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Information content of the near field:
two-dimensional samples
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Limits on the effective resolution of many optical near-field experiments are investigated. The results are
applicable to variants of total-internal-reflection microscopy (TIRM), photon-scanning-tunneling microscopy
(PSTM), and near-field-scanning-optical microscopy (NSOM) in which the sample is weakly scattering and the
direction of illumination may be controlled. Analytical expressions for the variance of the estimate of the
complex susceptibility of an unknown two-dimensional object as a function of spatial frequency are obtained
for Gaussian and Poisson noise models, and a model-independent measure is examined. The results are used
to explore the transition from near-zone to far-zone detection. It is demonstrated that the information content
of the measurements made at a distance of even one wavelength away from the sample is already not much
different from the information content of the far field. © 2004 Optical Society of America
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1. INTRODUCTION
Near-field microscopy1,2 has emerged as an increasingly
important imaging technology in the past two decades.
The principal advantage of near-field optical methods is
the ability to provide images with resolution on scales
much smaller than the Rayleigh–Abbe resolution limit.3

Synge4 first suggested the basic method in which a thin
sample is illuminated through a subwavelength aperture
that is scanned very close (less than a wavelength away)
to the sample while the amount of transmitted light is re-
corded as a function of position. This method is now
known as near-field-scanning-optical microscopy
(NSOM),5–8 and is often practiced by illuminating the
sample and collecting the light with a subwavelength ap-
erture at the end of a tapered optical fiber. Photon-
scanning-tunneling microscopy (PSTM) is a related
method in which the sample is illuminated by an evanes-
cent wave created by total internal reflection at a prism
face, and the subsequently scattered light is collected by a
tapered fiber as in NSOM.

Total-internal-reflection microscopy (TIRM) also takes
advantage of sample illumination by evanescent waves at
a prism face. Unlike NSOM or PSTM, in TIRM the scat-
tered radiation is measured in the far field. TIRM has
been used primarily as a surface inspection technique9,10;
however, recently there has been interest in taking ad-
vantage of the high-spatial-frequency content of the eva-
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nescent wave11 to perform direct imaging with transverse
resolution surpassing the Rayleigh–Abbe limit.12

Quantitative interpretation of NSOM, PSTM, and
TIRM images is sometimes difficult. Under certain sim-
plifying assumptions such as homogeneity of the materi-
al’s dielectric susceptibility,6 the measurements may be
related to topography. Under more general conditions, a
solution of the linearized scattering problem13–17 may be
employed to relate near-field optical measurements to ob-
ject structure and composition. An important question
remains: What is the resolution that a given experiment
can hope to achieve?

This paper addresses the question of resolution
through an analysis of the variance in the Fourier compo-
nents of the estimate of the sample. The linearized in-
verse scattering solution13–17 is applied to the case of a
thin, weakly scattering sample, and an analytic expres-
sion for the error covariance matrix of the estimate of the
sample susceptibility is obtained for Gaussian and Pois-
son noise models. Furthermore, a noise-model-indepen-
dent bound on the estimate error is obtained. These for-
mulas are then applied to PSTM for increasing distances
between the sample and measurement plane until the ex-
periment is essentially TIRM. It is seen that in the near
zone one may surpass the usual diffraction limit with the
bounds being set by the signal-to-noise ratio. It is shown
that the information content in the plane that is only a
2004 Optical Society of America
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wavelength away from the sample is already quite similar
to that of the far field, i.e., one obtains the usual Ewald
sphere of reflection.3

2. SCATTERING MODEL
Consider an experiment in which a monochromatic field is
incident on a dielectric medium with susceptibility h(r).
The field incident on the sample is taken to be a plane
wave. One half-space, taken to be z > 0, has the vacuum
index of refraction while the z , 0 half-space has index of
refraction n. Only nonmagnetic materials are consid-
ered, so it is sufficient to treat only the electric field E.
The field satisfies the equation

¹ 3 ¹ 3 E~r! 2 n2~z !k0
2E~r! 5 4pk0

2h~r!E~r!,
(1)

where k0 is the free-space wave number and n(z) is the
z-dependent background index of refraction as described
above.

The sample is assumed to be of constant thickness Dz,
where Dz is much less than a wavelength, and to depend
only on the transverse spatial coordinate r, where r
5 (r, z) so

h~r! 5 h~r!, for 0 < z , Dz,

5 0, for z > Dz.

The field is taken to consist of two parts, E 5 Ei

1 Es, where Ei is the incident field satisfying Eq. (1)
with h(r) [ 0. The scattered field Es arises as a result of
h(r) Þ 0. The incident field is a (possibly evanescent)
plane wave

Ei~r! 5 ei exp@ik~qi! • r#, (2)

where qi is the transverse wave vector of the incident
wave and ei is the complex field vector such that ueiu2 has
units of energy per (time 3 area). The wave vector k is
specified by the transverse components q such that

k~q! 5 @q, kz~q!#, (3)

kz~q! 5 ~k0
2 2 uqu2!1/2. (4)

The modes for which uqu , k0 are homogeneous, or propa-
gating, plane waves. When uqu . k0 the plane wave is
evanescent, decaying exponentially with increasing val-
ues of z. These waves are superoscillatory in the trans-
verse plane and thus provide a means to probe the high-
spatial-frequency structure of the sample. If one keeps
only the first term in the Born series,3 the scattered field
is given by the expression1

Ea
s ~r! 5 k0

2E d3r8Gab~r, r8!eb
i exp@iqi – r8

1 ikz~qi!z8#h~r8!, (5)

where G is the half-space Green’s tensor,1 and r8 is equal
to the transverse components of r8.

The measurements are made in the plane z 5 zd ,
which is illuminated by a reference wave with polariza-
tion er:

Er~r! 5 er exp@ik~qr! • r#. (6)
Note that in the NSOM and PSTM imaging modalities,
the incident field also plays the role of the reference field.
The total field in the detector plane is given by the super-
position of the reference and scattered fields, and the re-
sulting intensity, called the total intensity, is

IT~r, zd! 5 Ea
r Ea

r* 1 Ea
s Ea

s*

1 Ea
s Ea

r* 1 Ea
r Ea

s* , (7)

where the spatial arguments of the fields have been sup-
pressed and the * notation indicates that the complex
conjugate is to be taken. The first term on the right-
hand side is constant at fixed zd . The second term is
necessarily nonlinear in the susceptibility. Under weak
scattering conditions, it is negligible compared to the
third and fourth terms and will be disregarded hereafter.
However, if the reference field is evanescent the scatter-
ing term becomes more important and eventually domi-
nates as zd increases. The third and fourth terms are
conjugates that carry image information, which together
will be referred to as the holographic intensity:

I~r, zd! [ Ea
s Ea

r* 1 Ea
r Ea

s* . (8)

It should be noted that I(r, zd) may be positive or nega-
tive.

Determination of h is facilitated by taking the two-
dimensional (transverse) Fourier transform of the holo-
graphic intensity I(r, zd); i.e.,

Ĩ~Q, zd! [
1

2p
E d2rI~r, zd!exp@iQ – r#. (9)

Substituting Eqs. (5) and (6) into Eq. (8) yields

Ĩ~Q, zd! 5 H~Q, zd!h̃~Q 1 qi 2 qr!

1 H* ~2Q, zd!h̃* ~2Q 1 qi 2 qr!, (10)

where h̃* represents the complex conjugate of the Fourier
transform of h.

The expression for H(Q, zd) is

H~Q, zd! 5
ik0

2

2p
eb

r* ea
i

Gab~qr 2 Q!

kz~qr 2 Q!

3 exp$i@kz~qr 2 Q! 2 kz* ~qr!#zd%.

(11)

The tensor Ggd contains the integration over z8 and is
given in Appendix A. It is worthwhile to note the follow-
ing properties of Eq. (10):

1. When uqr 2 Qu . k0 or uqru . k0 , the value of
H(Q, zd) decreases exponentially with zd . Similarly,
when uqr 1 Qu . k0 or uqru . k0 , the value of
H* (2Q, zd) decreases exponentially with zd .

2. The arguments of both h̃ and h̃* are shifted by qi
2 qr . This allows the possibility for some of the sup-
eroscillatory components of h̃(Q) with uQu . k0 to be car-
ried into the far field via homogenous waves.

At this point one may generalize the result of Ref. 18,
where the scattered fields in TIRM experiments are re-
lated to object structure, to include the effect of the holo-
graphic measurement. To understand the results it is
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helpful first to consider a heuristic argument. The objec-
tive is to determine the maximum value of uQu such that
the value of h̃(Q) may be determined from measurements
in the far zone. Consider only the first term on the right-
hand side of Eq. (10). To avoid exponentially decreasing
H(Q, zd) with zd , qr and Q must satisfy the conditions
uQ 2 qru < k0 and uqru < k0 . Recalling that for the
TIRM and PSTM imaging modalities uqiu < nk0 (where n
is the prism index of refraction), and setting Q 2 qr
5 k0x̂, where x̂ is the unit vector in the x direction, it
may be seen that uQ 1 qi 2 qru is maximized when qi
5 nk0x̂. Thus, Q 1 qi 2 qr 5 (n 1 1)k0x̂. Since the
x direction was chosen arbitrarily, x̂ may be replaced by
any unit vector in the transverse plane. Therefore, in
principle, h̃(Q) may be determined when uQu < (n
1 1)k0 . This is enough information to construct a low-
pass filtered version of the object. For comparison, the
Fourier transform of the expression given by So12 for the
point-spread function of a confocal microscope leads to a
band limit of uQu < NAk0 , where NA is the numerical ap-
erture (recall that NA , n).

3. STATISTICAL MODEL
Real measurements are made on a space-limited array.
For simplicity, assume that the detection surface has an
area of L 3 L, lies in the plane z 5 zd , and has M
3 M pixels that give the total intensity at points $rmn%.
Since the H functions are proportional to exp(2uQuzd)
when uQu @ uqru, uqiu , k0 the intensity in the detector
plane is effectively band limited. Therefore Shannon’s
theorem applies and the intensity in the detector plane
can be represented by a discrete set of uniformly spaced
samples.19 The pixels are assumed to be small enough
that the intensity IT(r, zd) in Eq. (7) is essentially con-
stant throughout each pixel (i.e., the detector does not in-
troduce significant low-pass spatial filtering). It is also
assumed that the detector has enough surface area that
nearly all of the scattered light is collected. Henceforth,
M is taken to be an odd integer large enough that aliasing
is negligible. This leads to the following discretization of
the spatial-frequency variable Q. The discrete spatial
frequency is defined as Qmn [ (bm , bn), where

bn 5
2p

L
n, 0 < n <

M 2 1

2

5
2p

L
@n 2 M#,

M 2 1

2
1 1 < n < M 2 1.

(12)

Note that bM2n 5 2bn .
In this discussion the semiclassical model for photoelec-

tric detection is used, i.e., the electromagnetic field inci-
dent on the detector is treated classically, but the interac-
tion with the detector is quantized in units of
photoevents.20 The intensities IT(r, zd) and I(r, zd) are
considered to be deterministic quantities. The actual
number of photons counted in the mnth pixel (centered at
transverse coordinate rmn) is represented by the random
variable Nmn . The expected number of photons is Nmn
5 WIT(rmn , zd), where W 5 (DaDt)/\ck0 ; the overbar
is the expectation operator; and Da, Dt, and \ are the ef-
fective pixel area (including the quantum efficiency), the
measurement time, and Planck’s constant divided by 2p,
respectively.

With this scaling N0 [ WEa
r
• Ea

r* , which is the ex-
pected number of reference beam counts from the first
term in Eq. (7). It is convenient to define the random
variable cmn [ Nmn 2 N0 , and thus cmn 5 WImn , where
Imn is the holographic intensity from Eq. (8).

It is clear from Eq. (10) that unambiguous determina-
tion of h̃ without the advantage of prior information
(other than finite support) requires at least two measure-
ments with different experimental parameters. Let
those two measurements be denoted (c1 and c2). The es-
timate of h̃ is represented by ĥ, which is to be determined
by the simultaneous solution of Eq. (10) for the two data
sets with Ĩ(Qmn) on the left-hand side replaced by a mea-
surement c̃mn /W. Because of noise, ĥ Þ h̃. Regardless
of the probability-density function (PDF) under consider-
ation, Ĩmn 5 c̃mn/W, and Eq. (10) for the case of the two
measurements takes the form

S ~ c̃1!mn

~ c̃1!mn
D 5 WH1~Qmn!S ĥ~Qmn 1 qi1 2 qr1!

h̃~Qmn 1 qi1 2 qr1! D
1 WH1* ~QM2m,M2n!

3 S ĥ* ~QM2m,M2n 1 qi1 2 qr1!

h̃* ~QM2m,M2n 1 qi1 2 qr1! D ,

S ~ c̃2!p1m,q1n

~ c̃2!p1m,q1n
D 5 WH2~Qp1m,q1n!

3 S ĥ~Qp1m,q1n 1 qi2 2 qr2!

h̃~Qp1m,q1n 1 qi2 2 qr2! D
1 WH2* ~Qp1M2m,q1M2n!

3 S ĥ* ~Qp1M2m,q1M2n 1 qi2 2 qr2!

h̃* ~Qp1M2m,q1M2n 1 qi2 2 qr2! D ,

(13)

where the integers ( p 1 M 2 m) and (q 1 M 2 n) are
to be calculated modulo M. The integers p and q are cho-
sen so that the arguments of ĥ and ĥ* in Eqs. (13) are
equal to within the discretization of b given in Eq. (12).
Thus, ( p, q) ' (L/2p)@qi1 2 qr1 2 (qi2 2 qr2)#. Note
that in the case of PSTM qi 5 qr and p 5 q 5 0. To sim-
plify the notation, Eqs. (13) will be rewritten as follows,
with the obvious symbol replacements:

S c1

c1
D 5 WH1

1S ĥ1

h̃1
D 1 WH1

2* S ĥ2*

h̃2*
D ,

S c2

c2
D 5 WH2

1S ĥ1

h̃1
D 1 WH2

2* S ĥ2*

h̃2*
D . (14)

A. Gaussian Probability-Density Function
In this subsection the PDF of the inverse discrete Fourier
transform (DFT) of the spatial distribution of photocounts
measured on the detector is determined. Consider a
Gaussian noise model in which each value of Nmn is sta-
tistically independent of the others and has a variance of
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s 2. The equations are made more transparent by defin-
ing the zero-mean random variable bmn [ Nmn
2 WITmn 5 cmn 2 WImn . It is convenient to represent
all of the values of bmn as a single vector b 5 $bmn%,
which will be called the zero-mean photocount vector.

Since the photocounts in each pixel are statistically in-
dependent of each other, the PDF of b is

PB~b! 5
1

~A2ps 2!M2 expH 2 1

2s 2 (
n50

M21

(
m50

M21

bmn
2J .

(15)

The vector b may be written in terms of its inverse DFT
b̃:

bmn 5 (
k50

M21

(
l50

M21

b̃kl expF2i2pS km

M
1

ln

M D G . (16)

Following the standard procedure for changing
variables,20 Eq. (15) may be used to compute the PDF as a
function of b̃. Substituting Eq. (16) into Eq. (15) gives a
sextuple sum. Making use of the identity

(
m50

M21

expF2i2p
m

M
~k 1 p !G 5 Md@k 2 ~M 2 p !#,

(17)

where d represents the Kronecker d, Eq. (15) becomes

ln PB̃~ b̃! 5
2 M2

2s 2 (
n50

M21

(
m50

M21

b̃mnb̃M2m,M2n 1 const.

(18)

The PDF in Eq. (18) may be simplified. Since b is real
and the nth and (M 2 n)th points are conjugate points in
the M-point DFT, one it is seen that bM2m,M2n 5 bmn* .
This relation allows one to reduce the number of terms in
the sum in Eq. (18) by almost half when it is written in
terms of a minimal parameter set as follows:

ln PB̃~ b̃! 5
2 M2

2s 2 F b̃00b̃00*

1 2 (
m51

~M21 !/2

~ b̃0mb̃0m* 1 b̃m0b̃m0* !

1 2 (
n51

M21

(
m51

M21/2

b̃mnb̃mn* G 1 const. (19)

Thus, each Fourier component included in this minimal
parameter set is statistically independent of the others.
If the variance of Nmn were not constant with m and n,
the various Fourier components would be coupled in the
PDF.

When there is more than one measurement of the pho-
tocount vector, presumably each measurement is statisti-
cally independent, and therefore the joint PDF for all
measurements is simply the product of the individual
ones. If b1 is the photocount vector of one measurement
and b2 is that of another measurement, the joint PDF for
the two measurements is given by

PBB~b1 , b2! 5 PB~b1!PB~b2!, (20)
PB̃B̃~ b̃1 , b̃2! 5 PB̃~ b̃1!PB̃~ b̃2!. (21)

Equations (14) and (19) may be used to characterize
quantitatively how much information may be obtained as
a function of spatial frequency Q (in the object space), de-
tection plane distance zd , incident beam transverse wave
vector qi , incident field ei , reference beam transverse
wave vector qr , and reference field vector er .

Since b̃mn 5 c̃mn 2 WĨmn , Eqs. (14) and (21) yield

ln Pmn~ ĥ2 , ĥ1* , ĥ2* , ĥ1!

5
2 W2M2

s 2
@ uH1

1~ ĥ1 2 h̃1! 1 H1
2* ~ ĥ2* 2 h̃2* !u2

1 uH2
1~ ĥ1 2 h̃1! 1 H2

2* ~ ĥ2* 2 h̃2* !u2] 1 const.

(22)

In Eq. (22) ĥ2 , ĥ1* , ĥ2* , ĥ1 are treated as independent
variables. Equation (22) is an example of the more gen-
eral normal probability distribution ln P(x) 5 const.
2 (1/2)xHC21x, where C is the covariance matrix of the
random vector variable x and the superscript H is the
Hermitian conjugate operator. The inverse covariance
matrix in Eq. (22) is seen to be

~Cov!21 5
W2M2

s 2 F 0 0 % e

0 0 e* §

% e* 0 0

e § 0 0
G , (23)

where % 5 H1
2H1

2* 1 H2
2H2

2* , e 5 H1
1H1

2 1 H2
1H2

2 ,
and § 5 H1

1H1
1* 1 H2

1H2
1* . Equation (23) has a sym-

metric block antidiagonal structure. Its inverse is given
by

~Cov! 5
s 2

M2W2~%§ 2 ee* ! F 0 0 § 2 e

0 0 2 e* %

§ 2 e* 0 0

2e % 0 0
G .

(24)

The variance of the estimated quantities uĥ1 2 h̃1u2 and
uĥ2 2 h̃2u2 is given by the (2, 4) and (1, 3) elements, re-
spectively, of the covariance matrix in Eq. (24). Since
h1(Q) 5 h2(2Q), only one of these is nonredundant.
Thus the variance of the estimate is given by

uĥ1 2 h̃1u2 5
%s 2

W2M2~%§ 2 ee* !
. (25)

In addition, the covariances of the real and imaginary
parts of ĥ1 and ĥ2 may be determined from Eq. (24).
Since the diagonal elements of the covariance matrix of
Eq. (24) are zero, the covariances of the real and imagi-
nary parts are equal, and the real and imaginary parts
are uncorrelated. Thus the covariances of the real and
imaginary parts of ĥ1 and ĥ2 are equal to 1/2 of the val-
ues on the right-hand side of Eq. (25). It is interesting to
note that according to Eq. (24) ĥ1 and ĥ2 are correlated.
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B. Poisson Distribution Case
Although determining the PDF of the estimators ĥ2 , ĥ1* ,
ĥ2* , ĥ1 [as in Eq. (22)] in an analytically tractable way for
the Poisson statistics case is challenging, determining the
covariance matrix of the estimators as in Eq. (25) is rela-
tively straightforward. Using the fact that
(Nmn 2 Nmn)2 5 Nmn for a Poisson-distributed random
variable Nmn , one may show that

F c1 c1* 2 c1 c1* c1 c2* 2 c1 c2*

c2 c1* 2 c2 c1* c2 c2* 2 c2 c2*
G

5 F M24 (
m50

M21

(
n50

M21

N1,mn 0

0 M24 (
m50

M21

(
n50

M21

N2,mn
G . (26)

The equality associated with the (1, 1) and (2, 2) elements
in Eq. (26) is essentially identical to the result given by
Goodman20 in his discussion of stellar speckle interferom-
etry (the M24 factor being due to the difference between
the inverse DFT and the DFT).

One may use Eqs. (14) to express the variance
uĥ1 2 h̃1u2 5 ĥ1ĥ1* 2 h̃1h̃1* in terms of the quantities on
the left hand side of Eq. (26). The result is

ĥ1ĥ1* 2 h̃1h̃1* 5
1

W2~%§ 2 ee* !
S uH2

2u2

M4 (
m50

M21

(
n50

M21

N1,mn

1
uH1

2u2

M4 (
m50

M21

(
n50

M21

N2,mnD . (27)

To bring Eqs. (25) and (27) into agreement, one must
have N0 5 s 2 and (m(nN1,mn 5 (m(nN2,mn 5 M2N0 ,
which will always be true when ITmn @ Imn (i.e., the ob-
ject creates a weak hologram) and will sometimes be true
otherwise. Then, Eq. (27) becomes

ĥ1ĥ1* 2 h̃1h̃1* 5
rN0

W2M2~%§ 2 ee* !
. (28)

C. Arbitrary Noise Case
It is instructive to consider a measure of the expected er-
ror independent of the particular noise model, so long as
the noise is independently distributed (as was assumed in
both cases above). One such measure is the squared l2
norm of the system matrix inverse implied in Eq. (14).21

That is, consider the matrix

A 5 FH1
1 H1

2*

H2
1 H2

2* G , (29)

and the vector

ĥ 5 S ĥ1 2 h̃1

ĥ2* 2 h̃2*
D , (30)
related to the data through Eq. (14), ĥ 5 Ab̃. The error
in the estimate is necessarily bounded by the error in the
data and the norm of the matrix inverse. Explicitly,

iDĥi < iA21iiDb̃i . (31)

Fig. 1. Base-10 logarithm of normalized, PSTM, susceptibility,
Fourier space variance for detection heights of
(0.03, 0.1, 0.3, 1.0, 10.0)l as labeled above each panel. The coor-
dinates are spatial frequency in units of k0 5 2p/l. The data
are taken to consist of two scans with incident wave vectors of
62k0x̂, where x̂ is a unit vector. Results of illumination by TM
modes are shown on the left and by TE on the right. The plots
are normalized so that the minimum variance of any point is 1.0.
The linear gray scale runs from 0 to 4 and is shown at the bottom
of the figure. Note that the range varies from panel to panel.
Values of the normalized variance greater than 104 were set
equal to 104 for clarity in display. It can be seen that at zd
5 1.0l, the effective information content is already similar to
that of the far-field limit, in which only the homogeneous modes
are detected.
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Consequently, the more singular A, i.e., the more poorly
conditioned the system, the larger the magnification of
the error in the estimate is expected to be. It is thus use-
ful to consider iA21i2 as an upper bound on the normal-
ized error in the estimate.

4. NUMERICAL RESULTS
A standard mathematics package (MATLAB) was used to
evaluate numerically Eq. (25) for PSTM and TIRM. In
the examples shown here the variance of the estimate
was calculated as a function of spatial frequency at five
heights zd 5 (0.03, 0.1, 0.3, 1.0, 10.0)l (where l
5 2p/k0). The measurements at greatest height are ef-
fectively of the TIRM type rather than PSTM. In PSTM
the reference field is the evanescent incident field, so that

Fig. 2. Same as Fig. 1, except that the data are assumed to con-
sist of two scans with incident wave vectors of 22k0x̂ and 2k0ŷ,
where ŷ is a unit vector.
qr 5 qi and er 5 ei. For the case in which the field is
measured at a detector height of 10l, it is assumed that
the reference field is still of the same polarization and
transverse wave vector as the incident field. Two inde-
pendent polarizations of the incident field are considered,
TE @eiik(qi) 3 ẑ# and TM @eiik(qi) 3 k(qi) 3 ẑ# modes,
with the following parameters: n 5 2.0, qi1
5 (22.0k0 , 0), and Dz 5 1024l. For one set of ex-
amples qi2 5 (2.0k0 , 0), while for the second qi2
5 (0, 2.0k0). Thus the reference beams are antiparallel
for the first and perpendicular for the second. When
qi2 5 (2.0k0 , 0) the experiment achieves the maximum
possible transverse resolution (in the x direction).

Figures 1 and 2 show the variances of the estimate
ĥ(Q) as a function of spatial frequency. These ‘‘variance
images’’ were normalized so that the smallest variance in
any image is unity. The normalized variance images had
a threshold set at 104 (i.e., values greater than 104 were
set to that value) to reduce the dynamic range required of

Fig. 3. Logarithm of the squared l2 norm of the system matrix
inverse for the cases of measurements made in the two closer
planes. The top four plots show results for the case of counter-
propagating incident evanescent waves, and the bottom four
plots show results for the case of the same orthogonal incident
wave vectors discussed in the caption for Fig. 2. Coordinates
are again spatial frequency in units of k0 . The linear gray scale
running from 0 to 4 is shown at the bottom of the figure.
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the display. Note that a value of 104 corresponds to an
RMS error of 100 times that of the best determined value.

It may be seen from Fig. 3 that the squared norm of the
matrix inverse is a good indicator of which regions of the
data space will be practically accessible. However it
should be noted that this upper bound does give quanti-
tatively different results from those obtained for the vari-
ance with particular noise models, so iA21i2 cannot sim-
ply be taken as a substitute for the variance, nor can the
noise model be ignored entirely.

It can been seen in Figs. 1, 2, and 3 that at zd 5 l, the
variance and the norm of the matrix inverse increase
quickly above the far-field cutoff uqi 2 Qu , k0 . The re-
sult indicates that the so-called far zone (the region where
the evanescent fields are negligible) begins in the neigh-
borhood of a single wavelength from the sample. If one
hopes to take practical advantage of the high-spatial-
frequency content of the near field, measurements of the
scattered field must be made within one wavelength of
the sample. It should be noted that the shift of the
Ewald sphere (or circle in this case) of reflection by the
wave vector of the incident field remains evident even in
the far zone. This shift may be used to advantage to cir-
cumvent the usual Abbé–Rayleigh limit when multiple in-
cident fields of different wave vectors are used to sweep
out a region of the Fourier space of the object outside the
usual limiting circle of radius 2k0 .

The case of an incident wave that is less evanescent,
qi 5 (21.1k0 , 0), was also considered, though figures are
not shown here. The results were qualitatively similar to
the above case and led to similar conclusions. That is, at
zd 5 l, the variance of the estimate increases quickly
above the far-field cutoff [in this case uQu , (1.1 1 1)k0].
Of course, in such a case the incident wave does not pro-
vide much more resolution than a homogeneous wave
with uQu 5 k0 .

5. CONCLUSION
An analysis of achievable resolution for optical near-field
microscopy has been presented. An error in the estimate
of the computed dielectric susceptibility was obtained for
Gaussian and Poisson noise models, and a model-
independent measure of expected error was similarly ob-
tained. The formulas presented here place limits on the
spatial resolution that a given experiment may be ex-
pected to achieve for thin (or at least invariant along the z
axis), weakly scattering samples.

The error in the estimate of the object structure was
considered for measurements made at different heights
above the sample. The region of the Fourier space of the
sample practically accessible from these measurements
was seen to decrease in size as the measurement plane
was withdrawn to the far zone. It was shown that the
likely susceptibility estimate error increases dramatically
for spatial frequencies above the far-field cutoff (uqi
2 Qu 5 k0) when the probe is even one wavelength away
from the sample, indicating that the field does not contain
much more information than is available in the far field.
The shift in the Ewald circle of reflection by the wave vec-
tor of the incident field was seen to be manifest even in
the far zone, indicating that superresolved imaging based
on measurements taken in the far zone alone is practi-
cally possible so long as the incident field is evanescent.

Objects exhibiting complicated structure that is not
separable in the transverse and longitudinal coordinates
are also of great interest. In those cases, one may em-
ploy similar methodology and make use of the inverse
scattering formalism described in Refs. 13–16, in combi-
nation with a noise model, to determine the likely errors
in the object reconstruction. This is the subject of a
forthcoming paper.

APPENDIX A
Expressions for the half-space Green’s tensor may be
found in the literature.1,16 The tensor Gab in Eq. (11) is
obtained by integration of the Green’s tensor over the lon-
gitudinal coordinate of the object (z8) and is given by the
expression

G~q!

5
1

uqu2 F qx
2hxx 1 qy

2hyy qxqy~hxx 2 hyy! uquqxhxz

qxqy~hxx 2 hyy! qy
2hxx 1 qx

2hyy uquqyhxz

uquqxhzx uquqyhzx uqu2hzz

G ,

(A1)

where q 5 (qx , qy). The h functions are the result of
multiplying the g̃ functions in Ref. 16 by exp$i@kz(qi)
2 kz(q)#z8% and integrating from 0 to Dz. Explicitly,

hxx 5
kz

2~q!

k0
2

~u1 1 R2u2!,

hxz 5
2 uqukz~q!

k0
2

~u1 2 R2u2!,

hyy 5 ~u1 1 R1u2!,

hzx 5
2 uqukz~q!

k0
2

~u1 1 R2u2!,

hzz 5
uqu2

k0
2

~u1 2 R2u2!, (A2)

where R1(q) and R2(q) are the reflection coefficients
given by

R1~q! 5
kz~q! 2 kz8~q!

kz~q! 1 kz8~q!
, (A3)

R2~q! 5
kz8~q! 2 nkz~q!

kz8~q! 1 nkz~q!
, (A4)

with kz8(q) 5 An2k0
2 2 uqu2. The functions u1 and u2

are given by

u1~q! 5 i
1 2 exp$i@kz~qi! 2 kz~q!#Dz%

kz~qi! 2 kz~q!
,

u2~q! 5 i
1 2 exp$i@kz~qi! 1 kz~q!#Dz%

kz~qi! 1 kz~q!
.

(A5)
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