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Stochastic coupled mode theory for partially
coherent laser arrays
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Partially coherent, transversely coupled laser arrays are investigated within a stochastic coupled mode for-
malism. Predictions of the coherence or correlation functions in both the spectral and time domains are made.
It is demonstrated that the coherence properties of the system in both domains are strongly dependent on the
number and intensity of coupled modes. The theory can be useful for the study of semiconductor laser arrays,
particularly vertical-cavity surface-emitting laser arrays. © 2010 Optical Society of America
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. INTRODUCTION
emiconductor laser arrays are of interest for applica-
ions in communications, sensing, and various other opti-
al applications. Vertical-cavity surface-emitting laser
VCSEL) arrays are of special consequence because of the
ase of two-dimensional array fabrication [1–3]. Recent
rogress with VCSEL arrays has demonstrated their po-
ential for increased-power, low-diffraction, single-mode
aser sources and electrically controllable laser steering in
wo dimensions [4,5]. These laser arrays have been shown
o couple via both evanescent [6–8] and leaky [9,10] fields.
he focus of this work is the former coupling mechanism.
To analyze semiconductor laser arrays, a variety of ap-

roaches have been taken based on the manner of the
oupling [11–13]. For evanescently coupled lasers,
oupled mode theory has been a valuable tool and has
uccessfully predicted the observed spatial modes [14,15].
owever, VCSEL arrays have demonstrated partially co-
erent behavior that is not explained within the deter-
inistic coupled mode theory [16]. To address this issue, a

tochastic harmonic oscillator model was recently devel-
ped [17]. Although this model well describes partially co-
erent arrays, it is unable to predict, ab initio, the spectra
nd coupling strength.
A stochastic coupled mode formalism is developed be-

ow. The coherence matrices in the time and frequency do-
ains are derived. The stochastic model is compared with

eterministic coupled mode theory. This new model pre-
icts the observed partially coherent operation of the ar-
ay as well as the spectra and coupling strength obtained
rom deterministic coupled mode theory.

. COUPLED MODE FORMALISM
n this work, laser arrays are modeled as coupled
aveguides terminated by the top and bottom reflectors,

orming simple Fabry–Perot cavities. A schematic repre-
entation of the problem under investigation is shown in
ig. 1. This formulation is applicable to a wide variety of
1084-7529/10/030501-8/$15.00 © 2
evices such as VCSEL arrays, edge-emitting laser ar-
ays, and laser amplifier arrays. For VCSELs, an effective
irror model can be used to reduce the structure to the

ne investigated here [18].
Following the analysis given in [19], the field solutions

or two coupled waveguides, a and b, are given by

U�x,y,z� = a�z�U�a��x,y� + b�z�U�b��x,y�, �1�

here U�a� and U�b� are the unperturbed transverse mode
rofiles of the waveguides with complex propagation con-
tants �a and �b, respectively, and all quantities should
e understood to depend on frequency. In [20], an approxi-
ate theory of coupled Fabry–Perot devices is derived,

iving the transmitted field at the output mirror located
t z=z0:

�a�z0�

b�z0�� = VFV−1�a�0�

b�0�� , �2�

here

V = � K K

�� + � �� − �� , �3�

F = ��+��� 0

0 �−���� . �4�

he terms used here are given in Table 1 and all have di-
ensions of inverse length.
The diagonal terms of F are the responses of the

abry–Perot cavity for the propagation constants, �+ and
−, of the � and � mode solutions of the coupled eigen-
alue problem. The model does not account for effects of
ain saturation, mode competition, gain clamping, etc. As-
uming that these effects manifest themselves simply as
hanges in the overall spectral intensities of the two
oupled modes, we arrive at the expressions for a cavity of
ength L with mirrors of amplitude reflectivity R1=R2
R:
010 Optical Society of America
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�+��� = �+

�1 − R2�e−i�+L

1 − R2e−i2�+L ,

�−��� = �−

�1 − R2�e−i�−L

1 − R2e−i2�−L . �5�

It also is assumed that the propagation constants and
oupling constant vary linearly with frequency:

�p =
�

c
np, �6�

K =
�

c
	, �7�

here the subscript p is a, b, �, or �, np is the frequency-
ndependent effective refractive index, 	 is a unitless cou-
ling term, and c is the vacuum speed of light. The first
estriction put on the propagation constants assumes that
he waveguides are operating in a linear regime of the
ispersion curve. Additionally, in general, 	 is frequency
ependent, but it is assumed that, over the narrow fre-
uency range of interest, this dependence is negligible
nd 	 may be assumed to be constant.
In terms of the variables defined in Table 2, the matrix
is given by

V = � 	 	

�n + 
 �n − 
� , �8�

hile the matrix F remains unchanged. Since the lasers
f interest in this work have only a single longitudinal
ode, the expressions of Eqs. (5) are simplified to Lorent-

ians:

�+��� = �+

�

� + i�� − �+�
,

�−��� = �−

�

� + i�� − �−�
, �9�

here �+ and �− are the resonances of the two modes and
is the total cavity loss.
The theory presented in the following sections is en-

irely general and does not depend on the specific form of
and � . These assumptions are made for clarity of pre-

ig. 1. (Color online) Sketch of the laser array system under
nvestigation.
+ −
entation; i.e., an explicit frequency dependence of the
ropagation constants is necessary for numerical calcula-
ions.

. DETERMINISTIC ANALYSIS
reliminary to addressing the stochastic problem, it is il-

ustrative to review the deterministic coupled mode prob-
em. Explicitly carrying out the matrix and vector opera-
ions of Eq. (2) yields the solution

�a�z0�

b�z0�� =
1

2

�Aa

aa�0� + Aa
bb�0�

Ab
aa�0� + Ab

bb�0�� , �10�

here

Aa
a = �+����
 − �n� + �−����
 + �n�,

Aa
b = �+���	 − �−���	,

Ab
a = �+���	* − �−���	*,

Ab
b = �+����
 + �n� + �−����
 − �n�. �11�

For comparison to the stochastic case, it is useful to cal-
ulate the products of the amplitudes, a and b. For an er-
odic, stationary, random field, these products form the
ross-spectral density matrix, the diagonal elements be-
ng the power spectral densities. The cross-spectral den-
ity is simply related by Fourier transform to the time-
omain correlation and cross-correlation functions; i.e.,
he Wiener–Khintchine–Einstein theorem [21–23] ap-
lies. In computing the deterministic analogue of the

Table 1. Definitions of Terms (units, �m−1)

ariable Value Definition

�a,b Propagation constant in a, b
K Coupling strength

�̄
�b+�a

2
Average propagation constant

�� �b−�a

2
Propagation constant difference

� ���2+ �K�2�1/2

�± �̄±� Propagation constant of � mode

Table 2. Definitions of Unitless Terms

ariable Value Definition

na,b Effective index of a, b
	 Coupling strength

n̄ nb+na

2
Average effective index

�n nb−na

2
Effective index difference


 ��n2+ �	�2�1/2

n± n̄±
 Effective index of � mode

�±
N
c
n±L

Resonance of � mode (N integer)
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ross-spectral density, some care must be taken. No
imple relationship exists between the products of the co-
fficients of the fields in the frequency domain at a single
requency and the products of coefficients of the fields in
he time domain. With this caveat, we refer to the matrix
f Hermitian products of coefficients as the deterministic
ross-spectral density. The deterministic cross-spectral
ensity matrix of the output field is given by

W = �a*�z0�a�z0� a*�z0�b�z0�

b*�z0�a�z0� b*�z0�b�z0�� =
1

�2
�2�Waa Wab

Wba Wbb
� .

�12�

olving for the matrix in Eq. (12), it is found that the off-
iagonal element is expressible in terms of the diagonal
erms, viz.,

Wab = �WaaWbb�1/2ei�, �13�

here � is real, and therefore the magnitude of the spec-
ral degree of coherence, defined as

������ = � Wab

�WaaWbb�1/2� , �14�

s found to be equal to unity, implying that the fields in
he two waveguides are completely coherent with each
ther as must be expected.

Moreover, the coherent mode decomposition is com-
uted via the eigenvalue problem

W�Va

Vb
� = ��Va

Vb
� . �15�

here is only one coherent mode with a nonzero eigen-
alue, given by

�Va

Vb
� =

1

2
*
�Waa

1/2ei�

Wbb
1/2 � =

1

2
*
�Aa

aa�0� + Aa
bb�0�

Ab
aa�0� + Ab

bb�0��*

, �16�

ith eigenvalue �Waa+Wbb� / �2
�2, as one would expect for
spectrally fully coherent field. Again, some care must be

aken in the comparison here as the deterministic field is
ot statistically stationary.

. COUPLED MODES FROM INCOHERENT
OURCES

n order to treat stochastic fields, the boundary conditions
re taken to be random, stationary, and ergodic. More-
ver, it is supposed that the boundary fields in waveguide
and waveguide b are uncorrelated:

	a*�0�a�0�
 = Sa
�0�,

	b*�0�b�0�
 = Sb
�0�,

	a*�0�b�0�
 = 0. �17�

nalogously to the deterministic spectral density matrix
n Eq. (12), the modal cross correlation at the output mir-
or is defined by the matrix
W = �	a*�z0�a�z0�
 	a*�z0�b�z0�


	b*�z0�a�z0�
 	b*�z0�b�z0�
� =
1

�2
�2�Waa Wab

Wba Wbb
� .

�18�

n terms of the definitions given in Eqs. (11) and (17), the
lements of the cross-correlation matrix are

Waa = �Aa
a�2Sa

�0� + �Aa
b�2Sb

�0�,

Wbb = �Ab
a�2Sa

�0� + �Ab
b�2Sb

�0�,

Wab = Aa
a*Ab

aSa
�0� + Aa

b*Ab
bSb

�0�. �19�

nlike in the deterministic case, the spectral degree of co-
erence is not necessarily of unit magnitude.
One again can solve for the coherent modes of this

ross-correlation matrix, although a general expression is
articularly complicated. However, two limiting cases can
rovide insight: when the two spectral terms (�+ and �−)
re equal and when only one spectral term is nonzero. For
+���=�−���=����, the coherent modes are given by

�Va

Vb
� = �1

0� , �20�

�Va

Vb
� = �0

1� , �21�

ith eigenvalues ������2Sa
�0� and ������2Sb

�0�, respectively. It
an be seen here that there are two coherent modes, the
ntensity of each localized in one waveguide or the other.
dditionally, the magnitude of the spectral degree of co-
erence, since Wab=0, is zero.
In the limit where �����=0, there is only one mode with
nonzero eigenvalue,

�Va

Vb
� = � 	

�n ± 
�*
, �22�

ith the eigenvalue �Waa+Wbb� / �2
�2. Respectively, these
wo modes can be identified as the � and � modes as de-
ned in [19]. Since these two cases represent single-mode
tates, the magnitude of the complex spectral degree of
oherence is unity.

Thus, in these two limiting case, the two extremes of
omplete coherence and incoherence are observed. For
onditions lying between these two limits, partial spectral
oherence can be observed as is seen below. Therefore, the
tochastic coupled mode formalism is capable of predict-
ng partially coherent behavior that was previously inac-
essible through deterministic methods.

As a final note, it is important to point out that the re-
ults as obtained in the previous section on the determin-
stic theory can be recovered by using the stochastic
heory. That is, when the random seeding fields of the sto-
hastic theory, a�0� and b�0�, are completely mutually co-
erent, the output is single mode and the component
ode amplitudes are the same as the deterministic field

mplitudes. Thus, the two theories agree for the calcula-
ion of observables dependent on the mutual coherence,
uch as the interference pattern produced in the far zone.
owever, with the stochastic theory, the fields are station-
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ry and ergodic, so it is possible to compute quantities
hat depend not just on the mutual coherence, but on the
egree of coherence, such as the power spectra or the au-
ocorrelation. Thus, the stochastic coupled mode theory is
apable of making predictions that are in agreement with
reviously investigated deterministic approaches as well
s ones that are inaccessible to the deterministic ap-
roach.

. NUMERICAL SPECTRAL ANALYSIS OF
OUPLED LASERS
he results of the previous sections can best be illustrated
hrough numerical calculations. Two particular cases are
reated: symmetric and asymmetric waveguides. Calcula-
ions are performed for both deterministic and random
oundary conditions to demonstrate the significance of
he statistical nature of the fields seeding the coupled sys-
em.

. Symmetric Coupled Guides
he device being modeled here is a two-element VCSEL
rray. The parameters used for the calculations are pre-
ented in Table 3. The VCSELs are assumed to operate at
50 nm (angular frequency of 2.218�1015 rad/s) and
ave a full width at half-maximum linewidth of approxi-
ately 0.95 nm �2.4�1012 rad/s�. This corresponds to
CSELs with cavity loss of about 40 cm−1. This value of

oss is larger than a typical value for a VCSEL, but it is
sed primarily for illustration.
The deterministic boundary conditions are a�0�=b�0�

1, and the random conditions are specified by
a*�0�a�0�
= 	b*�0�b�0�
=1 and 	a*�0�b�0�
=0. In other
ords, the sources seeding the two waveguides are of

Table 3. Parameters Used for Symmetric
Calculation

Variable Definition Value Units

na,b Effective index of a, b 3.5
	 Coupling strength 5�10−3

� Cavity loss 1.2�1012 rad/s
L Cavity length 0.243 �m

2.2 2.21 2.22 2.23 2.24
0

0.2

0.4

0.6

0.8

1

Frequency (rad/sec)

In
te

ns
ity

(a
.u

.)

x1015

ig. 2. (Color online) Unperturbed power spectra for no detun-
ng between the propagation constants of guides a and b. The
pectra are identical.
qual intensity. Figure 2 shows the unperturbed spectra
or the two guides when no coupling is present. Note that
ince the waveguides are symmetric, the spectra for
uides a and b are identical.

The spectra for guides a and b, respectively repre-
ented by Waa and Wbb, with deterministic boundary con-
itions are shown in Fig. 3. In this plot, it can be seen that
he spectra from the two guides are identical. Moreover, it
s apparent from the single peak that only one coupled

ode is excited, specifically the � mode. The coupling be-
ween the guides causes a frequency shift of the modes,
hich is apparent in Fig. 3 since the peak is at a lower

requency than in Fig. 2. This illustrates that, for the de-
erministic problem, the boundary conditions entirely de-
ermine the mode or admixture of modes that is excited,
ust as here a�0�=b�0� excites the � mode.

From the analysis of the previous section, it is expected
hat both coupled modes will turn on with equal intensity
hen stochastic boundary conditions are used. Figure 3

hows the power spectra for guides a and b in the case
hat the boundary conditions are random. Again, the
pectra from the two guides are identical. However, as a
esult of the stochastic boundary conditions, now both the

and � modes are excited. Thus, unlike the determinis-
ic case, the random boundary conditions equally excite

ig. 3. (Color online) (a) Deterministic and (b) stochastic
oupled power spectra for no detuning between the propagation
onstants of guides a and b. The spectra from the two guides ex-
ctly overlap.
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oth modes. This implies that one would expect both
odes to turn on in a symmetric, coupled laser array

note that this analysis neglects mode competition, gain
aturation, hole burning, etc., which would impose asym-
etry in the array). In typical experiments, one mode is

referentially excited, and this mode usually dominates.
As mentioned above, the deterministic approach cannot

redict partial spectral coherence regardless of the spec-
ra or the coupling strength. However, this is not the case
or stochastic boundary conditions, as is illustrated by
ig. 4. In this figure, the maximum spectral degree of co-
erence is plotted as a function of the coupling strength,
. The frequency of maximum coherence changes with the
alue of 	, but it is typically at or near the resonances of
he � and � modes. The plot shows that the maximum
pectral degree of coherence increases as the coupling
trength increases. This comes as a result of a decrease in
he overlap between the line shapes of the two modes.

. Asymmetric Coupled Guides
or the asymmetric calculations, the same definitions as

n Table 3 are used except that nb=3.495. This example
epresents a two-element VCSEL array with some asym-
etry between the array waveguides, such as a difference

n aperture geometry or core index. Figure 5 shows the
nperturbed spectra of the two uncoupled guides. As a re-
ult of the asymmetry, there is a noticeable splitting be-
ween the unperturbed resonances of the two guides.

The coupled spectra for deterministic boundary condi-
ions are shown in Fig. 6. In this case, there is one mode
hat is dominant, again the � mode. However, it is appar-
nt that there is some power in the � mode. This comes
s a result of the detuning altering the � and � modes
uch that the boundary conditions excite an admixture of
hem. Despite this, the admixture represents a single co-
erent mode, and the spectral degree of coherence re-
ains unity. Thus, the deterministic problem is shown to

ot allow for any partial spectral coherence between the
elds of the two guides, even when more than one mode is
resent.
The random boundary conditions again provide an

qual total excitation of the � and � modes as shown in
ig. 6. Now, however, the � mode is more localized in

0 0.005 0.01 0.015
0

0.2

0.4

0.6

0.8

1

κ
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|

ig. 4. (Color online) Maximum complex degree of coherence
lotted as a function of the coupling strength 	 for random
oundary conditions and no detuning.
uide a, and the � mode is more present in guide b. Thus,
andom boundary conditions still cause both modes to
urn on with equal total intensity, but the detuning serves
o redistribute the modal power between the guides. In
xperiments, this redistribution of modal power can break
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ig. 5. (Color online) Unperturbed power spectra for a small de-
uning between the propagation constants of guides a and b. The
pectrum from a is shown with a solid curve, and the spectrum
rom b is shown with a dashed curve.

ig. 6. (Color online) (a) Deterministic and (b) stochastic
oupled power spectra for a small detuning between the propa-
ation constants of guides a and b and 	=0.005. The spectrum
rom a is shown with a solid curve, and the spectrum from b is
hown with a dashed curve.
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he symmetry that allows mode competition to select only
ne mode, and thus two incoherent modes can simulta-
eously lase.
Considering again the spectral degree of coherence for

andom boundary conditions, it is found that the trend is
ery similar to that seen in Fig. 4. The increase in coher-
nce with 	 is slightly slower with detuning, which sug-
ests that the coupling strength has more influence on the
egree of coherence than the detuning.

. TIME-DOMAIN ANALYSIS OF
TOCHASTIC COUPLED LASERS
. Analytical Solutions
eal detectors provide a signal that is proportional to a

ime integral of the intensity falling on the detector.
herefore, the time-domain correlation functions are of
rimary importance. The time-domain correlation matrix
s found by taking the Fourier transform of the frequency-
omain matrix and is expressed as

� =
1

�2
�2
��


2�
1/2��aa �ab

�ba �bb
� . �23�

In order to directly measure the time-domain cross cor-
elations, let us assume that a pinhole is placed at the
utput facet over each waveguide such that the single-
inhole emissions are �aa�0� and �bb�0� from guides a and
, respectively. The far-field intensity produced by two
inholes is then (up to a multiplicative factor) [24]

IFF = �aa�0� + �bb�0� + 2R
�ab����, �24�

here � is the time offset between the signals from the
wo pinholes.

If the seeding fields are of equal intensity �Sa
�0�=Sb

�0�

S�0�� and there is equal gain or loss in the two guides (�n
s real), the far field then becomes

IFF = Ia
+ + Ib

+ + Ia
− + Ib

− + 2�Ia
+Ib

+�1/2e−���� cos��+� + ��

− 2�Ia
−Ib

−�1/2e−���� cos��−� + ��, �25�

here

Ia
+ = �+

2S�0���
 − �n�2 + �	�2�,

Ia
− = �−

2S�0���
 + �n�2 + �	�2�,

Ib
+ = �+

2S�0���
 + �n�2 + �	�2�,

Ib
− = �−

2S�0���
 − �n�2 + �	�2�. �26�

n terms of the average frequency and the frequency dif-
erence

�̄ =
�− + �+

2
,

�� =
�− − �+

2
, �27�

nd for sufficiently small ��� and ����, Eq. (25) can be ap-
roximated as
IFF � Ia
+ + Ib

+ + Ia
− + Ib

− + 2��Ia
+Ib

+�1/2 − �Ia
−Ib

−�1/2�cos��̄� + ��.

�28�

rom this expression we can identify the temporal degree
f coherence, �, as defined in [24]

��� = � �Ia
+Ib

+�1/2 − �Ia
−Ib

−�1/2

��Ia
+ + Ia

−��Ib
+ + Ib

−��1/2� . �29�

he visibility of the far-field fringe pattern is

V = 2
�Ia

+Ib
+�1/2 − �Ia

−Ib
−�1/2

Ia
+ + Ib

+ + Ia
− + Ib

− . �30�

Thus, using this analysis, it is possible to calculate the
egree of coherence and visibility from the mode intensi-
ies in the two waveguides. Alternatively, partial coher-
nce comes as a result of the existence of more than one
oupled mode. It is proposed here that Eqs. (29) and (30)
re general expressions that can be used to experimen-
ally determine the degree of coherence of a laser array
rom measurement of the mode intensities present in the
wo guides. Note that, unlike in previous work [16], the
isibility and degree of coherence are known exactly from
he modal intensities, and a direct measure of the visibil-
ty is unnecessary. In other words, this theory directly
redicts the visibility.

. Numerical Analysis
quations (29) and (30) describe the trends in visibility
nd degree of coherence with changing system param-
ters. To begin, let us consider a symmetric structure. The
xample of a VCSEL used in the previous numerical
nalyses is considered again here. For symmetric guides,
he expressions for coherence and visibility reduce to
dentical forms. Therefore, it is sufficient to look at only
he degree of coherence. Moreover, the degree of coher-
nce can be found to be the same for any nonzero value of
he coupling strength. Figure 7 shows the trend of degree
f coherence with a changing ratio of spectral weightings.
t can be seen here that the coherence monotonically de-
reases as the ratio of the modes approach unity.
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ig. 7. (Color online) Degree of coherence for symmetric coupled
aveguides as a function of the ratio of the � Mode spectral
eighting to that of the � mode.
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As soon as there is some degree of detuning between
he waveguides, the coupling strength has a significant
nfluence. This can be seen in Fig. 8, where the degree of
oherence is plotted for a detuning of �n=0.005 and cou-
ling strengths 	=0.01, 	=0.001, and 	=0.0001. It can be
een that stronger coupling tends to pull up the degree of
oherence for intermediate ratios of the spectral weight-
ngs. This suggests that stronger coupling will tend to re-
ult in a higher degree of coherence even if two coupled
odes are present.
As a result of the detuning, the visibility is no longer

qual to the magnitude of the degree of coherence. Figure
illustrates the trends in visibility for the same condi-

ions. It can be seen that the visibility is strongly influ-
nced by the coupling strength. Moreover, with this de-
uning, the visibility never reaches unity as a result of the
ifference in intensities present in the two waveguides.
This analysis reveals that coupling strength plays a

ignificant role in maintaining high coherence and visibil-
ty. In any practical laser array, some degree of asymme-
ry is present. If coupling is weak, the effects of the asym-
etry will dominate, and low coherence will be observed.

ig. 8. (Color online) (a) Degree of coherence and (b) visibility
or detuning �n=0.005 as a function of the ratio of the � mode
pectral weighting to that of the � mode. The three curves are
or coupling strengths 	=0.01 (solid), 	=0.001 (dashed), and 	
0.0001 (dotted).
owever, stronger coupling tends to counteract the asym-
etry, and the degree of coherence increases with stron-

er coupling.

. CONCLUSION
he coupled mode formalism with stochastic boundary
onditions has been used to predict and investigate par-
ial coherence in coupled semiconductor laser arrays. This
odel is an improvement over previous approaches as it

s directly applicable to partially coherent coupled laser
ystems. In particular, the spectra and coupling can be
alculated from the physical laser structure ab initio.

Calculations reveal that there is a strong connection
etween the spectral and temporal coherence and the
umber of coupled modes. For asymmetric systems (real
evices are generally asymmetric to some degree), the de-
ree of coherence scales with the coupling strength.

The approach presented here can be particularly useful
or the design of single-mode coupled laser arrays. This
ork clearly demonstrates that more strongly coupled ar-

ays are more likely to exhibit high coherence. Moreover,
he formalism can be expanded to describe larger arrays
ithout much increase in the complexity of the analysis.
he future direction of this work will be to use this model

o analyze and design coupled VCSEL arrays with a high
egree of coherence.
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