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Foreword 
 

Looking at the participants of the conference and the authors herein, one is struck by the 
fact that, beyond his specific scientific achievements and scholarly writings, Professor 
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time as his students, our ongoing collaboration, and for introducing us to this community 
in its entirety. He has been and remains for us the prototype mentor, to be imitated but 
never truly copied in our own labs. 
 

 
Abstract 

 
In this chapter, we describe a novel form of near-field microscopy known as Total 

Internal Reflection Tomography (TIRT), which allows for three-dimensional sub-

wavelength imaging. It is based on recent theoretical advances regarding the fundamental 

interaction of light with sub-wavelength structures, as well as stable algorithms for the 
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near-field inverse problem. We will discuss its theoretical underpinnings, as well as 

describe current efforts at NASA to implement a TIRT system for biofluids research. 

 
 
1. Introduction 
 
 Near-field imaging has gained a great deal of exposure in recent years for its 

ability to resolve sub-wavelength structure in optically thin media [1-9]. It has many 

variants, including total internal reflection microscopy (TIRM) [5-7], photon scanning 

tunneling microscopy (PSTM) [9, 10], and near-field scanning optical microscopy 

(NSOM) [1-4], but common to all is the use of evanescent waves for illumination and/or 

detection. In many instances, image interpretation is difficult, owing to the complex 

interaction between the incident field and the sample, as well as between the scattered 

field and the near-field probe.  

 These difficulties are exacerbated when near-field techniques are applied to 

relatively thick samples. In addition to the problem of reconstructing a three-dimensional 

function of position (the dielectric susceptibility) from two-dimensional data sets (i.e. 

measurements of the scattered field in various planes), a thick object may exhibit strong 

scattering, with the consequence that the scattered field is a non-linear function of the 

susceptibility. Even when the scattering is weak, the detected field may not be simply 

related to the sub-wavelength structure of the object, as it is, for example, in the case of 

diffraction from a two-dimensional object [11, 12]. 

 In this Chapter, we will discuss a new form of near-field imaging that makes use 

of TIRM measurements to produce computed reconstructions of the susceptibility of the 

sample. This method provides tomographic views and sub-wavelength resolution. Since 
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the system is free from the moving (and often ill-characterized) probe present in PSTM 

and NSOM, the analysis of the problem is greatly simplified. Indeed the experiment is 

well modeled as a half-space problem and an exact solution for the Green’s function 

(absent the sample) is well known. The linearized inverse scattering problem may then be 

solved in a computationally efficient and stable manner. In Section II we review the 

fundamentals of diffraction tomography and observe the emergence of the classical 

resolution limits. In III we examine the properties of near-field evanescent waves and the 

role they play in achieving super-resolution in a variety of near-field methods. In IV we 

describe the basic TIRM measurement scheme and its extension to TIRT. In Section V 

we address the structure of the TIRT data and the development of fast, stable 

reconstruction algorithms followed by numerical simulations in VI.  Finally, in Section 

VII we describe the instrument currently under construction at NASA to implement this 

modality. 

2. Conventional Imaging 

 Conventional optical imaging systems are limited by diffraction to a resolution of 

approximately half the illuminating wavelength [13, 14]. This so-called Abbe-Rayleigh 

resolution limit [15, 16] is not fundamental, but is a consequence of the measurement 

scheme. In particular, the Abbe-Rayleigh limit arises only when the evanescent field in 

the near zone of the scatterer is inaccessible. For more than a century after the theoretical 

predictions of Abbe and Rayleigh, it was indeed the case that the so-called near field was 

not practically measurable. 

Consider a scattering experiment in which a monochromatic field is incident on a 

localized dielectric medium with complex susceptibility )(rη  (see Fig. 1). 
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Figure 1.  Illustrating the scattering geometry 

 

 For simplicity, we ignore the effects of polarization and consider the case of a scalar 

field )(U r  that obeys the reduced wave equation 

 )(U)(k4)(Uk)(U 222 rrrr ηπ−=+∇ , (1) 

where k is the free space wave number. Following standard procedures, we find that 

)(U r  satisfies the integral equation [13] 

 ∫ ′η′′′+= )()(U),(Grdk)(U)(U 32)i( rrrrrr , (2) 

where the outgoing Green's function ),(G rr ′  is given by 

 
( )

rr
rr

rr
′−

′−
=′

ikexp
),(G , (3) 

and )(U )i( r  is the incident field. We restrict ourselves to the weak-scattering 

approximation (also known as the first Born approximation [13]), which is particularly 

suited to the study of sub-wavelength structures. Accordingly, the scattered field 

)(U)(U)(U )i()s( rrr −=  may be calculated perturbatively to lowest order in η  with the 

result 

 ∫ ′′′′= )()(U),(Grdk)(U )i(32)s( rrrrr η . (4) 
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We take the incident field to be a unit amplitude plane wave traveling in the direction of 

the unit vector 0s , i.e. ( )rsr ⋅= 0
)i( ikexp)(U . Utilizing the asymptotic form of the 

outgoing Green’s function given by 

 
( ) ( ) ( )rs

rr
rr

′⋅−
′−

′−
ikexp

r
ikrexp~

ikexp
, (5) 

as ∞→kr  with the unit vector s kept fixed, we find that the scattered field in the far 

zone has the form 

 ( ) ),(a
r
ikrexp~)r(U 0

)s( sss , (6) 

where the scattering amplitude is given by the expression [13] 

 ( )[ ]0
32

0 k~)2(k),(a ssss −ηπ= ,  (7) 
and 

 ∫ ⋅−= )iexp()(rd
)2(

1)(~ 3
3 rKrK η

π
η  (8)  

 is the three-dimensional spatial Fourier transform of the dielectric susceptibility. This is 

the fundamental result of diffraction tomography and was first derived by Professor Wolf 

in 1969 [14]. 

Equation (7) illustrates that, for a weakly scattering medium, there is a one-to-one 

mapping between the scattering amplitude for real 0,ss  and the low spatial frequency 

components of the dielectric susceptibility. Specifically, for a fixed direction of incidence 

s0 , the scattering amplitude is mapped onto the surface of a sphere of radius k  centered 

at 0ks−  in the three-dimensional Fourier space of the dielectric susceptibility (Fig. 2).  
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Figure 2.  Illustrating the Ewald sphere of reflection and the Ewald-limiting sphere.  

 

As s0  is varied, those surfaces fill a sphere of radius k2  centered at the origin (known as 

the Ewald limiting sphere [13, 17]). Consequently, one may obtain a low-pass filtered 

estimate of the susceptibility, namely 

 [ ] ∫
≤

⋅=

k2

3
LP )iexp()(~Kd)(

K

rKKr ηη . (9) 

Furthermore, this estimate is unique since, due to the analyticity of ~( )η K ,1 the low 

spatial frequency components of the dielectric susceptibility can, in principle, be 

analytically continued to the exterior of the Ewald limiting sphere [18]. In practice, 

however, techniques based on analytic continuation, such as band-limited extrapolation, 

are known to be unstable in the presence of measurement noise [19-21].  

 

3. Evanescent Wave Illumination 
 

We have seen that the low spatial frequency components of the susceptibility may 

be determined by illuminating a sample with homogeneous waves and measuring the 

scattered far field. To determine some subset of the Fourier components that lie outside 

                                                 

1 It follows from the three-dimensional version of the Plancherel-Polya theorem that, since the domain of 
localization of the medium is finite, the three-dimensional spatial Fourier transform of the dielectric 
susceptibility is the boundary value on the real axes Kx, Ky, Kz of an entire analytic function of three 
complex variables.  
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the Ewald limiting sphere and consequently improve resolution, the illuminating field (or 

the measured field) must contain non-negligible evanescent field components.  

Consider a general plane-wave form for the incident field: 

 ( )[ ]zsikexp)(U z00
)i( +⋅= ⊥ ρsr , (10) 

where ( )z,ρ=r , ( )z000 s,⊥= ss  and 
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2
0

0
2
0
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s

s
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For 10 ≤⊥s , the incident field is a homogeneous plane wave propagating in the direction 

of the unit vector 0s , as seen in the previous section. It has a transverse scale length 

 
⊥⊥

⊥ ==
00

0 k
2

s
λπλ  (12) 

that is larger than the wavelength (see Fig. 3).  

 

Figure 3.  Illustrating the transverse scale length of homogeneous and evanescent waves. 

 

For 10 >⊥s , the incident field is an evanescent plane wave with a transverse scale length 

that is smaller than the wavelength (i.e. λλ <⊥0 ). Consequently, evanescent incident 

fields can probe and encode structure on spatial scales smaller than the illuminating 
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wavelength. Unfortunately, evanescent waves decay exponentially from their point of 

origin with decay rate  

 12 2
0 −= ⊥s

λ
πγ , (13) 

so that a two-fold increase in probe scale length ( )20 =⊥s , for example, requires that the 

source of evanescent waves be located within a distance of 10λ  of the scattering 

structure. This is the reason the resolution of a conventional imaging system is 2λ ; the 

source and detector are many wavelengths from the scattering medium, so that 

effectively, only homogeneous waves are present.  

Evanescent waves for illumination may be generated by total internal reflection or 

by diffraction at a sub-wavelength aperture. The near-field scanning optical microscope 

(NSOM) is an instrument that utilizes the second mode of generation to locally confine a 

probe field at the surface of a sample (see Fig. 4) [1-4].  

 

Figure 4. Illustrating the principle of NSOM. sZ  represents the fiber-sample separation. 

 

Scanning the aperture across the sample and recording either the throughput or the 

reflected field as a function of probe position produces an image with sub-wavelength 

resolution. This technique was first proposed by Synge in 1928 [22] and experimentally 

realized using microwaves by Ash and Nicholls in 1972 [23]. Today, a tapered optical 

fiber with sub-wavelength tip cross-section w is typically used in place of the aperture for 

illumination (Fig. 4). When the fiber tip is very close to the surface of the sample, the 
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resolution is on the order of the tip size. As the fiber is removed from the sample, the 

localization of the incident light (and the corresponding resolution) is reduced due to the 

loss (decay) of the evanescent waves. Figure 5 illustrates some of the first experimental 

images taken with an NSOM [1]. One can clearly see the loss of resolution as the fiber tip 

is incrementally distanced from the sample. 

 

Figure 5. AT&T NSOM images (from Ref. [1]). The fiber-sample separations are (a) 

near contact, (b) 5 nm, (c) 10 nm, (d) 25 nm, (e) 100 nm, and (f) 400 nm. 

 

NSOM images have striking sub-wavelength detail, but their interpretation is 

often problematic, especially for thicker samples. This is due to the fact that an NSOM 

image is a measure of the field outside the sample, and the fundamental relationship (i.e. 

mapping) between the field and the optical properties of the medium is usually not taken 

into account. Rather, the mapping is modeled effectively as a (one-view) projection or 

shadowgram. Furthermore, an NSOM image is typically defocused since the probe field 

contains a continuous distribution of both homogeneous and evanescent waves and, 

consequently, its exact composition (and the resulting image) is a function of the fiber-

sample separation.  

This is illustrated in Fig. 6. We consider a three-dimensional object composed of 

two stacked planes, one at λ= 005.0z  and another at λ= 405.0z  ( 0z =  being the 

location of the evanescent wave source). Figures 6a and 6b illustrate the object structure 
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in the two planes, respectively, and Figs. 6c and 6d illustrate their individual far zone 

images.  

 

Figure 6. Illustrating NSOM imaging of a thick object. 

 

These are qualitatively similar to the images in Figs. 5a and 5f obtained from the AT&T 

NSOM. It is clear that the object structure contained in the plane λ= 405.0z  cannot be 

resolved from far zone scattered field measurements. Furthermore, for the composite 

object, the image (i.e. scattered field) of the unresolved structure in the plane λ= 405.0z  

will obscure and degrade the image of the structure in the plane λ= 005.0z . 

It is clear from Fig. 6 that the field scattered from the deeper plane is simply 

defocused. This phenomenon is not particular to the near field, but since a physical lens 

for the near field is not currently available (due to the irretrievable loss of evanescent 

waves), a post-processing solution must be sought. That this need seemed to be so long 

overlooked might be explained by the fact that the data obtained at closest approach so 

much resembles an actual image. As we shall see in the next section, there exist 

modalities for which processing of the collected data is absolutely required.   

4. Three-Dimensional Near-Field Imaging   

Total internal reflection microscopy (TIRM) also involves illuminating a sample 

by evanescent waves [5-7]. In TIRM, an evanescent wave generated by total internal 

reflection illuminates an object and the scattered (or radiated) light is collected by a 
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standard microscope objective. Due to the exponential decay of the incident evanescent 

wave, the interrogation (or excitation) volume is limited in depth to a thickness of 

γ1zp = , with more evanescent fields yielding narrower excitation regions [see Eq. 

(13)]. Consequently, TIRM provides a far-field (i.e. diffraction limited) intensity image 

of a sub-wavelength region near the exit face of the prism. While it does not provide sub-

wavelength imaging, it does provide sub-wavelength localization in depth. As such it is 

extremely useful for surface inspection. TIRM can be taken a step further if images are 

recorded for a series of distinct evanescent incident fields. In this case, each image is the 

result of a different (and unique) exponential weighting of the susceptibility, and the 

composite image stack can be inverted (possibly) to provide sub-wavelength resolution in 

depth (i.e. the z-dimension). In either the standard or extended TIRM case, the transverse 

resolution is limited to 2λ  since the excitation volume is not constrained in the 

transverse dimension and only the amplitude of the scattered field is measured in the far 

zone. 

Total internal reflection tomography (TIRT) [24-27] is a coherent extension of 

TIRM in which the complex scattered field (both amplitude and phase) in the far zone is 

recorded for a diverse set of evanescent incident fields. The scattered field data is 

subsequently synthesized (or inverted) to yield an estimate of the three-dimensional 

object structure. Central to the inversion is the physical connection between the structure 

of the susceptibility and the scattered field. This connection is most easily seen in the 

Fourier domain. Consider an evanescent plane wave with complex wave-vector 0ks , 

generated by total internal reflection, which illuminates a weakly scattering object that is 

confined to the region dz0 ≤≤  (see Fig. 7).   
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Figure 7. Illustrating the TIRT geometry. cθ  represents the critical angle. 

 

The amplitude of the evanescent wave at the exit face of the prism (i.e. zz ∆−= ) is taken 

to be unity. It can be shown that the scattering amplitude, to first order, is given by [24] 

 ( ) ( )[ ] ( )∫ ⊥⊥ −−= z0zzhz0zz0
22

0 s,s;KIK,k~dKzkexp)2(k),(a sssss η∆π ,  (14) 

where 

 ( ) ( )[ ]{ }
( )zzz0

zzz0
z0zzh Kksisk

dKksiskexp
s,s;KI

−+
−+

= . (15) 

There is no longer a one-to-one correspondence between the scattering amplitude and the 

three-dimensional Fourier transform of the dielectric susceptibility, as there was in the 

case of conventional imaging [cf. Eq. (7)]. Specifically, the scattering amplitude ),(a 0ss  

is now proportional to the weighted projection (i.e. the generalized Radon transform) 

along the zK  axis of all of those Fourier components of the susceptibility that have 

( )⊥⊥⊥ −= 0k ssK . The weighting function hI , which is independent of object thickness, 

determines the effective number of longitudinal Fourier components that contribute to the 

scattering amplitude. Its normalized modulus, shown in Fig. 8, is peaked at zz ksK =  and 

has a nominal width of z0sk32 .  
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Figure 8. The modulus of the normalized weighting function, plotted for 5.1z0 =s  and 
1sz = . 

 

As a result, the scattered field in the direction s carries information about a single high-

frequency transverse Fourier component and many (both low and high frequency) 

longitudinal Fourier components, with the number of longitudinal Fourier components 

that effectively contribute increasing with the degree of evanescence 2
z00 s1+=⊥s  

of the incident field.  

 By contrast, for a two-dimensional object with susceptibility )z()()( δβη ρ=r , 

the scattering amplitude takes the form 

 ( ) ( )[ ]⊥⊥ −−= 0z0
32

0 k~zkexp)2(k),(a sssss β∆π , (16) 

where 

 ( )∫
=

⋅−ρ=

0z

2
2 iexp)(d

)2(
1)(~

ρξρξ β
π

β  . (17) 

is the two-dimensional Fourier transform of )(ρβ . In this case, there is a one-to-one 

mapping between the high-frequency two-dimensional Fourier components of the object 

and the scattering amplitude. This one-to-one mapping explains the success of NSOM in 

resolving sub-wavelength detail in two-dimensional samples. 

 
5.  Image Reconstruction 
 

As we have seen, for evanescent wave illumination and far-field detection, there 

is a many-to-one mapping between the three-dimensional spatial Fourier components of 
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the dielectric susceptibility and the scattered field. This leads to an inverse problem that 

is inherently ill-posed (or ill-conditioned in the discrete case) and generally under-

determined [21]. In TIRT, there are two general reconstruction strategies that can be 

employed for three-dimensional structure determination: Fourier domain sampling and 

singular value decomposition. In either case, the inversion procedure must involve some 

type of regularization to deal with the problem of limited and noisy scattered field data. 

We will now discuss these two reconstruction strategies. 

 
5.1 Fourier Domain Sampling 
 

Fourier domain sampling is a procedure by which the Fourier components of the 

susceptibility are determined by discrete inversion of the generalized Radon transform 

represented by equation (14) [24, 25]. This sampling is typically achieved by one of two 

measurement schemes. The first scheme involves sampling the Fourier transform of the 

susceptibility )(~ Kη  (for a given object orientation) by independent variation of ⊥s  and 

⊥0s , such that ⊥s  remains fixed and ⊥0s  assumes the discrete values 

⊥
−

⊥⊥ += sss 2)1i(
0

)i(
0 , ( )N..,,2,1i = . A contiguous set of annular projection data is 

obtained, with each annular projection having the same width ⊥sk2  but a different 

weighting )i(
hI .  This is illustrated in Fig. 9.  

 

Figure 9. Illustrating two contiguous annular projection regions in the Fourier space of 

the dielectric susceptibility. The weighting of the projection data in each of 

the regions is clearly indicated. In addition, several typical projections in the 
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first region are shown, which correspond to the color-coded measurement 

directions illustrated in Fig. 7. 

 

It follows that the inner and outer radii of the composite annulus are 

[ ]⊥⊥ −= ss )1(
0min kK  and [ ]⊥⊥ += ss )N(

0max kK , respectively. If the 

measurement procedure is then repeated for all possible object orientations, a complete 

multi-view set of annular projection data is obtained that can be inverted for the three-

dimensional Fourier transform of the susceptibility. As an example, for 2.1)1(
0 =⊥s , 

2)2(
0 =⊥s , and 4.0=⊥s , we obtain two annular projections that cover the spatial 

frequency range 4.2K8.0 ≤≤ . Alternatively, we could achieve the same Fourier 

coverage by choosing 6.10 =⊥s  and 8.0=⊥s . Ultimately, the choice depends upon 

measurement noise and the availability of a given measurement. 

Since 1≤⊥s  and 1)i(
0 >⊥s , there will be a spherical region of radius minK , 

centered about the origin, about which no Fourier information is available. This is not a 

problem in TIRT, since k2Kmin ≤ , and the low-frequency Fourier components can be 

determined from conventional scattering data [14]. The upper limit maxK , which 

ultimately determines the spatial resolution, is a function of the distance between the exit 

face of the prism and the object, the thickness of the object, and the measurement noise. 

For TIRT, the theoretical maximum is ( )1nkK max += , so that the achievable spatial 
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resolution is limited to ( )1n +λ . For a prism with index of refraction 4.2n = , this yields 

a resolution limit of 4.3λ .  

Alternatively, one can attempt a reconstruction for a fixed object orientation (i.e. 

single view). By this scheme, we fix ⊥⊥ −= ss0ξ and vary ⊥0s  and ⊥s  independently. 

We obtain a linear system of equations with the same three-dimensional Fourier 

components sampled by weighting functions of varying widths, which can be inverted. 

We then choose another ξ  and repeat the process.  The stability of the inversion depends 

upon the diversity one can achieve in the variation of ⊥0s  and ⊥s .  

 
5.2 Singular-Value Decomposition 

The second reconstruction strategy is based upon the singular value 

decomposition of the linearized scattering kernel [26-28]. It follows from Sec. 2 that, for 

a weakly scattering medium, the scattering amplitude (i.e. the data function) has the 

general linear form 

 ( ) rd)(;,K),(a 3
00 rrssss η⊥⊥⊥⊥ ∫=  (18) 

or, in operator notation, ηKa = . The Fourier space analysis leads us to conclude that 

there exists a great deal of redundancy in the accessible data space. It is clear that a low-

pass version of the susceptibility (with sub-wavelength detail) may be constructed from 

any number of subsets of the data. To obtain the best possible reconstruction, it is 

therefore desirable to take some linear combination of the available data to find a best 

solution. It is sensible to take as the best solution that solution which minimizes the 
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squared discrepancy between the forward modal (i.e. operator) acting on the solution and 

the actual data. That is, a solution that makes  

 
2

aK −+η  (19) 

a minimum. In the event that such a solution is not unique, the solution of minimum norm 

is chosen. The operator +K  that connects the data to the solution is known as the pseudo-

inverse: 

 aK++ =η . (20) 

To construct the operator +K  explicitly, the singular value decomposition (SVD) 

may be employed [21]. This approach offers several advantages, namely that the structure 

of the linear transformation is readily apparent, the effective degrees of freedom may be 

observed, and many regularization methods may be implemented by modification of the 

spectrum that is obtained. The SVD of the kernel K is given by [28] 

 ∑ ⊥⊥
∗

⊥⊥ =

n

0nnn0 ),(g)(f);,(K ssrrss σ , (21) 

where nσ  is the singular value associated with the singular functions nf  and ng . The 

{ }nf  and { }ng are orthonormal bases of the object and image Hilbert spaces, respectively, 

and are eigenfunctions with eigenvalues 2
nσ  of the positive self-adjoint operators KK+  

and +KK : 

 n
2
nn ffKK σ=+   (22a) 

 n
2
nn ggKK σ=+ . (22b) 
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 In addition, the nf  and ng  are related by 

 nnn gfK σ=  (23a) 

 nnn ggK σ=+ . (23b) 

For a band-limited (i.e. physical) operator, the singular values are a monotonically 

decreasing function of the index n, as shown in Fig. 10 [21]. 

 

Figure 10.  Illustrating the behavior of the singular values for a band-limited operator. 

 

 It is interesting to note that the singular value decomposition is the functional equivalent 

of eigenfunction decomposition, except that the orthonormal basis functions nf  and ng  

for the object space and image space, respectively, are different. 

 The kernel of the pseudo-inverse is readily obtained by the expression 

 ∑ ⊥⊥
∗

⊥⊥
+ =

n

0nn
n

0 ),(g)(f1),;(K ssrssr
σ

, (24) 

where the sum is carried out over the n such that 0n ≠σ . In the event that a true inverse 

exists, this pseudo-inverse reduces identically to it. When a true inverse does not exist, 

the pseudo-inverse yields the solution that minimizes the error on the orthogonal 

complement of the null space of K . 

 In practice, small eigenvalues nσ  in Eq. (24) lead to unstable reconstructions 

[21]. In order to regularize the results and effectively deal with noisy data, the pseudo-

inverse may be modified in a number of ways. By the Tikhonov method, the inverse 
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singular values n1 σ  are replaced with )( 22
nn βσσ + , β  being a tunable parameter. 

The modification of the spectrum is equivalent to solving a modified least squared error 

problem where in addition to minimizing the error, the quantity 2+ηβ  is minimized 

simultaneously. When the spacing of the singular values is large compared to β , this 

method produces results very similar to a simple cut-off in the spectrum, i.e. a truncation 

in the sum over singular values to eliminate terms where cn σσ ≤ , where cσ  represents 

the cut-off singular value. Regularization effectively imposes a band limit on the 

reconstructions and so connects the noise level to the resolution. 

 
6. Numerical Simulation 

 

To illustrate the utility and power of TIRT, let us consider the following two-

dimensional computer simulation. We take two point scatterers of diameter 50d λ=  to 

be separated along the x-axis by 4λ  and along the z-axis by 10λ  (see Fig. 11).  

 

Figure 11. Illustrating the object used for the numerical simulation. 

 

The distance along the z-axis between the prism face and the first scatterer is taken to be 

4λ . The index of refraction of the prism is 4.2n = . We take 21 equally spaced angles 

of illumination in the backward half-space and 21 equally spaced angles of detection in 

the forward half-space. This corresponds to the following ranges for the incident and 

scattered transverse wave-vectors ( )⊥⊥⊥⊥ == sksk kandk 00 : 
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.k0

k4.20 0

≤≤

≤≤

⊥

⊥

k

k
 (25) 

 

 In Figs. 12a and 12b, the transverse information content of the scattered field is 

illustrated for this case2 and the case of homogeneous illumination (i.e. 1n = ). Figure 

12c represents the region of overlap between the two cases. We see that the use of 

evanescent incident waves increases the information content of the scattered field by 

roughly 70% with a corresponding increase in transverse resolution. But the real utility of 

the TIRT modality is the ability to resolve sub-wavelength features as a function of 

depth.  This is clearly demonstrated in the following figures. Figure 13a illustrates the 

object reconstruction with no added noise (only machine error noise) and no 

regularization. The field of view of the figure is 2λ  by 2λ . Figure 13b illustrates the 

object reconstruction with 40 dB of additive noise that has been regularized. One can 

clearly resolve the two spheres. For purposes of comparison, Figure 13c illustrates the 

object reconstruction for a prism index of refraction of n = 1. This corresponds to the case 

that only homogeneous waves are used for illumination, and we see that it is difficult, 

even in this noise-free case to resolve the spheres. 

 

Figure 13.  Numerical simulation. 

 

                                                 

2 In Fig. 11, we actually show the 2.5 – dimensional case (i.e. the case where the scattered field is 

measured in the entire forward half-space) for clarity.  For the two-dimensional case, the bands would 

be lines along the x-axis. 
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7. Experimental Configuration 

 We are currently constructing a TIRT microscope at the NASA Glenn Research 

Center for use in biofluids research. Initially, the microscope will be −5.2 dimensional, 

with a three-dimensional version to follow. The configuration of the microscope is shown 

in Fig. 14.  

 

Figure 14.  Illustrating the configuration of the prototype TIRT microscope. 

 

The output from a frequency-doubled Nd: YAG laser is split into a sample beam (1%) 

and a reference beam (99%). The sample beam is scanned by a rotating mirror through an 

angular range °≤≤° 6535 sθ  into a cylindrical glass prism of index of refraction 9.1n = . 

The critical angle of the prism is °= 8.31cθ , so the scanned beam is totally internally 

reflected and evanescent waves are generated within the transverse wave vector range 

k72.1k09.1 0 ≤≤ ⊥k . The scattered light is collected by a high-quality objective with a 

numerical aperture (NA) of 0.9 (collection half-angle of °2.64 ). This corresponds to a 

scattered field transverse wave-vector range of k9.00 ≤≤ ⊥k . The incident and 

scattered wave-vector ranges are much more restricted in this case than in the numerical 

simulation due to practical limitations of the scanning and collection optics, respectively. 

Finally, the scattered light is heterodyned at a high-resolution CCD camera with the beam 

from the sample arm, which has been phase-modulated and expanded. Consequently, 

there is a direct mapping between the CCD output and the complex scattering amplitude 

over the aforementioned range. For each evanescent incident field, four CCD images 
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corresponding to four different reference beam phase shifts ( )23,,2,0 πππ  are taken to 

allow unambiguous determination of the phase of the complex scattering amplitude. 

 For comparison with the numerical simulation, Fig 15 illustrates the information 

content of the scattered field for the prototype TIRT microscope. We see the TIRT 

modality extends and complements the structural information that one would obtain with 

homogeneous incident fields alone. 

 

Figure 15. Illustrating the transverse information content of the scattered field for the 

prototype TIRT microscope. 

 

8. Conclusion 

We have discussed the role of evanescent waves in achieving the super-resolution 

of near-field imaging modalities. The essential mechanism, the interaction of the super-

oscillatory evanescent fields with the sub-wavelength structure of the sample, may be 

invoked by means other than the usual probe-induced field localization. In fact, a single 

evanescent plane wave may be generated at the surface of a prism and used as a source of 

illumination as is routinely done in TIRM. A careful analysis of the scattered field reveals 

that the Ewald sphere of reflection is shifted by the incident wave vector as is well 

understood in diffraction tomography. However, because the magnitude of the transverse 

part of the evanescent wave vector is larger than the free-space wave number, the region 

of the Fourier space of the object that is accessible now includes points outside the usual 

Ewald limiting sphere. For this reason, when data are collected for a range of incident 
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fields, the classical resolution limits may be overcome in a computed reconstruction of 

the sample susceptibility. This approach yields the additional benefit that the 

reconstruction is inherently tomographic and so a view of the sample structure as a 

function of depth may be obtained.   
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