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We present an analysis of the accuracy and information content of three-dimensional reconstructions of the di-
electric susceptibility of a sample from noisy, near-field holographic measurements, such as those made in scan-
ning probe microscopy. Holographic measurements are related to the dielectric susceptibility via a linear operator
within the accuracy of the first Born approximation. The maximum-likelihood reconstruction of the dielectric
susceptibility is expressed as a linear combination of basis functions determined by singular value decomposition
of the weighted measurement operator. Maximum a posteriori estimates based on prior information are also dis-
cussed. Semianalytical expressions are given for the likely error due to measurement noise in the basis function
coefficients, resulting in effective resolution limits in all three dimensions. These results are illustrated by numer-
ical examples. © 2011 Optical Society of America
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1. INTRODUCTION
Near-field microscopy [1,2] is an important optical imaging
technology that provides resolution on scales much smaller
than the Rayleigh–Abbe resolution limit [3]. Synge first sug-
gested the basic method, in which a thin sample is illuminated
through a subwavelength aperture that is scanned very close
to the sample while the intensity of transmitted light is re-
corded as a function of the position [4]. This method is now
known as near-field scanning optical microscopy (NSOM)
[5–8], and is often practiced by illuminating the sample and
collecting the light through a subwavelength aperture at the
end of a tapered optical fiber. Photon scanning tunneling mi-
croscopy (PSTM) is a related method, in which the sample is
illuminated by an evanescent wave created by total internal
reflection at a prism face and the subsequently scattered light
is collected by a tapered fiber, as in NSOM.

Interpretation of near-field images is sometimes proble-
matic. Under certain simplifying assumptions, such as homo-
geneity of the material dielectric susceptibility [6], the
measurements may be related to the topography. Under more
general conditions, a solution of the linearized scattering pro-
blem [9–14] may relate near-field optical measurements to
the object structure. An experimental demonstration of the
linearized inverse problem was presented in Ref. [15]. Non-
linear reconstructions, i.e., beyond the Born approximation,
have been formulated, but present a serious challenge to im-
plementation, namely, regarding the stability. The study of the
linearized problem also provides a starting point for the anal-
ysis [16] of the nonlinear problem [17–20].

Important questions remain: what are the fundamental lim-
its on information or resolution in near-field microscopy? How
do noise, bounds on object size, and distance from probe to

sample affect these limits? This paper addresses these ques-
tions in a statistical context and builds on the work presented
in a previous paper [21], henceforth called paper I. In paper I,
the analysis was carried out for a sample that exhibits varia-
tion in only two dimensions (see also Refs. [22–27]). In the
present paper, the solution of the linearized inverse scattering
problem [10–13] is applied to the case of a three-dimensional,
weakly scattering sample. The MLE of the sample susceptibil-
ity is expanded in terms of singular functions, and a semiana-
lytic expression for the error covariance matrix of expansion
coefficients is obtained for a Gaussian noise model. These for-
mulas are then applied to examples in which object size, noise
level, and the distance from the probe to the sample are var-
ied. The reconstruction quality is assessed, and the informa-
tion content is measured by counting the number of available
singular functions.

2. SCATTERING MODEL
Consider an experiment inwhich amonochromatic planewave
is incident on a sample, located in the half-space z ≥ 0, with di-
electric susceptibility ηðrÞ ¼ ðn2

sðrÞ − 1Þ=4π, where ns is the
complex index of refraction of the sample and r ¼ ðρ; zÞ is
the coordinate vector. The half-space z ≥ 0 has a (background)
index of refraction of n ¼ 1, while the other half-space, z < 0,
has an index of refraction ofn. Only nonmagneticmaterials are
considered, and, so, it is sufficient to only treat the electric field
E. The field satisfies the equation

∇ ×∇ × EðrÞ − n2ðzÞk20EðrÞ ¼ 4πk20ηðrÞEðrÞ; ð1Þ

where k0 is the free-space wave number and nðzÞ is the
z-dependent background index of refraction described above.
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The sample is assumed to be of a thickness not greater thanΔz
at any transverse spatial coordinate ρ.

The field can be decomposed into two parts as E ¼ Ei þ Es,
where Ei is the incident field, present when η ¼ 0, and Es is
the scattered field. It is convenient to separate the wave
vectors into transverse and longitudinal (z) components as
follows:

kðqÞ ¼ ½q; kzðqÞ&; ð2Þ

kzðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − jqj2

q
: ð3Þ

The modes for which jqj < k0 are homogeneous, or propagat-
ing, plane waves. When jqj > k0, the modes are evanescent
plane waves, decaying exponentially with increasing values
of z. These waves are superoscillatory in the transverse plane
and thus provide a means to probe spatial frequencies beyond
the Rayleigh–Abbe limit in the far field [13].

The (possibly evanescent) incident field has the form

EiðrÞ ¼ Aiêi exp½ikðqiÞ · r&; ð4Þ

where qi is the transverse wave vector of the incident plane
wave, êi is the complex polarization unit vector, and Ai is the
real field amplitude, so that ðAiÞ2 has units of energy=
ðtime · areaÞ. In PSTM, k0 < jqij ≤ nk0, and in NSOM, jqij ≤ k0.

Keeping only the first term in the Born series, the scattered
field is given by the expression [12]

Es
αðrÞ ¼ k20A

i
Z

d3r0ηðr0ÞGαβðr; r0Þêiβ exp½iqi · ρ0 þ ikzðqiÞz0&;

ð5Þ

where the summation convention for repeated indices is im-
plied, G is the half-space Green’s tensor given in Appendix A,
and ρ0 is equal to the transverse components of r0.

The measurements are made in the plane z ¼ zd, which is
illuminated by a reference plane wave

ErðrÞ ¼ Ar êr exp½ikðqrÞ · r&: ð6Þ

It is important to note that for the NSOM and PSTM imaging
modalities, as well as some forms of total internal reflection
tomography (TIRT), the incident field also plays the role of the
reference field. The total field in the detector plane is given by
the superposition of the reference and scattered fields. The
resulting total intensity is given by

Itotalðρ; zdÞ ¼ Er
αEr'

α þ Es
αEs'

α þ Es
αEr'

α þ Er
αEs'

α ; ð7Þ

where the spatial arguments of the fields have been sup-
pressed and the ' notation indicates that the complex conju-
gate is to be taken. We emphasize that in this classical
viewpoint Itotal is a deterministic, noise-free quantity that is
not measured and hence not exactly known. The associated
measured quantity is a noisy version that is given by a random
variable defined (in terms of photocounts) later in the paper.
The first term represents a uniform background term at a
fixed zd. The second term is necessarily nonlinear in the sus-
ceptibility. Under weak scattering conditions, it is negligible
compared to the third and fourth terms and is disregarded
hereafter. However, if the reference field is evanescent, the

scattering term becomes more important and eventually the
second term dominates as zd increases. The third and fourth
terms are conjugates that carry image information and to-
gether are called the holographic intensity:

Iðρ; zdÞ≡ Es
αEr'

α þ Er
αEs'

α : ð8Þ

It should be noted that Iðρ; zdÞ may be positive or negative.
Determination of η is facilitated by taking the 2D Fourier

transform of the holographic intensity Iðρ; zdÞ, i.e.,

~Iðq; zdÞ≡
1
2π

Z
d2ρIðρ; zdÞ exp½iq · ρ&: ð9Þ

Suppressing the dependence on zd and substituting Eqs. (5)
and (6) into Eq. (8) yields

~IðqÞ ¼
Z Δz

0
½Hðq;qr;qi; zÞ~ηðqþ qi − qr; zÞ

þH'ð−q;qr;qi; zÞ~η'ð−qþ qi − qr; zÞ&dz; ð10Þ

where Hðq; zÞ is given by

Hðq; qr; qi; zÞ ¼ i
2π k

2
0A

rAiêr'β êiα
hαβðqr − q; zÞ
kzðqr − qÞ

r

× expfi½kzðqr − qÞ − k'zðqrÞ&zd
þ i½kzðqiÞ − kzðqr − qÞ&zg; ð11Þ

where the tensor h is given in Appendix A.
Equation (10) is our forward model for the data and pro-

vides a basis for the solution of the inverse problem (i.e.,
the determination of η). The inverse problem is overdeter-
mined in the general case (qi ≠ qr), as might be expected from
the fact that data are collected in six dimensions and the un-
known (η) is a function of only three variables.

It is worthwhile to discuss the way in which one might ex-
pect the holographic intensity to change with the transverse
spatial frequencies q, qi, and qr . Inspecting Eq. (11), one can
see several regimes in which the kernel function H decays ex-
ponentially with z or z0 and one regime in which it does not.
These regimes may be classified as follows:

1. jqij ≤ k0, jqr j ≤ k0, and jqr − qj ≤ k0: there is no exponen-
tial decay. A necessary condition for this is jqj < 2k0. This is
the regime of standard (far-field) diffraction tomography,
where the reconstructions are bandlimited to the Ewald limit-
ing sphere of radius 2k0 [3].

2. jqij ≤ k0, qr ¼ qi, and jqi − qj > k0: there is one factor of
exponential decay. This regime is accessible in scattering
NSOM.

3. k0 < jqij ≤ nk0, jqr j ≤ k0, and jqr − qj ≤ k0: the incident
field decays exponentially, but the reference and scat-
tered waves propagate to the far field. This regime is ac-
cessible in TIRT, a variant of total internal reflection
microscopy [11,13].

4. k0 < jqij ≤ nk0, qr ¼ qi, and jqi − qj ≤ k0: there is one
factor of exponential decay. A necessary condition for this
is jqj < ðnþ 1Þk0. This condition sets the limit for the ðnþ
1Þk0 cutoff observed in paper I. This regime is again accessible
in TIRT.
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5. k0 < jqij ≤ nk0, qr ¼ qi, and jqi − qj > k0: there are two
factors of exponential decay. This regime is accessible
in PSTM.

The general case where qi ≠ qr might be thought of as a
near-field form of Leith–Upatnieks holography where the re-
ference field is not identical with the illumination and so
avoids the so-called conjugate image problem. The restricted
case that qi ¼ qr is analogous to Gabor holography, in which
the incident and reference fields are identical. For scattering
NSOM and PSTM, the Gabor-type hologram is obtained by a
natural extension of the standard instrument. We consider the
restricted case for the rest of the paper.

The susceptibility ηðrÞ is to be estimated from a set of P
noisy measurements. Paper I dealt with the P ¼ 2 case under
the assumption that η has no structure in the z direction apart
from finite support. For the purpose of this paper, the jth mea-
surement is defined to be a set ofM2 experimental determina-
tions of total intensity fItotalj;mn; 0 ≤ m;n ≤ M − 1g at transverse
coordinates ρmn. The entire dataset consists of P such mea-
surements with distinct values of the experimental param-
eters that determine the properties of the incident and
reference beams. Each value of the index j corresponds to
a different pair of incident and reference wave vectors qrj ¼
qij and their polarization vectors êrj ¼ êij . If two (or more) mea-
surements are made with identical experimental parameters,
they may be averaged and treated as a single measurement
(with the measurement uncertainty adjusted accordingly).

It is useful to define the measurement operator H, which
maps L2ð0;ΔzÞ × L2ð0;ΔzÞ to CP [where L2ð0;ΔzÞ is the
space of square integrable functions on the interval ð0;ΔzÞ
and CP is the space of complex vectors with P components]
via its kernel:

Hðq; zÞ≡

2

64
Hðq;qi0;qi0; zÞ H'ð−q;qi0;qi0; zÞ

..

. ..
.

Hðq; qiP−1;qiP−1; zÞ H'ð−q; qiP−1;qiP−1; zÞ

3

75; ð12Þ

as well as the vector of holographic intensities:

~IðqÞ≡
~I0ðqÞ
..
.

~IP−1ðqÞ

0

B@

1

CA; ð13Þ

and the two-component vector containing the pair:

~ηðq; zÞ≡ ~ηðq; zÞ
~η'ð−q; zÞ

" #
: ð14Þ

With this notation the inner product is denoted

~ηHðq; zÞ~ηðq; zÞ ¼
Z Δz

0
dzfj~ηðq; zÞj2 þ j~ηð−q; zÞj2g; ð15Þ

and the H superscript indicates the Hermitian adjoint.
Similarly, ~ηðq; z1Þ~ηHðq; z2Þ denotes an outer product, which
is a 2 × 2 matrix of functions on L2ð0;ΔzÞ × L2ð0;ΔzÞ.

Equation (10) refers to only one measurement. Making use
of the definitions in Eqs. (12)–(14), Eq. (10) generalizes to the
following system of equations:

~IðqÞ ¼ ½H~η&ðqÞ ¼
Z Δz

0
dzHðq; zÞ~ηðq; zÞ; ð16Þ

where the integration over z is implied in the operator nota-
tion. Note that HðqÞ in Eq. (16) is an operator and Hðq; zÞ in
Eq. (12) is the kernel of that operator. As with Itotal in Eq. (7),
~IðqÞ is noise free, deterministic, and not known.

Without further constraints on the solutions, the measure-
ment operator H is not invertible because the problem is un-
derdetermined for the case of finite data. Under conditions
that allow a nonsingular representation of H, it resembles the
Laplace transform, and its poor conditioning makes the
solution unstable to noise. The inversion algorithm must be
regularized to find an approximate, smooth, and stable
solution [28].

BecauseH is a singular linear operator, there exists a family
of solutions to Eq. (16). The solution of minimum L2 norm is
denoted by ~ηþ. Because it is the minimum-norm solution, ~ηþ

lies in the orthogonal compliment to the null space of H [29],
and ~ηþ satisfies Eq. (16):

~IðqÞ ¼ HðqÞ~ηþðqÞ: ð17Þ

3. STATISTICAL MODEL
An analytical forward model for the holographic intensity is
given above. Real data are, of course, obtained on a discrete
grid and are generally noisy. Below, the problem is recast in a
discrete form and data are treated as random variables. A par-
ticular noise model is introduced, and the inverse problem is
solved by employing regularization.

A. Discretization
The intensity in a given plane outside the sample is effectively
bandlimited and therefore allows a representation on a dis-
crete grid in coordinate space. It is assumed that the detector
is of area L × L, lies in the plane z ¼ zd, and that it is sampled
at M ×M points, loosely referred to as “pixels,” that give mea-
surements of the total intensity at points fρmng.M is assumed
to be an odd integer, so that a symmetric spatial-frequency
grid is obtained. It is also assumed that the detector has suffi-
cient surface area so that the effects of truncation of the Four-
ier transform are negligible. This model leads to the following
discretization of the spatial-frequency variable q. The discrete
spatial frequency is defined as qmn ≡ ðβm; βnÞ, where βn is

βn ¼ 2π
L
n; 0 ≤ n ≤

M − 1
2

;

¼ 2π
L
½n −M&; M − 1

2
þ 1 ≤ n ≤ M − 1; ð18Þ

and qM−m;M−n ¼ −qmn.

B. Photocount Statistics
In this discussion, the semiclassical model for photoelectric
detection is used, i.e., the electromagnetic field incident on
the detector is treated classically, but the detection is quan-
tized in units of photoevents (photocounts) [30]. The photo-
count statistics are taken to be photon limited, for which
the noise at each detector pixel is statistically independent
of the others and follows a Poisson distribution. Under the

298 J. Opt. Soc. Am. A / Vol. 28, No. 3 / March 2011 Fischer et al.



weak hologram approximation, however, the photon noise
will be dominated by that due to the reference beam and,
hence, will be independent of the holographic intensity (i.e.,
signal independent). In addition, for sufficiently high count
rates, the noise can be modeled as approximately Gaussian,
of the same mean and variance. Consequently, the noise at
each pixel can treated as additive Gaussian noise.

The number of photons counted in the mnth pixel for the
jth measurement is represented by the random variableNj;mn.
The expected number of photons is Nj;mn ¼ WItotalj;mn, where
W ¼ ΔaΔt=ℏck0, and the overbar denotes the expectation op-
erator; Δa, Δt, c, and ℏ are the effective pixel area (including
the quantum efficiency), the measurement time, the speed of
light, and Planck’s constant divided by 2π, respectively. The
expected number of reference beam photocounts (or incident
beam photocounts, because they are same for PSTM) is repre-
sented by N0;j ¼ WðAr

j Þ2j expfi½kzðqrj Þ − k'zðqrj Þ&zdgj. We see
that the reference (incident) beam amplitude decreases expo-
nentially with zd by an amount that depends on kzðqijÞ; hence,
in photon-limited imaging, the noise depends on qij , and so the
noise variance is dependent on the measurement number. It
follows that the random photocount variable cj;mn ≡ Nj;mn −

N0;j represents a measure of the holographic intensity. As ex-
pected, for zero-mean noise, cj;mn ¼ WIj;mn.

Let cj ¼ fcj;mn; 0 ≤ m;n ≤ M − 1g represent the holographic
photocount vector corresponding to the jth measurement and
~cj ¼ f~cj;mn; 0 ≤ m;n ≤ M − 1g its 2D discrete Fourier trans-
form (DFT), where

~cj;mn ¼ 1
M2

XM−1

k¼0

XM−1

l¼0

cj;kl exp
$
2πi

%
km
M

þ ln
M

&'
: ð19Þ

The joint probability density function (PDF) of the 2D DFT
of the holographic photocount vector is given by

lnP~cð~cjÞ ¼
−M2

2σ2j

%
ð~cj;00 − ~cj;00Þð~c'j;00 − ~c'j;00Þ

þ 2
XM−1

2

m¼1

½ð~cj;0m −
~cj;0mÞð~c'j;0m −

~c'j;0mÞ

þ ð~cj;m0 − ~cj;m0Þð~c'j;m0 − ~c'j;m0Þ&

þ 2
XM−1

n¼1

XM−1
2

m¼1

ð~cj;mn − ~cj;mnÞð~c'j;mn − ~c'j;mnÞ
&
þ const:;

ð20Þ

where σ2j is the variance of cj;mn. It can be seen from Eq. (20)
that ~cj is an example of a so-called circular (or proper) Gaus-
sian random vector. For a circular random variable x, the real
and imaginary parts of the vector ðx − !xÞ are independent and
of the same variance, and the joint PDF has the form

PXðxÞ ¼
1

ð2πÞmjCj exp
%
−

1
2
ðx − !xÞHC−1ðx − !xÞ

&
; ð21Þ

where C−1 is Hermitian symmetric [31]. In this case, the
covariance is given by

ðx − !xÞðx − !xÞH ¼ 2C: ð22Þ

Because the P measurements are statistically independent,
the joint PDF of all of the holographic intensity data takes a
particularly simple form:

Ptotalð~c0;…;~cP−1Þ ¼
YP−1

j¼0

P~cð~cjÞ: ð23Þ

The PDF in Eq. (23) can be simplified if we redefine the ho-
lographic photocount vector as ~c ¼ f~cmn; 0 ≤ m;n ≤ M − 1g,
where ~cmn ≡ f~cj;mn; 0 ≤ j ≤ P − 1g. Upon substituting Eq. (20)
into Eq. (23) and taking the logarithm, we find that

lnPtotalð~c0;…;~cP−1Þ ¼
XM−1

m¼0

XM−1

n¼0

lnPmnð~cmnÞ; ð24Þ

where

lnPmnð~cmnÞ ¼ −ð~cmn − ~cmnÞHΣHΣð~cmn − ~cmnÞ þ const:; ð25Þ

where the P × P, real, diagonal matrix Σ is defined by

Σ≡M

2

64
1=σ0

. .
.

1=σP−1

3

75: ð26Þ

Under this arrangement, the PM2 × PM2 noise covariance ma-
trix for the holographic intensity measurements (in the DFT
domain) is given by placing P copies of Σ−2 along the diagonal
[see Eq. (22)], i.e.,

ð~c−!~cÞð~c − !~cÞH ¼

2

64
Σ−2

. .
.

Σ−2

3

75: ð27Þ

Because ~c is circular, ð~c−!~cÞð~c − !~cÞT ¼ 0.

C. Maximum-Likelihood and Maximum
a Posteriori Estimates
For each spatial frequency qmn, Eq. (16) takes the form

~cmn ¼ L−2WHmn~ηmn; ð28Þ

where Hmn ≡HðqmnÞ and ~ηmn ≡ ~ηðqmnÞ. It should be noted
that the factor L−2 in Eq. (28) arises due to the fact that
~cmn is the DFT of ckl, whereas ~ηmn are sample values of the
continuous Fourier transform ~η. Using Eq. (28), Eq. (25) takes
the form

lnPmnð~cmnÞ ¼ −ð~cmn − L−2WHmn~ηmnÞHΣHΣ
× ð~cmn − L−2WHmn~ηmnÞ þ const: ð29Þ

The value ~ηmust be estimated from the measurements, and
the PDF in Eq. (29) allows determination of the best possible
estimate given certain criteria. In this situation (Gaussian PDF
and no meaningful prior distribution for the unknown object),
the maximum-likelihood estimate (MLE) is a popular choice,
and it is also the least-squares solution [29]. Because H is a
singular operator, the inversion is underdetermined and the
MLE is nonunique. The MLE is determined by maximizing
lnPmnð~cÞ with respect to ~η, i.e., by solving the equation
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∂ lnPmnð~cÞ
∂ ~η

¼ 0: ð30Þ

At this point it is useful to define the weighted measurement
operator K≡ ΣH, so the MLE, η̂, satisfies the algebraic
equation

L−2WKHKη̂ ¼ KHΣ~c: ð31Þ

As mentioned above, Eq. (31) does not uniquely specify η̂ due
to the singular nature of K (which has the same null space as
H). However, the minimum-norm solution to Eq. (31), known
as the maximum-likelihood minimum-norm (MLMN) estimate,
is unique, and it is given by η̂þ ¼ L2W−1KþΣ~c; where Kþ re-
presents the pseudoinverse of K. The pseudoinverse may be
calculated via the singular value decomposition (SVD) of the
forward operatorK (see Appendix A) and does not depend on
the existence of ðKHKÞ−1. It has the form

Kþ ¼
Xkr−1

k¼0

1
sk

f kðzÞgHk ; ð32Þ

where kr ¼ rankðKÞ ≤ P is the number of singular values of K.
The number of singular values represents the number of de-
grees of freedom in the calculation of the estimate η̂þ and is a
direct measure of the information content of the scattered
field in the near zone. After multiplying both sides of Eq. (28)
by Σ and taking the minimum-norm solution [see also
Eq. (17)], we find that ~ηþ is given by

~ηþ ¼ L2

W
KþΣ!~c: ð33Þ

In some situations, the PDF of ~η may be known a priori,
meaning that even in the absence of data, ~η is more likely
to assume some values than others. In this case the maximum
a posteriori estimate is preferred to the ML or MLMN esti-
mates [29,32]. Assuming a circular Gaussian PDF, Eq. (29)
generalizes to

lnPmnð~cÞ ¼ −ðΣ~c − L−2WK~ηÞHðΣ~c − L−2WK~ηÞ

−

1
2
ð~η − ~η0ÞHPð~η − ~η0Þ þ const:; ð34Þ

where ~η0 is the mean and P is Hermitian. If P is invertible (it
need not be, see below), it is the inverse of the covariance.
Analogous to the development of Eq. (31), one obtains the
matrix equation:

ðL−2WKHK −

1
2
PÞη̂ ¼ KHΣ~c − 1

2
P~η0: ð35Þ

For many choices of P, ðL−2WKHK −

1
2PÞ is not a singular

matrix (otherwise P and KHK share some of the same null
space) and, therefore, it has an inverse.

D. Regularized Estimate
Although the pseudoinverse yields the MLMN estimate, this
estimate may be a poor representation of the unknown object
because the contribution of the smallest singular values in
Eq. (32) will greatly amplify noise in the data. The solution
may be stabilized (or regularized) by truncating the sum in

Eq. (32), so that only those terms corresponding to values
of sk larger than some minimum value (the noise level, for in-
stance) are included [28,32,33]. In this case, the regularized
(truncated SVD) estimate is given by

η̂reg ¼
L2

W
Kþ

regΣ~c ¼
Xkt−1

k¼0

dkf kðzÞ; ð36Þ

where kt is the threshold index and dk ¼ W−1L2s−1k gHk Σ~c.
Because smaller singular values tend to be associated with
singular functions that are more oscillatory, truncation in this
way tends to make the solution smoother. In the presence of
noise, then, kt is a measure of the effective information con-
tent of the scattered field, because this represents the amount
of scattered field data used in the estimation. As an alternative
to truncation, the smaller (more sensitive) singular values
can be filtered gradually by replacing 1=sk in Eq. (32) with
sk=ðs2k þ ΓÞ, where Γ is a constant.

Incorporating a priori PDF information, as in Eq. (34), is
effectively a form of regularization, as constraining the values
that ~η can take generally tends to stabilize the inversion pro-
cedure. One can also achieve some measure of stability by
artificially introducing a term (hereafter referred to as a reg-
ularization term) of similar construct to the PDF term in
Eq. (34). In this case, one chooses the matrix P to constrain
some aspect of the object estimate. For instance, one may
choose P to penalize gradients in the solution (e.g., Ref. [32]).
Regardless of its form, the weighting assigned to the regu-
larization term is critically important. The weighting essen-
tially determines the extent to which the constraint is imposed
at the expense of the least-squares fit of the forward model to
the data. Excessive constraint weighting, for example, can
lead to a poor (yet stable) estimate of the object. The con-
straint weighting is often chosen using a signal-to-noise criter-
ion; specifically, because the data should not be fit with an
accuracy greater than that afforded by the noise level, the
fit error (or residual) can be assigned to the regularization
term. This is implemented by multiplying the regularization
term by a weighting (or regularization) parameter γ, which
can be adjusted accordingly. As an example, consider the case
for which P is proportional to the identity matrix (i.e., Tikho-
nov regularization) and ~η has a zero mean. It follows that the
regularization term has the form γ~ηH~η; where the solution to
Eq. (35) reduces to the unregularized pseudoinverse in the
limit γ → 0 [33].

E. Statistics of MLMN and Regularized Estimates
Let us now calculate the mean and covariance of the estimate
for the susceptibility. This analysis applies equally well to the
regularized estimate η̂reg and the MLMN estimate η̂þ when the
regularization is done by SVD truncation, because η̂reg ¼ η̂þ

when one includes all kr terms in Eq. (36). Because the MLMN
estimate η̂þ is a linear combination of the data ~c (which have a
Gaussian distribution), its PDF will also be Gaussian. Taking
the expected value of Eq. (33), we find that η̂þ ¼ ~ηþ. From

Eqs. (32) and (33) and the relation ð~c−~cÞð~c − ~cÞH ¼ Σ−2,

ðη̂þ − ~ηþÞðη̂þ − ~ηþÞH ¼ L4

W2 K
þKþH ¼ L4

W2

Xkr−1

k¼0

1
s2k

f kðz1ÞfHk ðz2Þ;

ð37Þ
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where kr is the number of nonzero eigenvalues ofKKH , and z1
and z2 may assume any value (independently) between 0 and
the thickness Δz.

An important measure of the reconstruction is the
projected square error (PSE), the integral square difference
between η̂þ and ~ηþ:

PSE≡ ðη̂þ − ~ηþÞHðη̂þ − ~ηþÞ ¼ L4

W2

Xkr−1

k¼0

1
s2k

: ð38Þ

This is a slight generalization of the well-known fact that
the trace of a matrix is equal to the sum of its eigenvalues [34].

A related quantity is the total square error (TSE),
ð~η−η̂þÞHð~η − η̂þÞ, which is the square difference between
the MLMN estimate and the true susceptibility. This quantity
is a measure of the accuracy to which the susceptibility can
ultimately be determined and, as such, is an indicator of infor-
mation content itself. While it cannot be calculated without
knowledge of the true object ~η (by definition), the TSE is
shown below to be comprised of the PSE and another term.
Expanding the general expression for the TSE, one obtains

TSE ¼ ~ηH ~η−2~ηH η̂þ þ η̂þH η̂þ ¼ ½ð~η − ~ηþÞHð~η − ~ηþÞ& þ PSE;

ð39Þ

where the relations η̂þ ¼ ~ηþ and ðη̂þ − ~ηþÞHðη̂þ − ~ηþÞ ¼
η̂þH η̂þ − ~ηþH~ηþ have been used. Equation (39) has a simple
interpretation: the first term is the error due to projection onto
the range space of Kþ, and the second term is the PSE
discussed above.

For the regularized case, consider the values of the PSE and
TSE as a function of the cutoff index kt in Eq. (36). It can be
seen from Eq. (38) that the PSE must increase monotonically
with kt. However, the first term in Eq. (39) monotonically de-
creases with kt because the dimension of the range space of
Kþ

reg increases with kt. It follows that there is an optimal index
kt ≤ kr for which the TSE is a minimum.

It is helpful to expand the estimate error in the eigenfunc-
tions of KHK:

ðη̂þ − ~ηþÞ ¼
Xkr−1

l¼0

ðdl − !dlÞf kðzÞ; ð40Þ

where dl and !dl are the expansion coefficients of the estimate
and the object, respectively. Taking advantage of the ortho-
gonality of the f kðzÞ and substituting back, it is found that

ðdr − drÞðd'q − d'qÞ ¼
L4

W2

1
s2q

δqr; ð41Þ

where δqr is the Kronecker delta. Some comment on this result
is appropriate. Equation (41) gives the variance of the esti-
mate in terms of the singular values of the weighted measure-
ment operator. This result will be used below to provide a
criterion for regularization. The ðdq − dqÞ are also circular ran-
dom variables and statistically independent. It may now be
seen that the variance of an expansion coefficient is inversely
proportional to s2q. Because the dq are circular, the variance of
the real and imaginary parts are equal and each contribute
L4=ð2W2s2qÞ to the total.

A semianalytic solution of the inverse problem for discrete,
noisy data is given above. Error estimates and variances for

the reconstructed object function are shown. The implications
of the results in terms of the number of degrees of freedom,
i.e., the information content, of the data as well as the impact
of various system parameters are explored numerically in the
next section.

4. RESULTS AND CONCLUSIONS
The data available in a near-field scattering experiment were
investigated by examining the form of the SVD of the weighted
measurement operator K ¼ ΣH. This allows determination of
the singular value spectrum (and hence the number of degrees
of freedomof the scattered field) at a particular transverse spa-
tial frequency. In practice, the number of degrees of freedom is
effectively smaller, as measurement noise limits the amount of
scattered field data that can be reliably incorporated into the
estimation algorithm and necessitates the regularization of the
pseudoinverse by truncation of the SVD or other means, as dis-
cussed previously. The effects of regularization were also in-
vestigated by calculating the point response of the imaging
system under different SVD truncation criteria.

Numerical simulations were performed for several mea-
surement configurations, labeled A1, A2, B1, and B2, which
are listed in Table 1. These configurations differ only in esti-
mated sample thickness (Δz) and measurement plane height
(zd). Other common parameters on which the simulations de-
pend include the incident wavelength, the number of distinct
incident waves (P), their transverse wave vectors and polar-
izations (fqijg and feijg), and the prism index of refraction (n).
For this study, the wavelength and prism index of refraction
were taken to be λ ¼ 1 μm and n ¼ 2:0, respectively.

A uniform distribution of P ¼ 151 incident wave vectors
was chosen, subject to the condition jqij ≤ nk0. The inequality
jqij ≤ nk0 represents a fundamental restriction of PSTM. In
practice, the wave vector spectrum will be further limited by
the experimental apparatus. Computations were made for
both transverse magnetic (TM) and transverse electric (TE)
incident polarizations. Unlike the results presented in paper
I, however, the results for the TM and TE polarizations are
quite similar. This is attributable to the high degree of symme-
try in the present case, as opposed to the case in paper I, in
which only two incident beams were considered. Conse-
quently, only the TM results are shown here.

Figures 1 through 4 refer to cases A1 and A2 in Table 1.
Figures 1(a) and 1(c) show plots, for cases A1 and A2, respec-
tively, of the singular value spectrum of the weighted mea-
surement operator K as a function of index j for three
transverse spatial frequencies, jqj ¼ 0:5k0, 3k0 and 9k0. It
can be seen from the plots that the singular value spectrum,
and consequently the axial information content, is similar for
the two smallest spatial frequencies as the distance to the
measurement plane is increased, whereas the spectrum for

Table 1. Parameters for the Numerical Examples
Discussed in the Texta

Case Sample Thickness ðΔz=λÞ Detector Height ðzd=λÞ

A1 0.5 0.51
A2 0.5 1.0
B1 0.05 0.051
B2 0.05 1.0
aNote that the sample lies in 0 ≤ z ≤ Δz, and the detection of the field is in the

plane z ¼ zd.

Fischer et al. Vol. 28, No. 3 / March 2011 / J. Opt. Soc. Am. A 301



the largest spatial frequency falls off progressively faster with
increasing distance (case A2). This behavior is expected
because the two smallest spatial frequencies correspond to
propagating homogeneous waves.

Figures 1(b) and 1(d) show plots, for cases A1 and A2,
respectively, of the log of the first-, third-, and ninth-largest
singular values of the weighted measurement operator K as
a function of the magnitude of the transverse spatial frequency
jqj. Consistent with Fig. 1(a), we see that the greatest band-
width is associated with case A1, and narrows with increasing
measurement distance zd (caseA2). In addition, in caseA1, due
to the close proximity of the detection plane to z ¼ Δz, there
are one or two large singular values even at very large spatial
frequencies, well beyond the plot range. This is because homo-
geneous orweakly evanescentwavesmay be converted to eva-
nescent waves near z ¼ Δz and be seen at z ¼ zd. In case A2,
most of these waves are not seen because the measurement
plane lies at a greater distance from the sample.

Figure 2 shows plots of the absolute values of the singular
functions jfþðzÞj for the first-, third-, and ninth-largest singular
values of the weighted measurement operator K for case A1
and spatial frequencies (a) jqj ¼ 0:5k0 and (b) jqj ¼ 9k0, and
case A2 and spatial frequencies (c) jqj ¼ 0:5k0 and (d) jqj ¼
9k0. At low spatial frequencies (corresponding to homoge-
neous waves), the sample volume is interrogated fairly evenly,
while at higher frequencies, the back face is preferentially in-
terrogated. Also, it is seen that the singular functions do not
change quickly with zd.

Figures 3 and 4 illustrate the point response for cases A1
and A2. In both cases, the point response was calculated
for three different axial locations of the source: the front face
(z ¼ 0), the middle (z ¼ Δz=2 ¼ 0:25λ), and the back face
(z ¼ Δz ¼ 0:5λ). The point scatterer was modeled as a sphere
of radius a ¼ 0:01Δz and dielectric susceptibility ηs ¼ 1:0. Its
transverse Fourier transform is given by

~ηðq; zÞ ¼ ηs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2za − z2

p
J1ðjqj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2za − z2

p
Þ

jqj
; ð42Þ

where J1 is the Bessel function of the first kind of order one
[35]. The scattered field due to the point scatterer was calcu-
lated for each incident wave using Eqs. (10) and (11), and
noise was added to the simulated data. An estimate of the sus-
ceptibility was made using the truncated SVD [see Eq. (36)],
using one of two truncation criteria. These truncation criteria
were based on the signal-to-noise ratio (SNR) of the data.

As discussed in Subsection 3.B, it is assumed that the domi-
nant noise source is photon noise. Under the weak hologram
approximation, the standard deviation of the noise (and hence
the scattered field) is given by σj ≈

ffiffiffiffiffiffiffiffi
N0;j

p
. Assuming an inci-

dent intensity of ðArÞ2 ¼ 53:5 mW, an effective “pixel” area
(including quantum efficiency) of 0:8 × ð0:05 μmÞ2, and an in-
tegration time of Δt ¼ 1:0 s, the standard deviation of the
noise is σj ¼ 2:31 × 104j exp½iðkzðqrj Þ − k'zðqrj ÞÞzd=2&j. We see
immediately that the noise statistics are independent of the
pixel position (spatial frequency) and depend only on the in-
cident wave vector and the height of the measurement plane.
Consequently, for a given measurement (i.e., incident wave/
detector pixel combination), the standard deviation of the
noise is fixed and the SNR is determined by the transverse
spatial-frequency structure of the scattered field.

For our purposes, it is most convenient to formulate a SVD
truncation criteria in the object domain. Estimates of the ex-
pansion coefficients appearing in Eq. (36) may be found by
projection of the object onto the singular functions:

djðqmnÞ ¼ fHj ðzÞ~ηðzÞ: ð43Þ

Let us define the SNR of the jth expansion coefficient as
SNRj ¼ j !djj=Δdj , where Δdj (the standard deviation of dj)
is given by Eq. (41). Substituting Eqs. (41) and (43) into the
expression for SNRj , and making use of Eq. (42), we find that
the SNR of the jth expansion coefficient is

SNRjðqmnÞ ¼
WMsjηs
L2jqmnj

((((
Z Δz

0
dz½fþ'

j ðqmn; zÞ

þ f −'j ðqmn; zÞ&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2za − z2

p
J1ðjqmnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2za − z2

p
Þ
((((: ð44Þ

Fig. 1. Log of the singular values of the weighted measurement op-
erator K as a function of index j for cases (a) A1 and (c) A2 is shown.
In both cases, the singular value spectra are plotted for three spatial
frequencies, jqj ¼ 0:5k0, 3k0, and 9k0. The log of the first-, third-, and
ninth-largest singular values of the weighted measurement operatorK
as a function of spatial frequency jqj for cases (b) A1 and (d) A2 is also
shown.

Fig. 2. Absolute values of the singular functions jfþðzÞj for the first-,
third-, and ninth-largest singular values of the weighted measurement
operator K for case A1 and spatial frequencies (a) jqj ¼ 0:5k0 and (b)
jqj ¼ 9k0, and case A2 and spatial frequencies (c) jqj ¼ 0:5k0 and (d)
jqj ¼ 9k0.
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It should be pointed out that, while the (field) noise does not
explicitly appear in Eq. (44), it is nonetheless accounted for by
sj and f jðqmn; zÞ, which are calculated from the weighted mea-
surement operator K.

We considered two SVD truncation criteria. First, we in-
cluded only those terms in the SVD that satisfied the inequality
SNRj > 1. This was the less restrictive of the two criteria, re-
tains more terms, and incorporates more noisy data into the
estimate of the susceptibility. The second SVD truncation cri-
teria included only those terms that satisfied SNRj > 100, limit-
ing the amount of noisy data used to estimate the susceptibility.
In doing so, the second criterion also limits the resolutionof the
system.

Figures 3 and 4 illustrate the point response for cases A1
and A2, respectively, for the two SVD truncation criteria.
We see that the vertical localization is much better at the
two faces than in the middle of the sample. This is due to
the fact that we have a priori knowledge about the exact
location of the faces. We also see that the resolution (both
vertical and transverse) is better at the top face than at the
bottom, because the top face is much closer to the measure-

ment plane. In addition, as one would expect, there is less
spurious noise for SNRj > 100, but at the cost of reduced re-
solution. We also illustrate, in each figure, the number of
terms that are retained in the SVD for each case. We see that
the resolution of the systemworsens with increasing measure-
ment distance (case A2). Consistent with this fact, we also see
that fewer terms are retained in the SVD at each transverse
spatial frequency (for a given SNR truncation point) as the
distance to the measurement plane is increased.

Figures 5 through 8 refer to cases B1 and B2 in Table 1. In
these cases, the sample is an order of magnitude thinner than
in cases A1 and A2. Figures 5(a) and 5(c) are plots, for cases
B1 and B2, respectively, of the singular value spectrum of the
weighted measurement operator K as a function of index j. In
each case, the singular value spectrum is plotted for three spa-
tial frequencies, jqj ¼ 0:5k0, 3k0, and 9k0. In case B1, we see
that the singular value spectrum and, hence, the axial informa-
tion content, is similar for all three spatial frequencies. In case
B2, the amplitudes of the singular value spectrum are signifi-
cantly smaller, as the measurement distance is much larger.
The width of the singular value spectrum is smaller for cases
B1 and B2 as compared to cases A1 and A2. This results in

Fig. 3. Absolute value of the δ− function response for case A1 and
two values of the truncation threshold, SNRj ≥ 1 and SNRj ≥ 100. The
left-hand column illustrates the point response for SNRj ≥ 1 at three
different locations in the sample: (a) lower, z=λ ¼ 0; (c) middle,
z=λ ¼ 0:25; and (e) upper, z=λ ¼ 0:5, as well as (g) the number of
singular values used in the reconstruction as a function of spatial fre-
quency. The right-hand column illustrates the corresponding quanti-
ties for the case SNRj ≥ 100.

Fig. 4. Absolute value of the δ− function response for case A2 and
two values of the truncation threshold, SNRj ≥ 1 and SNRj ≥ 100. The
left-hand column illustrates the point response for SNRj ≥ 1 at three
different locations in the sample: (a) lower, z=λ ¼ 0; (c) middle,
z=λ ¼ 0:25; and (e) upper, z=λ ¼ 0:5, as well as (g) the number of
singular values used in the reconstruction as a function of spatial
frequency.
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fewer resolvable axial sections in cases B1 and B2, although
the absolute axial resolution in case B1 is superior to that in
case A1, as expected.

Figures 5(b) and 5(d) show plots, for cases B1 and B2, re-
spectively, of the log of the first-, third-, and ninth-largest sin-
gular values of the weighted measurement operator K as a
function of jqj. For caseB1,we see that the singular values have
a relatively weak dependence on the spatial frequency, espe-
cially for smaller frequencies. This is consistent with Fig. 5(a).
We also see that the spatial bandwidth (transverse information
content) is largest for case B1, and decreases (as expected)
with measurement distance (case B2). Also, the bandwidth
in caseB1 ismuch larger than the bandwidth in caseA1, respec-
tively, due to the fact that the measurement planes are much
closer. The bandwidth in case B2 is comparable to that in case
A2, however, because the measurement plane is roughly at the
same distance.

Figure 6 shows plots of the absolute values of the singular
functions jfþðzÞj for the first-, third-, and ninth-largest singular
values of the weighted measurement operator K for case B1
and spatial frequencies (a) jqj ¼ 0:5k0 and (b) jqj ¼ 9k0 and
case B2 and spatial frequencies (c) jqj ¼ 0:5k0 and (d) jqj ¼
9k0. In contrast to cases A1 and A2, we see that the singular
functions are essentially independent of both the transverse
spatial frequency and measurement plane distance mainly
because the sample is very thin.

Figures 7 and 8 illustrate the point response for cases B1
and B2, respectively, for the two SVD truncation criteria.
As in cases A1 and A2, we see that the vertical localization
is much better at the two faces than at the middle of the sam-
ple and better at the top face than at the bottom. Likewise,
spurious noise in the reconstruction decreases with increas-
ing the SNR threshold, but at the cost of poorer resolution. We
also illustrate, in each figure, the number of terms that are re-
tained in the SVD for each case. We see that the resolution is
quite good in case B1 andmuch better than that in case A1 due
to the close proximity of the measurement plane to the back
face of the sample. In case B2, however, the resolution is com-
parable to that in case A2 because the measurement distance

Fig. 5. Log of the singular values of the weighted measurement op-
erator K as a function of index j for cases (a) B1 and (c) B2 is shown.
In both cases, the singular value spectra are plotted for three spatial
frequencies, jqj ¼ 0:5k0, 3k0, and 9k0. The log of the first-, third-, and
ninth-largest singular values of the weighted measurement operatorK
as a function of spatial frequency jqj for cases (b) B1 and (d) B2 is also
shown.

Fig. 6. Absolute values of the singular functions jfþðzÞj for the first-,
third-, and ninth-largest singular values of the weighted measurement
operator K for case B1 and spatial frequencies (a) jqj ¼ 0:5k0 and
(b) jqj ¼ 9k0, and case B2 and spatial frequencies (c) jqj ¼ 0:5k0
and (d) jqj ¼ 9k0.

Fig. 7. Absolute value of the point response for case B1 and two
values of the truncation threshold, SNRj ≥ 1 and SNRj ≥ 100. The
left-hand column illustrates the point response for SNRj ≥ 1 at three
different locations in the sample: (a) lower, z=λ ¼ 0; (c) middle,
z=λ ¼ 0:25; and (e) upper, z=λ ¼ 0:5, as well as (g) the number of
singular values used in the reconstruction as a function of spatial fre-
quency. The right-hand column illustrates the corresponding quanti-
ties for the case SNRj ≥ 100.
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is of the same order, as we have seen above. In addition,
paradoxically, the number of singular values retained for a
given SNR threshold is less in case B1 than case A1, leading
to reduced information content and poorer local resolution
(fewer resolvable sections), despite much better global (or
absolute) resolution.

In conclusion, we see that prior information, here in the
form of a constraint on total sample thickness, can have a pro-
found effect on the resolution while simultaneously reducing
the effective information content of the measurements,
defined by the number of significant singular values. Charac-
teristic of near-field measurements, high spatial-frequency in-
formation is lost as the measurement plane is moved farther
from the object. Because of the exponential behavior of the
evanescent plane waves accessible in the near field, noise
is exponentially amplified on reconstruction. We have pro-
vided SNR-based regularization criteria and examined the
effects of the SNR requirements. As the required SNR of
the reconstruction is increased, the available information, i.e.,
the number of expansion coefficients above the threshold, de-
creases. This results in effectively more data being used per
degree of freedom in the reconstruction.

The model employed here included a weakly interacting
probe, a linearized scattering model, and for the specific ex-
amples, Gabor-type holographic measurements. Future work
will include nonlinear reconstructions for strongly scattering
samples [19] and strongly interacting probes [36,37].

APPENDIX A

1. Green’s Tensor
The half-space Green’s tensor has been discussed previously
[1,13]. For the near-field case considered in this paper, the
tensor Gαβ in Eq. (11) is given by

Gαβðr; r0Þ ¼
Z

d2q
kzðqÞ

hαβðq; z0Þ exp½ikðqÞ · ðr − r0Þ&: ðA1Þ

Equation (A1) differs from the standard plane wave decompo-
sition by a factor i=2π (which was included in Eq. (11)
instead):

hαβðq; z0Þ ¼
1
jqj2

q2xpxx þ q2ypyy qxqyðpxx − pyyÞ jqjqxpxz
qxqyðpxx − pyyÞ q2ypxx þ q2xpyy jqjqypxz

jqjqxpzx jqjqypzx jqj2pzz

2

4

3

5;

ðA2Þ

where q ¼ ðqx; qyÞ and

pxx ¼ k2zðqÞ
k20

½1þ R2 expð2ikzðqÞz0Þ&;

pxz ¼
−jqjkzðqÞ

k20
½1 − R2 expð2ikzðqÞz0Þ&;

pyy ¼ 1þ R1 expð2ikzðqÞz0Þ&;

pzx ¼ −jqjkzðqÞ
k20

½1þ R2 expð2ikzðqÞz0Þ&;

pzz ¼
jqj2

k20
½1 − R2 expð2ikzðqÞz0Þ&: ðA3Þ

The functions R1ðqÞ and R2ðqÞ are the reflection coefficients
given by

R1ðqÞ ¼
kzðqÞ − k0zðqÞ
kzðqÞ þ k0zðqÞ

; ðA4Þ

R2ðqÞ ¼
k0zðqÞ − n2kzðqÞ
k0zðqÞ þ n2kzðqÞ

; ðA5Þ

with k0zðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k20 − jqj2

q
.

2. Singular Value Decomposition of K
Following Natterer [38], consider the SVD of K:

K ¼ ΣH ¼
XP−1

k¼0

skgkf kðzÞH; ðA6Þ

where fskg are the singular values (arranged in order from
largest to smallest), fgkg is a set of singular (column) vectors
that form a complete, orthonormal basis in CP , and

Fig. 8. Absolute value of the point response for case B2 and two
values of the truncation threshold, SNRj ≥ 1 and SNRj ≥ 100. The
left-hand column illustrates the point response for SNRj ≥ 1 at three
different locations in the sample: (a) lower, z=λ ¼ 0; (c) middle,
z=λ ¼ 0:25; and (e) upper, z=λ ¼ 0:5, as well as (g) the number of
singular values used in the reconstruction as a function of spatial
frequency.
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f kðzÞ ¼
fþk ðzÞ
f −k ðzÞ

% &

is a set of P of singular functions that form an incomplete,
orthonormal basis in L2ð0;ΔzÞ × L2ð0;ΔzÞ.

The P pairs of singular values and singular vectors
fðs2k; gkÞg are the eigenvalues and eigenvectors of the P × P
matrix KKH , that may be determined via standard numerical
algorithms (e.g., Ref. [34]). The singular functions obey
the generalized eigenvalue equations, skgk ¼ Kf kðzÞ, and
skf kðzÞ ¼ KHgk.

The elements of the P × P matrix KKH are given by

ðKKHÞjk ¼
M2

σjσk

Z Δz

0
½Hðq − qij þ qrj ;q

r
j ;q

i
j ; zÞH'ðq − qik

þ qrk; q
r
k;q

i
k; zÞ þH'ð−q − qij þ qrj ; q

r
j ; q

i
j ; zÞ

×Hð−q − qik þ qrk; q
r
k; q

i
k; zÞ&dz: ðA7Þ

The integral in Eq. (A7) may be performed analytically.
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