with noise and the caret de-
otes the regularized solution. The operator L is chosen to
btain a weighted filter, but may simply be taken to be
he identity. Additional details regarding the choice of a
egularization parameter are discussed in the following
ection.

. NUMERICAL SIMULATION
n this section, the potential of the solution of the inverse
cattering problem is explored through numerical simula-
ion. A synthetic object is created as a collection of point-
ike scatterers. Synthetic forward OCT data are gener-
ted from the synthetic object. Gaussian white noise is
dded to the synthetic OCT data to create a specific
ignal-to-noise ratio (SNR). In the implementation of the
nverse scattering solution, Tikhonov regularization is
sed to obtain a stable solution as seen in Eq. (4.14).
able 1 summarizes the steps used in this simulation.
In the simulation of the formulated problem, the

ample is taken to consist of sub-resolution-sized point
catterers randomly distributed throughout the simu-
ated imaging area of 1024 �m by 1024 �m. An ideal im-
ge of the original object can be seen in Fig. 5(a). The

Table 1. Steps in the Simulations Using the
Thin-Sample Approximation

. Construct ��r0 ;z�.

. Calculate S�r0 ,k� from ��r0 ;z� using Eq. (4.8) (Table 2).

. Calculate St�r0 , t� from Sk�r0 ,k� using Eq. (2.3) (Table 3).

. Add Gaussian white noise to St�r0 , t� using Eq. (5.3).

. Calculate Sk�r0 ,k� from St�r0 , t� using Eq. (2.3) (Table 4).

. Calculate �A�r0 ;z� from S�r0 ,k� using Eq. (4.9) (Table 5).

. Calculate �̂�r0 ;z� from �A�r0 ;z� using Eq. (4.10) (Table 6).
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ource spectrum A2�k� is Gaussian and has a center wave-
ength of 830 nm and a bandwidth of 340 nm. The simu-
ated lens has a focal length of 10 mm, a spot size of 4 �m,
nd a confocal parameter of 30 �m corresponding to a NA
f 0.2. These parameters correspond to a NA and band-
idth larger than usually encountered in OCT systems to
nable exploration of the full potential of the algorithm to
ork in regions of large distortion.

Table 2. Steps in the Calculation of S„r0,k… from
�„r0;z… Using the Thin-Sample Approximation

. FFT ��r0 ;z� along the transverse and axial directions to

btain �̃̃�Q ;
�.

. Interpolate �̃̃�Q ;
�, which is spaced uniformly in 
 using the
elation 
=Q2 /4k−2k, to find samples spaced uniformly in k.

. Apply a filter, multiplying by Ik�Q ,k�=k2 / �4��2�e−Q2�2/�4k2�

nd iA�k� to find S̃�Q ,k�.

. IFFT S̃�Q ,k� along the transverse direction Q to obtain
�r0 ,k�.

Table 3. Steps in the Calculation of St„r0,t… from
Sk„r0,k…

. Interpolate samples on Sk�r0 ,k� (which is uniformly sampled
n k) using the dispersion relation k��� to find S��r0 ,��


�k /���−1 with samples uniformly spaced in �.
. Multiply function S��r0 ,��
�k /���−1 with Jacobian �k /�� to
nd S��r0 ,��.
. IFFT S��r0 ,�� along the axial direction to find St�r0 , t�.

Table 4. Steps in the Calculation of Sk„r0,k… from
St„r0,t…

. FFT St�r0 , t� along the axial direction to find S��r0 ,��.

. Multiply S��r0 ,�� with Jacobian ��k /���−1 to find S��r0 ,��
�k /���−1.
. Interpolate samples on S��r0 ,�� ��k /���−1 (which is
niformly sampled in �) using the dispersion relation k��� to
nd samples of Sk�r0 ,k�, which is uniformly spaced in k.

Fig. 5. (a) Original object model of point scatte
The steps involved in the forward simulations are de-
cribed in Table 2. The thin-sample approximation is used
o generate an OCT signal Sk�r0 ,k� from the synthetic ob-
ect ��r0 ;z�. The fast Fourier transform (FFT) of the two-
imensional susceptibility of the object is given by
5 �Q ;
�, where Q is the transverse and 
 is the axial
patial-frequency coordinate. The forward integral opera-
or K, from Eq. (3.1) and implicit in Eq. (4.8), is used to
enerate S̃�Q ,k� from �5 �Q ;
�. Explicitly, an interpolator
ust be chosen to make a coordinate transformation from

oordinates that are spaced uniformly in 
 to coordinates
hat are spaced uniformly in k. We used cubic B-spline in-
erpolation preceded by sinc interpolation, which is used
o double the number of data points and increase the cu-
ic B-spline accuracy.26 Next, multiplying by the square
oot of the spectrum A�k� ���=340 nm� with cutoffs at
/�max and � /�min simulates the coherence gating, which
efines the axial resolution for the system. Finally, the
actor Ik�Q ,k�=k2 e−Q2�2/�4k2� / �4��2� is applied to obtain
˜ �Q ,k�. The inverse FFT (IFFT) of S̃�Q ,k� is taken in the
ransverse direction to recover the OCT signal S�r0 ,k�.

The method for calculating St�r0 , t�, as seen in Fig. 5(b)
rom Sk�r0 ,k� is described in Table 3. For simplicity, we
ssume the dispersion relation k=k���. Table 4 shows the
alculation of Sk�r0 ,k� from St�r0 , t�.

Gaussian white noise is added to the signal St�r0 , t� to
imulate two different SNRs, 35 and −5 dB. A noisy ver-
ion of the simulated digitized signal is generated,

Sn = St�r0,t� + n, �5.1�

here n is a random variable from a set of independent,
dentically distributed Gaussian noise samples with prob-
bility distribution

P�n� =
1

�n�2�
e−n2/�2�n

2�. �5.2�

he SNR is the ratio of the mean squared signal �S
2 across

he whole data set to the variance of the noise �n
2 accord-

ng to the following equation:

SNR�dB� = 10 log10��S
2/�n

2�. �5.3�

hus

nd (b) simulated OCT image with SNR=35 dB.
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�n = ��s/10SNR/10. �5.4�

he standard deviation of the noise �n was determined for
SNR of 35 dB, which is less than the typical dynamic

ange for data contained within an OCT image, and an
mage was also created with an SNR of −5 dB, which is
oisier than typical for OCT so as to demonstrate the ro-
ustness of the algorithm. Testing algorithms with ex-
remes of SNR serves to evaluate the algorithm perfor-
ance and determine useful regularization parameters.
he OCT images generated from the forward model and
he addition of Gaussian white noise are shown in Figs. 5
nd 6. The field of view for the simulated OCT images is
runcated on the left and right before reconstruction to in-
lude the effects of scatterers that lie outside of the im-
ged coherence volume. These scatterers scatter into the
eld of view due to the finite beam width.
Table 5 describes the procedure, using the thin-sample

pproximation, for generating the unfiltered solution
A�r0 ;z� from S�r0 ,k�. The FFT of the two-dimensional
ignal S�r0 ,k� is given by S̃�Q ,k�, where Q is the trans-
erse wave vector. The adjoint operator K*, seen in Eq.
4.2) and implicit in Eq. (4.9), is used to generate the un-
ltered solution �5 A�Q ;
� from S̃�Q ,k�. Specifically, we
ultiply S̃�Q ,k� with A�k�, Ik�Q ,k�, and the Jacobian �2

Fig. 6. (a) Original object model of point scatte

Fig. 7. (a) Unfiltered reconstruction and (b) Tikho
Q2 /4k2�−1. Then to solve for �5 A�Q ;
�, an interpolator is
hosen to make a coordinate transform from coordinates
hat are spaced uniformly in k to coordinates that are
paced uniformly in 
. The IFFT of �5 A�Q ;
� is taken in
he axial and transverse directions to recover the unfil-
ered object susceptibility �A�r0 ;z�.

The Tikhonov method is used to regularize the solution.
igures 7 and 8 show the unfiltered solution �A�r0 ;z� and

he regularized �̂�r0 ;z� solutions for each SNR value. The
alculation of the regularized solution �̂�r0 ;z� from the
nfiltered solution �A�r0 ;z� using the thin-sample ap-
roximation is outlined in Table 6. The FFT of �A�r0 ;z� is

Table 5. Steps in the Calculation of �A„r0;z… from
S„r0,k… Using the Thin-Sample Approximation

. FFT S�r0 ,k� along the transverse direction r0 to obtain
˜ �Q ,k�.

. Apply a filter to S̃�Q ,k�, multiplying by

k�Q ,k�=k2 e−Q2�2/�4k2� / �4��2�, −iA�k�, and �2+Q2 /4k2�−1.
. Interpolate samples uniform in k to samples uniform in 


sing the relation k= �
 /2+��
 /2�2+Q2 /2� /2 to find �̃̃A�Q ;
�.

. IFFT �̃̃A�Q ;
� along the transverse and axial directions to
btain �A�r0 ;z�.

nd (b) simulated OCT image with SNR=−5 dB.

gularized solution, �=60, for SNR values of 35 dB.
rers a
nov re
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aken in the transverse and axial directions to obtain ob-
ect susceptibility in spatial-frequency coordinates
5 A�Q ;
�. The regularized inverse of the normal operator

K*K+�I�−1 is used to generate �5̂ �Q ;
� from �5 A�Q ;
�. To
hoose an appropriate regularization parameter, �, the
-curve method23 is typically used to balance the weights
f the seminorm �Lx�2 and the residual norm �Ax−b�2.
everal values for the regularization parameter were ex-
lored, and a value �=60 was found to balance appropri-
tely the norms when L is taken to be the identity.
maller values for � cause the artifacts above and below
he scatterers to be emphasized. The regularized filter
nd Ik�Q ,k�2 are multiplied with �5 A�Q ;
�. Finally, the
FFT is taken in both the axial and the transverse direc-
ions to yield �̂�r0 ;z�.

. CONCLUSION
n this work, a comprehensive model for OCT has been
resented for which forward, adjoint, normal, and inverse
perators were formulated. These results suggest that ac-
urate linear estimation of the susceptibility of an object
rom OCT data is possible given an accurate model for the
robe beam. Using the regularized least-squares solution,
e have obtained in simulation a reconstruction of under-

ying object structure with spatially invariant resolution
rom simulated OCT images covering regions outside of
he focus. Two- and three-dimensional OCT data can be
sed to resolve objects outside of the confocal region with
inimal loss of resolution. High-resolution details can be

ecovered from outside of the confocal region. The model

Table 6. Steps in the Calculation of �̂„r0;z… from
�A„r0;z… Using the Thin-Sample Approximation

. FFT �A�r0 ;z� along the transverse and axial directions to

btain �̃̃A�Q ;
�.

. Apply a filter to �̃̃A�Q ;
�, multiplying by ��+Ik�Q ,k�2A�k�2

/ �2+Q2 /4k2��−1, where Ik�Q ,k�2= �k2 e−Q2�2/�4k2� / �4��2��2 and
= �
 /2+��
 /2�2+Q2 /2� /2.

. IFFT the filtered �̃̃A�Q ;
� along the axial and transverse
irections to yield �̂�r0 ;z�.

Fig. 8. (a) Unfiltered reconstruction and (b) Tikho
resented accounts for the effects of a finite beam width,
he source spectrum, as well as defocus, diffraction, and
ispersion effects.
A number of directions for further research are appar-

nt. Vignetting attributable to the finite pupil of any re-
listic optical system might be taken into account in the
orward model. Background structure of the sample, if
nown a priori, may be included through modification of
he Green’s function. For example, if the medium is
nown to have a layered structure, then prior knowledge
ay be included in the forward and inverse problems by

eplacing the free-space Green’s function with one for
tratified media. Furthermore, polarization effects might
e taken into account by rederiving the results making
se of a vector electric field and dyadic Green’s function.
ost importantly these results must be confirmed by ex-

eriment. Efforts are ongoing, with promising early re-
ults.

PPENDIX A
he field at the output face of the fiber is given by

�Ui�r��z=0=A�k�
�r�. The field propagates to the plane z
z� where a thin lens is located. To the left of the z=z�

lane, the field is given by the expression

Ui�r� = A�k� � d2r�P�r,r��
�r��, �A1�

here P�r ,r�� is the free-space diffraction kernel. The
ens is assumed to be a thin phase screen with the trans-
er function given by L�r�, see Fig. 9. Thus just to the
ight of the lens �z=z�� the field is given by Ui�r�
A�k�L�r��d2r�P�r ,r��
�r��. The field is focused into a
aussian beam with beam waist in the z=z0 plane. The
eld is given by the expression Ui�r�=A�k�g�r�. Thus the
ormalized beam profile is also given by the expression

g�r� =�
z�=z�

d2r�L�r���
z�=0

d2r�P�r�,r��
�r��P�r,r��.

�A2�

The coupling of light back into the fiber is now derived
n terms of the normalized waist plane field g �r� given in

gularized solution, �=60, for SNR values of −5 dB.
0
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qs. (3.3) and (A2). Consider a field that propagates back
oward the fiber and is given in some plane � by Us�r� on
he right side of the lens. The field may be propagated to
he lens where it acquires the factor L�r�. The field inci-
ent on the fiber face �Us�r��z=z0

will then be given by the
xpression

�Us�r��z=0 =�
z�=z�

d2r�P�r,r��L�r���
�

d2r�P�r�,r��Us�r��.

�A3�

he signal coupled into the single-mode fiber is then
iven by the inner product of this field [Eq. (A3)] and the
ber mode 
�r�,

S =�
z=0

d2r 
*�r�Us�r�. �A4�

quations (A3) and (A4) may be combined to yield

S =�
z=0

d2r
*�r��
z�=z�

d2r�P�r,r��L�r��

��
�

d2r�P�r�,r��Us�r��. �A5�

he field emerging from the fiber is assumed to be a di-
erging Gaussian beam with a beam waist at z=0. Thus
*�r�=
�r�. By comparing Eqs. (A2) and (A5) and noting

hat P�r� ,r��=P�r� ,r��, it may be seen that

S =�
�

d2r g�r�Us�r�. �A6�

his is the expression for the signal used in the paper.

ig. 9. (Color online) Illustration of the coupling of light (a) out
f and (b) into the fiber.
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