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Near-field diffractive elements
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A novel near-field imaging system is proposed and simulated. It is seen that a significant improvement in
performance in the presence of noise is possible without loss of resolution. © 2005 Optical Society of America
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Near-field optics1–3 has brought the resolution
achievable with optical imaging in the visible and
near-visible range of the spectrum to size scales ap-
proaching that of tens of atoms, orders of magnitude
smaller than the wavelength and so well below the
optical resolution limits of Abbe4 and Rayleigh.5 The
benefits inherent in ultramicroscopic imaging capa-
bilities affect a broad array of fields in research,
medicine, and manufacturing.

The essential idea in modern near-field scanning
optical microscopy (NSOM) may be traced to Synge.6

Synge proposed that the Abbe–Rayleigh resolution
limits might be overcome by illuminating the thin
sample through a small hole in a black screen in the
near zone of the sample. By recording the throughput
as a function of position of the small hole, an image is
obtained with resolution on the scale of the aperture
size rather than the wavelength. Decades after the
inital proposal, Synge’s vision was realized using a
metal-coated fiber with a small aperture formed at
the end playing the role of the screen. Also in practice
today is a method in which no aperture is formed in
the fiber tip. In that method, the apertureless case,
the near field is coupled to the far zone by diffraction
from a sharp metallic tip. The superresolution
achievable in scanning probe modalities is attribut-
able to the conversion of high-spatial-frequency
waves, i.e., evanescent waves, into propagating
modes of the field either in free space or in the fiber.
This conversion takes place by diffraction from the
subwavelength aperture of the probe. The subwave-
length structure of the object is related to these high-
spatial-frequency components of the field.7–11

The various forms of scanning microscopy in use
today suffer from common problems of image acqui-
sition speed and photon inefficiency. A scanned tip in-
herently operates in serial fashion. In this work, the
theory of near-field diffractive elements that offer the
opportunity to register data in a parallel fashion is
investigated. It is suggested that the probe tip be re-
placed by a near-field diffractive element (NDE) that
scatters the high-spatial-frequency components of

the field into propagating modes. As an example, a
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Fresnel lens scanned in the near zone of a sample is
considered. It will be seen that this scheme may be
made highly photon efficient, as opposed to scanning
probe methods.

A scalar field model is considered at fixed fre-
quency v0=k0c. The sample is described by a complex
susceptibility hsrd, and the NDE is described by the
susceptibilty xsrd. The field obeys the equation
¹2Usrd+k0

2Usrd=−4pk0
2fhsrd+xsrdgUsrd. It is as-

sumed that the sample is illuminated by a unit am-
plitude plane wave Uisrd=expsiki ·rd, where ki ·ki

=k0
2. The field scattered to the far zone may be calcu-

lated to first order in both the NDE and the sample
susceptibilities. It is assumed that the background
terms corresponding to scattering from only the NDE
and only the sample may be subtracted by perform-
ing the scattering experiment with only those ele-
ments present. The terms corresponding to scatter-
ing of the incident field first from the NDE and then
the sample are neglected, which yields a good ap-
proximation especially if the incident field is evanes-
cent. The field thus coupled out of the instrument
and assumed to be measured holographically, Um, is
given by the expression

Umsrd = k0
4E d3r8E d3r9Uisr9dhsr9d

3Gsr8,r9dxsr8dGsr,r8d, s1d

where Gsr ,r8d is the Green function. It is assumed
that the sample and the NDE are uniform over the
thickness of the sample and NDE, respectively (see
Fig. 1); samples with a nontrivial three-dimensional
structure will be addressed in another work. For sim-
plicity, Gsr ,r8d is taken to be the free-space Green
function Gsr ,r8d=expsik0ur−r8ud / ur−r8u. Substrate
boundaries may be included by modification of this
Green function.12 The NDE may be translated later-
ally over the sample by a displacement r0 (see Fig. 1).
This field is measured holographically in the far zone
of the sample and NDE at position r=rr̂ by means of

a conventional far-field optical system so that the
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convolution of positive functions, the width of the
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resultant measured field is given by the expression

Umsr,r0d ,
k0

4expsik0rd

2pr
E d2qx̃sqdexpsiq · r0d

3Msq,rdh̃sq − k0r̂i − qid, s2d

where r̂i is the vector projection of the unit vector r̂
into the plane of the sample. Here M is given by the
expression
Msq,rd = i

3
exph− ifk0z/r − kzsq − k0r̂idgzdj„exph− ifk0z/r − kzsq − k0r̂idgDzNDEj − 1…„1 − exph− ifkzsq − k0r̂id − kzsqdgDzsj…

kzsq − k0r̂idfkzsq − k0r̂id − kzsqdgfk0z/r − kzsq − k0r̂idg
,

s3d
and kzsqd=Îk0
2−q2.

If the NDE is scanned over a large area compared
with the sample, then the Fourier transform of the
resultant data set with respect to the NDE transla-
tion yields a relatively simple relationship between
the data and the Fourier components of the sample:

Ũmsr,Qd =
k0

4expsik0rd

r
MsQ,rdx̃sQdh̃sQ − k0r̂i − qid.

s4d

Equation (4) may be written in terms of an integral
operator K such that Ũm=Kh. An approximate recon-
struction h+ of h may thus be obtained from the data
by the formula h+= fK* Kg+K*Um, where K* is the
Hermitian adjoint of K and fK*Kg+ is the pseudo-
inverse of the normal operator fK*Kg. The pseudo-
inverse fK*Kg+ is the inverse of fK*Kg restricted to the
orthogonal complement of the null space of the opera-
tor. To assess the resolution of such a system, it is
useful to compute fK*Kg, which may be seen to have
kernel fK*KgsQQ8d given by the expression

fK*KgsQ8,Qd = dsQ8 − QdE
S

d2r̂iuMsQ8 + k0r̂i

+ qi,rdx̃sQ8 + k0r̂i + qidu2, s5d

where the range of integration, S, is determined by
the numerical aperture (NA) of the far-zone imaging
system used to measure the field, S being the disk
with radius ur̂iu=NA. Note that the normal operator
K*KsQ ,Q8d is diagonal in the Fourier basis and will
thus be written as K*KsQd; it is a linear space-invari-
ant convolution even though the diffractive is not
necessarily space invariant. Because K*KsQd is a
bandpass must be wider than either the diffractive or
free-space propagation bandpass alone and is ap-
proximately the sum of the two widths. The effect of
increasing the NA is to enlarge the region S and
therefore widen the bandpass already provided by
the diffractive.

In principle, the bandpass of the system is given by
the bandpass of fK*Kg+fK*Kg, which is simply zero in
the range where fK*KgsQd is zero and unity else-

Fig. 2. Left, simulated PSF for three NDE systems, nor-
malized to peak height. Right, normal operator for three
simulations as a function of spatial frequency; a darker
gray level indicates a proportionally larger bandpass
weight. The top row is a simulation of a NSOM NDE with
an effective radius of l /16 and a NA of the far-field system
of 0.5. The middle row is a simulation of a Fresnel plate
NDE of 8l diameter with a spatial frequency from zero at
the center to 8l−1 at the perimeter, with NA =0.5. The bot-
tom row is also a simulation of the Fresnel NDE but with
Fig. 1. Arrangement of the NDE imaging system.
NA =0.05.
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where. In the presence of noise, inversion of Eq. (4)
must include some form of regularization to produce
a meaningful, stable result. Under Tikhonov regular-
ization with the regularization constant g, the band-
pass of the recovered point spread function is simi-
larly space invariant, being K*KsQd / fK*KsQd+gg.

To explore the behavior of a near-field diffractive
optical system, three NDE imaging systems are con-
sidered. A near-field diffractive imaging system con-
sisting of an amplitude Fresnel plate diffractive is
simulated for two different NAs, as well as a stan-
dard pointlike diffractive element such as that used
in NSOM or photon scanning tunneling microscopy.
The resolution of the systems is evaluated by numeri-
cally computing the normal operator of Eq. (5). For a
fair comparison, the two systems have approximately
the same bandpass limit and the same value of x0.
The object is modeled to be uniform in the depth di-
rection and Dzs=l /2 in thickness and in near contact
with the NDE at zd=Dzs+l /100 distance. The point-
like probe is a thin disk of material with susceptibil-
ity x0 and diameter l /16 to model the effective aper-
ture of a metal-coated NSOM probe. The amplitude
of the Fresnel diffractive is given by the equation

xsrd = x0 cosspauru2dfor uru , r0,

xsrd = 0 otherwise, s6d

with r0=4l and the spatial frequency at the perim-
eter of the diffractive being 8l−1, so that a=2l−2.
Thus the two NDEs exhibit comparable feature size.

The simulated bandpass and resultant point
spread function of the gatof the three systems are
given in Fig. 2, assuming Tikhonov regularization
with a 20 dB signal-to-noise ratio. Because the
Fresnel diffractive and the NSOM probe structure
contain similar spatial frequencies, the limits of the
bandpass are similar. When a small range of the far
field is measured, there appear gaps in the bandpass
function of the Fresnel NDE, as seen in the bottom
plot, and sidelobes emerge in the PSF. These effects

Fig. 3. Singular value spectrum of three simulated imag-
ing systems, normalized to the highest singular value of
the NSOM case. The heavy solid curve is the standard
NSOM singular value spectrum. The dashed curve is the
Fresnel NDE case with NA=0.05, and the thin solid curve
is the Fresnel NDE case with NA 5 0.5.
are mitigated by sampling more of the far field (cor-
responding to a far-field system with a larger NA) as
shown in the middle plot.

The noise performance of these systems is explored
by examining the spectrum of singular values of K
given by the root of the eigenvalues of the normal op-
erator, ÎK*KsQd, of these three cases in Fig. 3. A spec-
trum of larger singular values implies that the sys-
tem will be more tolerant to regularization required
by the presence of noise by virtue of having more sin-
gular functions above the noise floor. Generally, the
singular values scale roughly as the NA of the
far-zone system. It may be seen that the Fresnel dif-
fractive with NA =0.05 exhibits a spectrum of larger
singular values that the NSOM system with NA
=0.5. Thus it is expected that extended NDE-based
near-field imaging systems could be much more noise
tolerant than pointlike NDE systems.

The singular values of the system also scale with
the transverse dimensions of the NDE, roughly as
the square root of the linear dimensions of the extent
of the NDE. This is not surprising since a larger NDE
collects more of the field scattered from the sample.
NDE such as the Fresnel plate may be scaled with no
loss of resolution while pointlike probes such as those
used in NSOM cannot be scaled up without a corre-
sponding loss of resolution.

In conclusion, we have proposed and simulated the
behavior of a novel imaging system based on ex-
tended diffractive elements in the near zone of a
sample. The signal-to-noise ratio improvement of
such a system may greatly benefit near-field optical
metrology when large samples with subwavelength
features must be imaged. In effect, the system imple-
ments a parallel measurement of near-field features
from many parts of a sample at once, increasing the
throughput of the gathered signal.
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