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Abstract
The Lie method and Noether’s theorem are applied to the double wave equations
for the correlation functions of statistical optics. Generalizations of the
deterministic conservation laws are found and seen to correspond to the usual
laws in the deterministic limit. The statistically stationary wave equations
are shown to contain fewer symmetries than for the nonstationary case, so
the corresponding conservation laws differ from the conservation laws of the
nonstationary, two-time, wave equations.

PACS numbers: 02.20.Sv, 42.25.Kb, 42.25.Bs

1. Introduction

At optical frequencies, the electric field oscillates too rapidly to be measured directly. Instead,
detectors produce a signal proportional to the time-averaged intensity of the field. The field
itself must often be considered to be stochastic, and most observable quantities are related
to the second-order moments of the field: the spectral density, the cross-spectral density, the
autocorrelation function and the cross-correlation function. The cross-spectral density and
the cross-correlation function obey double wave equations, the Wolf equations [1]. These
correlation functions may thus be propagated without knowledge of the underlying random
fields.

A symmetry of an equation is a transformation which does not alter the set of solutions
of the equation. In this work, a Lie transformation refers to a continuous infinitesimal
transformation, and a Lie symmetry refers to a Lie transformation which is a symmetry of an
equation. The symmetry group of a differential equation is the largest group of continuous
transformations infinitesimally close to the identity element which leave the set of solutions of
the equation unchanged [2]. The symmetry group can be specified by a group of infinitesimal
generators which define a Lie algebra [2]. The procedure to find the symmetry group [2–4]
is called the Lie method [5]. Symmetries of an equation are closely related to conservation
laws. Noether’s theorem [6–8] provides a method for finding conservation laws of differential
equations arising from a known Lagrangian L and having a known Lie symmetry.
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The study of symmetries and conservation laws of the equations of electromagnetics
has played an important part in the advancement of physics. For example, special relativity
was discovered by considering the symmetries of the equations of electromagnetics [9, 10].
Lorentz observed that Maxwell’s equations [11] in free space were invariant upon a rotation
involving the coordinates of both position and time [12]. This transformation is now known
as a Lorentz transformation. Poincaré and Einstein generalized this concept to Maxwell’s
equations with currents and charges [13]. This analysis led to an unintuitive explanation for
the relative lengths and motion of objects traveling near the speed of light.

Symmetry analysis was also used to identify the relationship between the force exerted
by a charged object on another charged object and the force exerted by a current-carrying
wire on another current-carrying wire. Not long after Maxwell’s equations were published,
Heaviside observed that they are invariant upon the discrete symmetry transformation E → B
and B → −E, and he explored the implications of this duality between the electric and
magnetic fields [14]. Larmor and Rainich, however, realized that this relationship is
described by a continuous symmetry which is more general than the relationship found
by Heaviside [5, 9, 15]. Fushchich and Nikitin [5, 9] generalized this symmetry to
a family of related symmetries and invariants for Maxwell’s equations with and without
sources.

More recently, conservation of energy, which is a direct result of the time translation
symmetry of the optical wave equations, has been used to explore variations in the spectrum
of light upon propagation. It was observed that the cross-spectral density of light may vary
upon propagation even in free space [16–19], and this observation raised questions about
whether or not this change violated conservation of energy in the statistical setting [20].
Energy conservation was shown to be valid and has been studied thoroughly in both scalar
statistical [20–23] and vector statistical [24, 25] descriptions of optics. Aside from being of
fundamental scientific interest, implications of energy conservation in scattering of stochastic
fields have been shown to have applications in imaging [26–28]. Energy conservation is
just one conservation law of the second-order correlations of stochastic fields. Others,
including momentum, angular momentum and their generalizations, may be identified. Many
of these conservation laws or invariants may be discovered through the study of the continuous
symmetries of the Wolf equations.

There are three main results in this paper. First, the symmetry group of the wave equations
of scalar statistical optics is derived. Second, the corresponding conservation laws are found
using Noether’s theorem. Third, changes in the symmetry group of the wave equation that result
when the optical signal is assumed to be stationary are discussed. Conservation laws found
include the well-studied conservation laws for energy, momentum and angular momentum as
well as conservation laws corresponding to inversion and dilatation symmetries. The general
two-time wave equations are found to contain inversion symmetries which are not present
in the stationary wave equations. This paper is organized as follows. In this section, the
wave equations of scalar statistical optics and the procedure to find the symmetry group of
an equation are discussed. In section 2, the symmetry group of the wave equations of scalar
statistical optics is derived. In section 2.2, the symmetry group of the wave equations is derived
for stationary optical signals. Conservation laws are discussed in section 3. Conclusions and
future directions are discussed in section 4.

1.1. Equations of scalar statistical optics

In scalar wave optics, light is described by a deterministic complex analytic scalar field, ϕ(r, t),
which obeys a wave equation
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∇2ϕ − 1
c2

∂2ϕ

∂t2
= 0. (1)

The scalar statistical description incorporates the effects of random fluctuations of optical
sources or random fluctuations introduced when light propagates through the atmosphere
[1, 29]. Detectors cannot respond at optical frequencies, and instead time-averaged quantities
are measured, usually the time-averaged second moment of the field. The cross-correlation
#(r1, r2; t1, t2), also called mutual coherence, of a random function is defined [29]:

#(r1, r2; t1, t2) = 〈ϕ∗(r1, t1)ϕ(r2, t2)〉, (2)

where the angle brackets denote ensemble averaging. In Cartesian coordinates, r1 =
x1ax1 + y1ay1 + z1az1 and ∇1 = ∂x1 ax1 + ∂y1 ay1 + ∂z1 az1 . The cross-correlation for fields
propagating in free space with no sources obeys a pair of wave equations, called the Wolf
equations [1],

∇2
β#(r1, r2; t1, t2) = 1

c2

∂2

∂t2
β

#(r1, r2; t1, t2), (3)

for β = 1 and β = 2. These wave equations govern the propagation of the cross-correlation.
A random process is stationary if all of its probability densities are symmetric with respect

to t through the origin of time, and it is defined to be stationary in the wide sense if all of
its second order averages depend on τ = t1 − t2, the difference in times, but not t1 and t2
separately [29]. The cross-correlation of a stationary random process is written as

#(r1, r2, τ ) = 〈ϕ∗(r1, t + τ)ϕ(r2, t)〉. (4)

If the random process is also ergodic, the ensemble average may be replaced by a time average.

1.2. Lie method

Consider a set of equations with a set of independent variables χi labeled by i, for example,
the six components of r1 and r2 and the time coordinates t1 and t2, and one dependent complex
variable #. A continuous transformation may be denoted as χi → A(θ)χi and # → A(θ)#

where θ is a continuous parameter. For a transformation infinitesimally close to the identity,
the mapping A(θ) may be expressed by a Taylor expansion [4]

A(θ) = 1 + θU + 1
2θ

2U 2 + · · · . (5)

The quantity U is called an infinitesimal generator, and it has the form

U = η#∂# + η#∗∂#∗ +
∑

i

ξ i∂χi . (6)

The functions ξ i, η# and η#∗ may depend on the independent and dependent variables.
By exponentiation, the corresponding transformation may be found from an infinitesimal
generator. The transformation of each independent variable is given by [4]

χi → eθUχi (7)

which can be written as χi → χi(1 + θξ i) in the limit of small θ . The transformation of the
dependent variable is given by

# → eθU# (8)

which can be written as # → # (1 + θη#) in the limit of small θ , and similarly, η#∗ = η∗
#

represents the transformation of the complex conjugate of #. The infinitesimal generators
corresponding to all symmetries form a group [4]. For example, equation (1) contains a
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translation symmetry for each independent variable. Time translation, which can be denoted
by t → t + θ , is a symmetry because the set of solutions of equation (1) is unaltered when t is
shifted by the constant parameter θ. The corresponding infinitesimal generator is U = ∂t . The
infinitesimal transformation can be recovered by exponentiation of the infinitesimal generator
eθ∂t t = t + θ.

The procedure to find the symmetry group of an equation is based on the idea that a
symmetry does not alter the set of solutions of the equation. When an equation is acted
upon by a symmetry described by the infinitesimal generator U, the sets of solutions of the
transformed and original equations are the same. Additionally, all higher derivatives of the set
of solutions of the transformed and original equations are unchanged. The nth prolongation of
the generator pr(n)U is a generalization of the generator U that incorporates the transformations
of the derivatives of the dependent variables in a manner consistent with the transformation of
the dependent variable. All infinitesimal symmetries of an equation * = 0 must satisfy

pr(n)U* = 0, (9)

for all positive integers n [2]. This infinitesimal criterion of invariance, also called the
symmetry criterion, can often be solved for the generators corresponding to all Lie symmetries
of the original equation, and this procedure can be directly generalized to find the symmetry
group of sets of differential equations [2].

The prolongation of an infinitesimal generator in the form of equation (6), with one
dependent complex variable, is given by the expression [2]

pr(n)U = U +
∑

J

ηJ
#

∂

∂ (#)J
+ ηJ

#∗
∂

∂ (#∗)J
, (10)

where the index J runs over the set composed of the independent variables, products of two
independent variables and all products of up to n independent variables, and here the subscript
J denotes partial derivative. For example, #xy = ∂2#

∂x∂y
. Functions ηJ

# are defined [2] by

ηJ
# = d

dJ

(

η# −
∑

i

ξ i ∂#

∂χi

)

+
∑

i

ξ i ∂

∂χi
(#)J , (11)

where the index i runs over the independent variables. For a differential equation of order k,
the kth prolongation pr(k)U acting on the equation will be equal to all prolongations of order
greater than k. Thus, for a second-order differential equation, only the second prolongation is
needed.

The symmetry group of equation (1) was first identified in [30], and the symmetry group of
Maxwell’s equations was first identified in [31]. Both [30, 31] were written before Lie’s work
on continuous symmetries. The Lie method is used to find the symmetry group of the wave
equation with one dependent and three independent variables in [2]. In [5, 9], the Lie method
is used to find the symmetry group, and symmetries of Maxwell’s equations are discussed
in more detail for waves propagating both in free space and in the presence of sources. The
symmetry group of equations (3) is studied here.

Not all symmetries of an equation are Lie symmetries or can be found by the Lie method.
Discrete transformations cannot be represented by infinitesimal generators and are not Lie
symmetries. Certain discrete, as opposed to continuous, symmetries of the wave equations
of scalar and vector statistical optics have been discussed in [24, 29, 32–34]. Continuous
symmetries which can be described by generators in the form of equation (6) but for which the
functions ξ i and η# depend on derivatives of the variables are called dynamical symmetries
[2, 3], and they will not be considered in this paper. Nongeometrical symmetries can
be described by infinitesimal generators but are not continuous [5, 9]. For example, a
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nongeometrical symmetry may involve taking a Fourier transform, performing an infinitesimal
translation, or other continuous transformation, in the frequency domain, then taking an inverse
Fourier transform. Nongeometrical symmetries will also not be considered here.

1.3. Noether’s theorem

Noether’s theorem provides a systematic means to obtain conservation laws from Lie
symmetries of two types: variational symmetries and divergence symmetries. Not all
conservation laws can be found from Noether’s theorem [5], yet in many cases it provides a
direct procedure for finding conservation laws. A Lie symmetry is called variational if and
only if its infinitesimal generator satisfies [2]

pr(n)UL +
∑

i

L
∂ξ i

∂χi
= 0, (12)

for an equation or set of equations with independent variables χi and Lagrangian L. A Lie
symmetry is called a divergence symmetry if it satisfies [2]

pr(n)UL +
∑

i

L
∂ξ i

∂χi
=

∑

i

∂Bi

∂χi
, (13)

for some vector B =
∑

i Biai , where ai denotes the unit vector in the direction of increasing
χi . Noether’s theorem states that for both variational and divergence symmetries, the
corresponding conservation laws can be found. For a variational symmetry, the conservation
law has the form [2]

∑

i

∂Pi

∂χi
= 0, (14)

for a vector P =
∑

i Piai and for a divergence symmetry, the conservation law has the form
∑

i

∂

∂χi
(Pi − Bi) = 0. (15)

In both cases, for an equation with one dependent complex variable, the vector P is given
by [2]

Pi = η#

∂L

∂
(

∂#
∂χi

) + η#∗
∂L

∂
(
∂#∗

∂χi

) + ξ iL −
∑

j

[

ξ j ∂#

∂χj

∂L

∂
(

∂#
∂χi

) + ξ j ∂#
∗

∂χj

∂L

∂
(
∂#∗

∂χi

)
]

. (16)

Noether’s theorem has been used to find the conservation laws corresponding to all types
of Lie symmetries of equation (1) and of Maxwell’s equations [2, 5, 9, 35, 36]. Also, certain
conservation laws for the sets of wave equations for the cross-correlations in scalar statistical
optics [20, 21, 29] and vector statistical optics [24, 25, 34] have been studied though not
systematically nor exhaustively.

2. Lie analysis

In this section, the symmetry group of the two-time wave equations for the cross-correlation,
defined by equation (2), is derived using the Lie method described above. Subsequently, the
symmetry group of the differential equations of the cross-correlation for the stationary case,
defined in equation (4), is derived. It is seen that a reduction in the number of independent
variables results in a reduction of symmetries of the differential equations.
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2.1. Two-time wave equations

The pair of equations for the cross-correlation of an optical signal described in scalar statistical
optics, given by equation (3), can be written as

*β = ∇2
β# − 1

c2

∂2#

∂t2
β

= 0, (17)

where β = 1 and 2. These equations have one dependent complex variable # and eight
independent variables which are given by r1, r2, t1and t2. In this section, the Lie method
is used to find the infinitesimal generators of the symmetry group of the set of equations.
The generators have the form of equation (6). The symmetries of equations (17) are derived
without considering boundary conditions. For a symmetry to be present in an application, it
must be present in both the underlying equations and the boundary conditions. For this reason,
the symmetries present in any application will be a subset of the symmetries found here.

The symmetry criteria for equations (17) can be found using equation (9),

pr(n)U*β = η
xβxβ

# + η
yβyβ

# + η
zβzβ
# − 1

c2
η

tβ tβ
# = 0. (18)

The functions η
xβxβ

# , η
yβyβ

# , η
zβzβ
# and η

tβ tβ
# are defined by equation (11), and a related equation

holds for η#∗ . Using the Lie method, it is possible to determine all functions ξ i and η#

that satisfy the criteria of equations (18). The symmetry criteria can only be satisfied when
∂ξ i

∂#
= ∂2η#

∂#2 = 0. Thus, the symmetry criteria may be written as
(

∇2
βη# − 1

c2

∂2η#

∂t2
β

)

+ 2
(

∇β# · ∇β

∂η#

∂#
− 1

c2

∂#

∂tβ

∂η#

∂#∂tβ
+ ∇β#

∗ · ∇β

∂η#

∂#∗ − 1
c2

∂#∗

∂tβ

∂η#

∂#∗∂tβ

)

−
∑

i

[

2
(

∇βξ
i · ∇β

∂#

∂χi
− 1

c2

∂2#

∂tβ∂χi

∂ξ i

∂tβ

)
+

∂#

∂χi

(

∇2
βξ

i − 1
c2

∂2ξ i

∂t2
β

)]

= 0,

(19)

where the index i runs over the independent variables.
First, consider transformations for which all ξ i = 0. In this case, equations (19) are of

the form of equation (17), so the symmetry criteria can be satisfied by η# = #. All linear
equations contain the symmetry # → # +θ# which corresponds to the infinitesimal generator
U = #∂# + #∗∂#∗ [2]. The symmetry criteria can also be satisfied when η# = γ where γ is
any solution of equations (17) written as a function of the independent variables. Additionally,
the symmetry criteria can be satisfied by U = #∗∂# + #∂#∗ .

Next, consider transformations for which η# = η#∗ = 0. From the term ∇βξ
i · ∇β

∂#
∂χi −

1
c2

∂2#
∂tβ∂χi

∂ξ i

∂tβ
, the functions ξxβ , ξ yβ , ξ zβ and ξ tβ cannot depend on the variables xβ̄, yβ̄ , zβ̄ and tβ̄

where β̄ = 1 when β = 2 and where β̄ = 2 when β = 1. Furthermore, the following
relationships must hold:

∂ξyβ

∂xβ

+
∂ξxβ

∂yβ

= ∂ξzβ

∂xβ

+
∂ξxβ

∂zβ
= ∂ξyβ

∂zβ
+

∂ξzβ

∂yβ

= 0, (20)

∂ξ tβ

∂xβ

− 1
c2

∂ξxβ

∂tβ
= ∂ξ tβ

∂yβ

− 1
c2

∂ξyβ

∂tβ
= ∂ξ tβ

∂zβ
− 1

c2

∂ξzβ

∂tβ
= 0 (21)

and
∂ξxβ

∂xβ

= ∂ξyβ

∂yβ

= ∂ξzβ

∂zβ
= ∂ξ tβ

∂tβ
. (22)
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Using equations (20) and (22),

∂2ξxβ

∂y2
β

= − ∂2ξyβ

∂xβ∂yβ

= −∂2ξxβ

∂x2
β

. (23)

Similar relationships hold for the other independent variables, and

∂2ξ i

∂x2
β

= ∂2ξ i

∂y2
β

= ∂2ξ i

∂z2
β

= ∂2ξ i

∂t2
β

= 0. (24)

Since equations (17) describe a pair of equations, the above conditions apply when β = 1 and
β = 2. Using these conditions, the infinitesimal generators with η# = 0 may be found. The
infinitesimal generators of equations (17) include eight translations,

U = ∂χi , (25)

where χi stands for each independent variable. The generators include six rotations,

U = xβ∂yβ
− yβ∂xβ

, U = xβ∂zβ − zβ∂xβ
, U = zβ∂yβ

− yβ∂zβ , (26)

and six hyperbolic rotations,

U = tβ∂xβ
+

1
c2

xβ∂tβ , U = tβ∂yβ
+

1
c2

yβ∂tβ , U = tβ∂zβ +
1
c2

zβ∂tβ . (27)

The generators also include two dilatations,

U = rβ · ∇β + tβ∂tβ . (28)

These generators include rotations among the coordinates of rβ and the coordinates of rβ̄
separately but not rotations between the coordinates of rβ and rβ̄ together.

Only cases where some or all of the ξ i along with η# and η#∗ are nonzero remain to be
considered. The following generators satisfy the symmetry criteria:

U =
(
x2
β − y2

β − z2
β + c2t2

β

)
∂xβ

+ 2xβyβ∂yβ
+ 2xβzβ∂zβ + 2xβtβ∂tβ − 2#xβ∂# − 2#∗xβ∂#∗ ,

(29)

U = 2xβyβ∂xβ
+

(
−x2

β + y2
β − z2

β + c2t2
β

)
∂yβ

+ 2yβzβ∂zβ + 2yβtβ∂tβ − 2#yβ∂# − 2#∗yβ∂#∗ ,

(30)

U = 2xβzβ∂xβ
+ 2yβzβ∂yβ

+
(
−x2

β − y2
β + z2

β + c2t2
β

)
∂zβ + 2zβtβ∂tβ − 2#zβ∂# − 2#∗zβ∂#∗ ,

(31)

U = 2xβtβ∂xβ
+ 2yβtβ∂yβ

+ 2zβtβ∂zβ +
1
c2

(
x2
β + y2

β + z2
β + c2t2

β

)
∂tβ − 2#tβ∂# − 2#∗tβ∂#∗ .

(32)
The symmetries corresponding to these infinitesimal generators are known as inversion
symmetries [2]. Equations (29)–(32) specify eight inversion generators for β = 1 and
β = 2. Inversion symmetries are members of the conformal group [5, 30]. By definition
[37], a conformal transformation is a transformation which preserves the angles between the
coordinate axes.

It may be seen that the infinitesimal generators for the two-time wave equations,
equations (17), are the generators for the wave equation of the deterministic field, equation (1),
repeated over both sets of the four coordinates xβ, yβ, zβand tβ . In the next section, it is seen
that this is not the case for the wave equations for the cross-correlations of the stationary fields.
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2.2. Lie analysis of wave equations of stationary statistical optics

Most physical optical systems which are described in scalar statistical optics are well modeled
by assuming that the signals are stationary and ergodic [32]. The wave equations for the cross-
correlation function of stationary random processes can be written with seven, as opposed
to eight, independent variables. All stationary random processes contain time translation
symmetries for both t1 and t2 which allow the cross-correlation to be written as a function of
τ = t1 − t2 as opposed to the time coordinates individually. The cross-correlation of stationary
random processes described in scalar statistical optics obeys the pair of wave equations

,β = ∇2
β# − 1

c2

∂2#

∂τ 2
= 0 (33)

for β = 1 and β = 2. In this section, the symmetry group of equations (33) is derived. These
equations involve one dependent complex variable # and seven independent variables given
by r1, r2and τ .

The symmetry group of equations (33) can be found using the Lie method. Infinitesimal
generators have the form of equation (6). The symmetry criteria for equations (33) are

pr(n)U,β = η
xβxβ

# + η
yβyβ

# + η
zβzβ
# − 1

c2
ηττ
# = 0. (34)

The functions η
xβxβ

# , η
yβyβ

# , η
zβzβ
# and ηττ

# are defined by equation (11). Unlike in the two-time
case, the two symmetry criteria, with β = 1 and 2, are coupled because they both involve
the function ηττ

# . As in the two-time case, and for the same reasons, to satisfy the symmetry
criteria, both ∂ξ i

∂#
and ∂2η#

∂#2 must be zero. Thus, the symmetry criteria can be written as
(

∇2
β# − 1

c2

∂2η#

∂τ 2

)
+ 2

(
∇β# · ∇β

∂η#

∂#
− 1

c2

∂#

∂τ

∂η#

∂#∂τ
+ ∇β#

∗ · ∇β

∂η#

∂#∗ − 1
c2

∂#∗

∂τ

∂η#

∂#∗∂τ

)

−
∑

i

[
2
(

∇βξ
i · ∇β

∂#

∂χi
− 1

c2

∂2#

∂τ∂χi

∂ξ i

∂τ

)
+

∂#

∂χi

(
∇2

βξ
i − 1

c2

∂2ξ i

∂τ 2

)]
= 0.

(35)

As in the case of the two-time wave equations, some symmetries involve only
transformations of the dependent variable, and for these symmetries, all ξ i are zero.
Equations (33) are linear, so η# = # satisfies the symmetry criteria. The symmetry criteria can
also be satisfied by η = γ where γ is any solution of equation (33) written as a function of the
independent variables. Additionally, the symmetry criteria are satisfied by U = #∂#∗ + #∗∂# .

Equations (33) also contain some symmetries, with η# = 0, which involve transformations
of the independent variables but not #. For the term

(
∇βξ

i · ∇β
∂#
∂χi − 1

c2
∂2#

∂τ∂χi

∂ξ i

∂τ

)
to satisfy

the symmetry criteria, the functions ξxβ , ξ yβ and ξzβ cannot depend on xβ̄, yβ̄ and zβ̄ , so
equation (20) again holds. However, here equations (21) and (22) are replaced by the
expressions

∂ξτ

∂xβ

− 1
c2

∂ξxβ

∂τ
= ∂ξτ

∂yβ

− 1
c2

∂ξyβ

∂τ
= ∂ξτ

∂zβ
− 1

c2

∂ξzβ

∂τ
= 0 (36)

and
∂ξxβ

∂xβ

= ∂ξyβ

∂yβ

= ∂ξzβ

∂zβ
= ∂ξτ

∂τ
. (37)

For the last term of equation (35) to satisfy the symmetry criteria, all ξ i must be at most linear
in the independent variables.
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Similar to equations (17), the resulting symmetries of equations (33), with η# = 0,
can be classified as translations, rotations and dilatations. The infinitesimal generators of
equations (33) include seven translations which are given by equation (25) where χi ranges
over seven rather than eight independent variables. They also include six rotation generators
given by equation (26) and three hyperbolic rotation generators, which involve τ rather than
t1 and t2, represented by

U = τ∂xβ
+ τ∂xβ̄

+
1
c2

(xβ + xβ̄)∂τ , (38)

U = τ∂yβ
+ τ∂yβ̄

+
1
c2

(yβ + yβ̄)∂τ (39)

and

U = τ∂zβ + τ∂zβ̄ +
1
c2

(zβ + zβ̄)∂τ . (40)

They also include one dilatation generator

U =
7∑

i=1

χi∂χi (41)

rather than the two generators given by equation (28).
Equations (33) contain no symmetries for which η# and at least one of the ξ i are nonzero.

It is not possible to find choices of η# and ξ i for which terms of equation (35) are individually
nonzero yet sum to zero. Consider the possibility η# = −2#xβ for which the second term of
equation (35) is nonzero. This choice satisfies the condition that η# must be at most linear in
#. Other choices of the independent variable could be made. As in the two-time case, from
the term

(
∇βξ

i · ∇β
∂#
∂χi − 1

c2
∂2#

∂τ∂χi

∂ξ i

∂τ

)
, generators must satisfy equations (20), (36) and (37).

Thus, both ∂ξxβ

∂xβ
= ∂ξτ

∂τ
and ∂ξ

xβ̄

∂xβ̄
= ∂ξτ

∂τ
must be satisfied, and from equations (36) and (37),

∂2ξxβ

∂τ 2
= c2 ∂

2ξ τ

∂x2
β

. (42)

However, equation (42) cannot be satisfied because ξxβ cannot depend on xβ̄ . Thus, no
inversion symmetries can be found.

Both equations (17) and (33) contain many of the same types of symmetries, including
translations, rotations, hyperbolic rotations, dilatations and symmetries due to linearity.
However, since equations (33) involve fewer independent variables, fewer infinitesimal
generators are needed to span the Lie algebra than for equations (17). Unlike equations (17),
equations (33) do not contain inversion symmetries.

3. Conservation laws

In this section, Noether’s theorem is applied to Lie symmetries derived in section 2 to find
conservation laws for the cross-correlation function for both the two-time and stationary
cases. In each case, the conservation law for the deterministic case is provided to place the
generalization to the stochastic case in context. It is seen that the conservation laws derived
for the two-time wave equations encompass and are generalizations of the conservation laws
for the deterministic fields in the sense that the conservation laws for the cross-correlation
function reduce to the conservation laws for the deterministic field in the deterministic limit.
Moreover, the conservation laws for the deterministic fields may be seen to have multiple
generalizations in the context of the cross-correlation function for stochastic fields.

9
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3.1. Two-time wave equations

The Lagrangians for equations (17) are

Lβ = −|∇β#|2 +
1
c2

∣∣∣∣
∂#

∂tβ

∣∣∣∣
2

, (43)

for β = 1 and β = 2. To determine if Noether’s theorem is applicable, the first prolongation
of a generator acting on the Lagrangians is needed in applying equations (12),

pr(1)ULβ = −∂#∗

∂xβ

η
xβ

# − ∂#∗

∂yβ

η
yβ

# − ∂#∗

∂zβ
η

zβ
# +

1
c2

∂#∗

∂tβ
η

tβ
#

− ∂#

∂xβ

η
xβ

#∗ − ∂#

∂yβ

η
yβ

#∗ − ∂#

∂zβ
η

zβ
#∗ +

1
c2

∂#

∂tβ
η

tβ
#∗ . (44)

The functions η
xβ

# , η
xβ

#∗ , . . . are defined by equation (11).
The translation symmetries are variational because the corresponding infinitesimal

generators satisfy equation (12). For deterministic scalar fields, the conserved quantity
associated with time translation invariance is called energy equation (12). The wave equation
for the scalar deterministic field, equation (1), contains the energy conservation law in the
form of equation (14) with

P = ∂ϕ∗

∂t
∇ϕ +

∂ϕ

∂t
∇ϕ∗ +

(

L − 2
c2

∣∣∣∣
∂ϕ

∂t

∣∣∣∣
2
)

at , (45)

where L is the Lagrangian of the deterministic wave equation

L = −|∇ϕ|2 +
1
c2

∣∣∣∣
∂ϕ

∂t

∣∣∣∣
2

. (46)

For the deterministic case, the at component of P is referred to as the density of the conserved
quantity while the remaining components are referred to as the flux density vector. The energy
density is defined as

H(r, t) = |∇ϕ|2 +
1
c2

∣∣∣∣
∂ϕ

∂t

∣∣∣∣
2

, (47)

and energy flux density vector is defined as

F(r, t) = −
(
∂ϕ∗

∂t
∇ϕ +

∂ϕ

∂t
∇ϕ∗

)
. (48)

The conservation law given by equations (14) and (45) may be cast in the usual form [29]

∂H

∂t
+ ∇ · F = 0. (49)

The conservation law expressed by equation (45) may be derived using Noether’s theorem,
the Lagrangian L and the single generator for time translation symmetry of equation (1). For
the statistical case, there are two time coordinates, and the cross-correlation of the field is
described by two Lagrangians. Thus, there are four generalizations of equation (45). The
first two generalizations may be found by applying Noether’s theorem with U = ∂tβ and
Lagrangian Lβ , where β = 1 and β = 2. Conservation laws of the form of equation (14)
result with

P = ∂#

∂tβ
(∇β#

∗) +
∂#∗

∂tβ
(∇β#) +

(

Lβ − 2
c2

∣∣∣∣
∂#

∂tβ

∣∣∣∣
2
)

atβ . (50)

10
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Taking U = ∂tβ with Lagrangian Lβ̄ , conservation laws of the form of equation (14) result
with

P = ∂#

∂tβ
(∇β̄#

∗) +
∂#∗

∂tβ
(∇β̄#) + Lβ̄atβ − 1

c2

(
∂#

∂tβ

∂#∗

∂tβ̄
+

∂#∗

∂tβ

∂#

∂tβ̄

)
atβ̄ . (51)

The generalizations of energy conservation expressed in equations (50) and (51) become
redundant and reduce to equation (45) in the deterministic limit where # (r1, t1; r2t2) =
ϕ∗ (r1, t1) ϕ (r2, t2) , as might be expected.

For deterministic scalar fields, the conserved quantity associated with spatial translation
symmetry is called momentum [2, 36]. The wave equation for the scalar deterministic field,
equation (1), contains the momentum conservation law corresponding to translation symmetry
of the x coordinate in the form of equation (14) with

P = Lax +
∂ϕ∗

∂x
∇ϕ +

∂ϕ

∂x
∇ϕ∗ − 1

c2

(
∂ϕ∗

∂x

∂ϕ

∂t
+

∂ϕ

∂x

∂ϕ∗

∂t

)
at . (52)

The deterministic wave equation also contains similar conservation laws corresponding to
translation symmetry of the y and z coordinates. The t component of equation (52) forms the
x component of the so-called momentum density vector [36],

P = 1
c2

∂ϕ∗

∂t
∇ϕ +

1
c2

∂ϕ

∂t
∇ϕ∗, (53)

commonly encountered in deterministic wave optics. For the statistical case, there are six
spatial coordinates, and equations (17) are described by two Lagrangians. Thus, there are
12 generalizations of the conservation laws of the form of equation (52). The conservation
law for translation symmetry along xβ , given by generator U = ∂xβ

, and Lagrangian Lβ , for
example, has the form of equation (16) with

P = Lβaxβ
+

∂#

∂xβ

(∇β#
∗) +

∂#∗

∂xβ

(∇β#) − 1
c2

(
∂#∗

∂tβ

∂#

∂xβ

+
∂#

∂tβ

∂#∗

∂xβ

)
atβ . (54)

A vector formed by the atβ components of equation (54) along with the atβ components
from similar expressions found using Lβ with U = ∂yβ

and U = ∂zβ may be defined as a
generalization of the momentum density vector,

Pββ = 1
c2

(
∂#∗

∂tβ
∇β# +

∂#

∂tβ
∇β#

∗
)

. (55)

Another set of conservation laws generalizing momentum conservation may be obtained by
taking translations along the β coordinate together with the Lagrangian Lβ̄ . For example,
for translation symmetry along xβ and Lagrangian Lβ̄ the conservation law has the form of
equation (14) with

P = ∂#

∂xβ

(∇β̄#
∗) +

∂#∗

∂xβ

(∇β̄#) + Lβ̄axβ
− 1

c2

(
∂#

∂xβ

∂#∗

∂tβ̄
+

∂#∗

∂xβ

∂#

∂tβ̄

)
atβ̄ , (56)

suggesting the definition of another momentum density vector

Pββ̄ = 1
c2

(
∂#∗

∂tβ̄
∇β# +

∂#

∂tβ̄
∇β#

∗
)

. (57)

As in energy conservation, momentum conservation of equations (54) and (56) reduces to
equation (52) in the deterministic limit where # (r1, t1; r2, t2) = ϕ∗ (r1, t1) ϕ (r2, t2) .

The rotation and hyperbolic rotation generators all correspond to variational symmetries
and all satisfy equation (12). In the deterministic case, the conserved quantity associated with
rotational symmetry is known as angular momentum [2]. The generator U = x∂y − y∂x

11
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represents rotation about the az axis and provides a conservation law in the form of
equation (14) with

P = (−yax + xay)L +
(

−y
∂ϕ

∂x
+ x

∂ϕ

∂y

) (
∇ϕ∗ − 1

c2

∂ϕ∗

∂t
at

)

+
(

−y
∂ϕ∗

∂x
+ x

∂ϕ∗

∂y

) (
∇ϕ − 1

c2

∂ϕ

∂t
at

)
. (58)

The at component of equation (58) is

P · at = r × P · az, (59)

where P is defined by equation (53). Together the at components of the conservation laws
corresponding to rotations about the ax, ay and az axes are defined [36] as the angular
momentum density vector M = r × P. The remaining components of the conservation laws
form the angular momentum flux density. For the statistical case, the conserved quantities
found by applying Noether’s theorem using the rotation generators correspond to generalized
angular momenta. The conservation law obtained by applying Noether’s theorem with the
generator U = xβ∂yβ

− yβ∂xβ
, corresponding to a rotation about the azβ axis, and Lagrangian

Lβ is of the form of equation (14) with

P = −yβLβaxβ
+ xβLβayβ

+
(

−yβ

∂#

∂xβ

+ xβ

∂#

∂yβ

)(
∇β#

∗ − 1
c2

∂#∗

∂tβ
atβ

)

+
(

−yβ

∂#∗

∂xβ

+ xβ

∂#∗

∂yβ

) (
∇β# − 1

c2

∂#

∂tβ
atβ

)
. (60)

A generalization of the angular momentum density vector may be defined by Mβββ = rβ ×Pββ

with Pββ given by equation (55). The atβ component of equation (60) may be seen to be
identical with the azβ component of the generalized angular momentum density Mβββ . The
application of Noether’s theorem with the generators of the rotations about the other axes yields
the corresponding vectors P whose atβ components are the respective components of Mβββ.

This process may be repeated for the β = 1 and β = 2 cases resulting in six generalizations
of the usual three angular momentum conservation laws. An additional six conservation laws
may be found using the Lagrangian Lβ̄ in which appear an alternative generalization of the
angular momentum density vector Mβββ̄ = rβ × Pββ̄ with Pββ̄ given by equation (57). For
example, the conservation law found using the generator U = xβ∂yβ

− yβ∂xβ
and Lagrangian

Lβ̄ is of the form of equation (14) with

P = −yβLβ̄axβ
+ xβLβ̄ayβ

+
(

−yβ

∂#

∂xβ

+ xβ

∂#

∂yβ

)(
∇β̄#

∗ − 1
c2

∂#∗

∂tβ̄
atβ̄

)

+
(

−yβ

∂#∗

∂xβ

+ xβ

∂#∗

∂yβ

) (
∇β̄# − 1

c2

∂#

∂tβ̄
atβ̄

)
. (61)

As for energy conservation, equation (61) reduces to equation (60) in the deterministic limit
where # (r1, t1; r2t2) = ϕ∗ (r1, t1) ϕ (r2, t2) .

The hyperbolic rotations also correspond to variational symmetries for both the
deterministic and statistical wave equations, and conservation laws may be found using
Noether’s theorem. Using equation (7), it may be seen that the hyperbolic rotation generators of
the deterministic wave equation correspond to the Lorentz transformations of special relativity.
For example, for the deterministic wave equations, using the generator U = t∂x + 1

c2 x∂t and

12
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the Lagrangian L, a conservation law in the form of equation (14) is found with

P =
(

tax +
1
c2

xat

)
L +

(
t
∂ϕ

∂x
+

1
c2

x
∂ϕ

∂t

)(
∇ϕ∗ − 1

c2

∂ϕ∗

∂t
at

)

+
(

t
∂ϕ∗

∂x
+

1
c2

x
∂ϕ∗

∂t

) (
∇ϕ − 1

c2

∂ϕ

∂t
at

)
. (62)

For the statistical wave equations, the generator U = tβ∂xβ
+ 1

c2 xβ∂tβ along with Lagrangian
Lβ corresponds to a conservation law in the form of equation (14) with

P =
(

tβaxβ
+

1
c2

xβatβ

)
Lβ +

(
tβ

∂#

∂xβ

+
1
c2

xβ

∂#

∂tβ

) (
∇β#

∗ − 1
c2

∂#∗

∂tβ
atβ

)

+
(

tβ
∂#∗

∂xβ

+
1
c2

xβ

∂#∗

∂tβ

) (
∇β# − 1

c2

∂#

∂tβ
atβ

)
. (63)

In the deterministic case with three hyperbolic rotation generators and one Lagrangian, three
independent conservation laws are found. In the statistical case with six hyperbolic rotation
generators and two Lagrangians, twelve independent conservation laws are found.

Both the deterministic wave equation, equation (1), and the statistical wave equations,
equations (17), contain dilatation symmetries and the corresponding conservation laws. Using
equation (7), it may be seen that the dilatation generators describe the continuous symmetry
where all of the variables are scaled by the same constant, χi → χieθ , for constant θ .
Applications of dilatation symmetry are discussed in [30, 38]. In the deterministic case, the
single Lagrangian along with the generator

U = r · ∇ + t∂t − ϕ∂ϕ − ϕ∗∂ϕ∗ , (64)

which is a linear combination of the dilatation and linearity generators [2], corresponds to a
conservation law in the form of equation (14) with

P = (r + tat ) L +
(

∇ϕ∗ − 1
c2

∂ϕ∗

∂t
at

) (
ϕ + r · ∇ϕ + t

∂ϕ

∂t

)

+
(

∇ϕ − 1
c2

∂ϕ

∂t
at

) (
ϕ∗ + r · ∇ϕ∗ + t

∂ϕ∗

∂t

)
. (65)

As above, the at component of equation (65) may be considered the density while the remaining
components may be considered the flux density vector. Similarly, for the statistical case of
equations (17), two linearly independent conservation laws may be found using the generator

U = rβ · ∇β + tβ∂tβ − #∂# − #∗∂#∗ , (66)

along with the two Lagrangians. For this generator and Lagrangian Lβ , equations (17) contain
a conservation law in the form of equation (14) with

P =
(
rβ + tβatβ

)
Lβ +

(
∇β#

∗ − 1
c2

∂#∗

∂tβ
atβ

)(
# + rβ · ∇β# + tβ

∂#

∂tβ

)

+
(

∇β# − 1
c2

∂#

∂tβ
atβ

) (
#∗ + rβ · ∇β#

∗ + tβ
∂#∗

∂tβ

)
. (67)

Also, the generator of equation (66) along with Lβ̄ corresponds to a conservation law in the
form of equation (14) with

P =
(
rβ + tβatβ

)
Lβ̄ +

(
∇β̄#

∗ − 1
c2

∂#∗

∂tβ̄
atβ̄

)(
2# + rβ · ∇β# + tβ

∂#

∂tβ

)

+
(

∇β̄# − 1
c2

∂#

∂tβ̄
atβ̄

) (
2#∗ + rβ · ∇β#

∗ + tβ
∂#∗

∂tβ

)
. (68)
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In the deterministic limit where # (r1, t1; r2, t2) = ϕ∗ (r1, t1) ϕ (r2, t2) , the conservation law
specified by equation (67) reduces to the conservation law of the deterministic field due to the
dilatation symmetry.

The deterministic wave equation, equation (1), contains inversion symmetries. With four
inversion generators and a single Lagrangian, four linearly independent conservation laws
may be found. For example, the inversion generator of the deterministic wave equation,

U = (x2 − y2 − z2 + c2t2)∂x + 2xy∂y + 2xz∂z + 2tx∂t − 2ϕx∂ϕ − 2ϕ∗x∂ϕ∗ , (69)

corresponds to a divergence symmetry. Using Noether’s theorem, a conservation law may be
found in the form of equation (15) with

B = 2 |ϕ|2 ax, (70)

and

P = 2xL(yay + zaz + tat ) + (x2 − y2 − z2 + c2t2)Lax

+(x2 − y2 − z2 + c2t2)
∂ϕ

∂x

(
∇ϕ∗ − 1

c2

∂ϕ∗

∂t
at

)

+ 2x

(
∇ϕ∗ − 1

c2

∂ϕ∗

∂t
at

) (
ϕ + y

∂ϕ

∂y
+ z

∂ϕ

∂z
+ t

∂ϕ

∂t

)

+ (x2 − y2 − z2 + c2t2)
∂ϕ∗

∂x

(
∇ϕ − 1

c2

∂ϕ

∂t
at

)

+ 2x

(
∇ϕ − 1

c2

∂ϕ

∂t
at

) (
ϕ∗ + y

∂ϕ∗

∂y
+ z

∂ϕ∗

∂z
+ t

∂ϕ∗

∂t

)
. (71)

In the statistical case, there are eight inversion generators of the statistical wave equations
along with two Lagrangians, so sixteen linearly independent conservation laws may be
found for equations (17). The inversion generators correspond to divergence symmetries
because they satisfy equation (13). As an example, consider the inversion generator given in
equation (29) and Lagrangian Lβ . This generator corresponds to a divergence symmetry,

pr(1)ULβ + Lβ

∑

i

∂ξ i

∂χi
= 2#

∂#∗

∂xβ

+ 2#∗ ∂#

∂xβ

, (72)

with

B = 2 |#|2 axβ
. (73)

This generator leads to a conservation law in the form of equation (15) with P specified by
equation (16),

P = 2xβLβ

(
yβayβ

+ zβazβ + tβatβ

)
+

(
x2
β − y2

β − z2
β + c2t2

β

)
Lβaxβ

+
(
x2
β − y2

β − z2
β + c2t2

β

) ∂#

∂xβ

(
∇β#

∗ − 1
c2

∂#∗

∂tβ
atβ

)

+ 2xβ

(
∇β#

∗ − 1
c2

∂#∗

∂tβ
atβ

) (
# + yβ

∂#

∂yβ

+ zβ
∂#

∂zβ
+ tβ

∂#

∂tβ

)

+
(
x2
β − y2

β − z2
β + c2t2

β

) ∂#∗

∂xβ

(
∇β# − 1

c2

∂#

∂tβ
atβ

)

+ 2xβ

(
∇β# − 1

c2

∂#

∂tβ
atβ

) (
#∗ + yβ

∂#∗

∂yβ

+ zβ
∂#∗

∂zβ
+ tβ

∂#∗

∂tβ

)
. (74)
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The generator of equation (29) along with Lβ̄ also corresponds to a divergence symmetry. The
associated conservation law is in the form of equation (15) with

B = 2xβ(#∗∇β̄# + #∇β̄#
∗) − atβ̄

2
c2

xβ

(
#∗ ∂#

∂tβ̄
+ #

∂#∗

∂tβ̄

)
, (75)

and

P = 2xβLβ̄

(
yβayβ

+ zβazβ + tβatβ

)
+

(
x2
β − y2

β − z2
β + c2t2

β

)
Lβ̄axβ

+
(
x2
β − y2

β − z2
β + c2t2

β

) ∂#

∂xβ

(
∇β̄#

∗ − 1
c2

∂#∗

∂tβ̄
atβ̄

)

+ 2xβ

(
∇β̄#

∗ − 1
c2

∂#∗

∂tβ̄
atβ̄

) (
# + yβ

∂#

∂yβ

+ zβ
∂#

∂zβ
+ tβ

∂#

∂tβ

)

+
(
x2
β − y2

β − z2
β + c2t2

β

) ∂#∗

∂xβ

(
∇β̄# − 1

c2

∂#

∂tβ̄
atβ̄

)

+ 2xβ

(
∇β̄# − 1

c2

∂#

∂tβ̄
atβ̄

) (
#∗ + yβ

∂#∗

∂yβ

+ zβ
∂#∗

∂zβ
+ tβ

∂#∗

∂tβ

)
. (76)

As above, the at component of equation (71) is called the density of the conserved quantity
while the remaining terms are called the flux density vector. Similarly, the atβ component of
equation (74) is the generalized density while the remaining terms are a generalization of the
flux density vector of the conserved quantity.

3.2. Stationary wave equations

Noether’s theorem may also be used to find conservation laws for the wave equations for the
cross-correlation of stationary stochastic fields. The Lagrangians of equation (33) are

Lβ = −|∇β#|2 +
1
c2

∣∣∣∣
∂#

∂τ

∣∣∣∣
2

. (77)

Using Noether’s theorem and translation generators, conservation laws can be found
corresponding to conservation of generalized energy and generalized momentum density. With
seven translation generators and two Lagrangians, fourteen linearly independent conservation
laws can be found. In the stationary case, because there is only one time coordinate, there
are only two generalizations of conservation of energy. With the generator U = ∂τ and
Lagrangian Lβ , the generalized energy conservation law has the form of equation (14) with

P = ∂#

∂τ
(∇β#

∗) +
∂#∗

∂τ
(∇β#) +

(

Lβ − 2
c2

∣∣∣∣
∂#

∂τ

∣∣∣∣
2
)

aτ . (78)

For the conservation law of equation (78), the aτ component
(
Lβ − 2

c2

∣∣ ∂#
∂τ

∣∣2 )
may be

considered the generalized energy density, and the remaining components may be considered
the generalized energy flux density vector. This conservation law is related to the conservation
law of equations (50) and (51) for the two-time wave equations. It may be seen by making the
change of variables τ = t1 − t2 and T = t1+t2

2 and enforcing ∂#
∂T

= 0, essentially a restatement
of stationarity, that equations (50) and (51) become redundant and equivalent to equation
(78). However, since the cross-correlation function in the stationary case depends on only
one time coordinate, there is no direct path to a deterministic limit for equation (78). That is,
equation (78) expresses a conservation law unique to the statistically stationary setting.
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Conservation laws may also be found for the spatial translation generators for equations
(33) as for the two-time wave equations. The momentum conservation laws again take the
form of equation (14) with P as given in equations (54) and (56) but with tβ → τ.

Conservation laws of the rotation and hyperbolic rotation generators in the stationary and
two-time cases are also closely related. For the generator U = xβ∂yβ

−yβ∂xβ
, for example, the

conservation law from Noether’s theorem and Lagrangian Lβ has the form of equation (14)
with P as given in equation (60) with tβ → τ . Also, a conservation law may be found using
Lagrangian Lβ̄ which has the form of equation (14) with P as given in equation (61) again with
tβ → τ . The hyperbolic rotation generator of equation (38) corresponds to a conservation law
in the form of equation (14) with

P =
[
τaxβ

+ τaxβ̄
+

1
c2

(xβ + xβ̄)aτ

]
Lβ (79)

+
(

∇β#
∗ − 1

c2

∂#∗

∂τ
aτ

) [
τ
∂#

∂xβ

+ τ
∂#

∂xβ̄

+
1
c2

(xβ + xβ̄)
∂#

∂τ

]

+
(

∇β# − 1
c2

∂#

∂τ
aτ

)[
τ
∂#∗

∂xβ

+ τ
∂#∗

∂xβ̄

+
1
c2

(xβ + xβ̄)
∂#∗

∂τ

]
. (80)

The conservation laws for the hyperbolic rotation generators in the stationary case result
from two conservation laws for the hyperbolic rotation generators in the two-time case.
The conservation law of equation (79) of the stationary case may be found by summing
the conservation laws for Lagrangian Lβ along with generators U = tβ∂xβ

+ 1
c2 xβ∂tβ and

U = tβ̄∂xβ̄
+ 1

c2 xβ̄∂tβ̄ in the two-time case then taking tβ → τ .
Equations (33) have one dilatation symmetry and two Lagrangians, so two linearly

independent conservation laws may be found as opposed to four in the case of the two-time
wave equations. The generator

U = −5
2
#∂# − 5

2
#∗∂#∗ +

∑

i

χ i∂χi , (81)

which is a linear combination of the dilatation generator and the linearity generator,
corresponds to a variational symmetry. This generator along with Lagrangian Lβ corresponds
to a conservation law in the form of equation (14) where

P =
(

∇β#
∗ − 1

c2

∂#∗

∂tβ
atβ

) (
5
2
# +

∑

i

χ i ∂#

∂χi

)

+
(

∇β# − 1
c2

∂#

∂tβ
atβ

) (
5
2
#∗ +

∑

i

χ i ∂#
∗

∂χi

)

+ Lβ

(
∑

i

χ iai

)

. (82)

Equations (33) do not contain inversion symmetries, so no corresponding conservation
laws can be found. For each infinitesimal generator U of the inversion symmetries, the
corresponding conservation law in the two-time case may be simplified to the form

∑

i

∂ (Pi − Bi)

∂χi
= 0 =

(

∇2
β# − 1

c2

∂2#

∂t2
β

)

(U#∗) +

(

∇2
β#

∗ − 1
c2

∂2#∗

∂t2
β

)

(U#) , (83)

where U# represents the cross-correlation upon the symmetry transformation. In order for
such a conservation law, which appears for the nonstationary fields, to also hold for the
stationary fields, both # and U# must be independent of T = t1+t2

2 . It may be seen that this
can only be true for # = 0, so the conservation laws arising from the inversion symmetry in
the two-time case become trivial for stationary fields.
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4. Conclusion

The symmetries and conservation laws for the Wolf equations are studied systematically here
by the Lie method and Noether’s theorem. All of the symmetries of the deterministic case
are found in the two-time stochastic case but for both sets of coordinates. The stationary
stochastic case is different in that some symmetries are eliminated. The two-time stochastic
case contains generalizations of all of the conservation laws of the deterministic case, and
the deterministic limit may be taken to obtain the deterministic conservation laws as a special
case. For example, the four energy conservation laws of the two-time case reduce to the one
conservation law for the deterministic case in the deterministic limit. In the stationary case,
some conservation laws for the two-time case reduce or coalesce to corresponding laws for the
stationary case. For example, the four energy conservation laws in the two-time case become
two conservation laws for the stationary case. In other instances, conservation laws are simply
eliminated in going from the two-time case to the stationary case, such as the conservation
law resulting from the inversion symmetries.
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