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Partially coherent, transversely coupled laser arrays are investigated within a stochastic coupled mode for-
malism. Predictions of the coherence or correlation functions in both the spectral and time domains are made.
It is demonstrated that the coherence properties of the system in both domains are strongly dependent on the
number and intensity of coupled modes. The theory can be useful for the study of semiconductor laser arrays,
particularly vertical-cavity surface-emitting laser arrays. © 2010 Optical Society of America
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1. INTRODUCTION

Semiconductor laser arrays are of interest for applica-
tions in communications, sensing, and various other opti-
cal applications. Vertical-cavity surface-emitting laser
(VCSEL) arrays are of special consequence because of the
ease of two-dimensional array fabrication [1-3]. Recent
progress with VCSEL arrays has demonstrated their po-
tential for increased-power, low-diffraction, single-mode
laser sources and electrically controllable laser steering in
two dimensions [4,5]. These laser arrays have been shown
to couple via both evanescent [6-8] and leaky [9,10] fields.
The focus of this work is the former coupling mechanism.

To analyze semiconductor laser arrays, a variety of ap-
proaches have been taken based on the manner of the
coupling [11-13]. For evanescently coupled lasers,
coupled mode theory has been a valuable tool and has
successfully predicted the observed spatial modes [14,15].
However, VCSEL arrays have demonstrated partially co-
herent behavior that is not explained within the deter-
ministic coupled mode theory [16]. To address this issue, a
stochastic harmonic oscillator model was recently devel-
oped [17]. Although this model well describes partially co-
herent arrays, it is unable to predict, ab initio, the spectra
and coupling strength.

A stochastic coupled mode formalism is developed be-
low. The coherence matrices in the time and frequency do-
mains are derived. The stochastic model is compared with
deterministic coupled mode theory. This new model pre-
dicts the observed partially coherent operation of the ar-
ray as well as the spectra and coupling strength obtained
from deterministic coupled mode theory.

2. COUPLED MODE FORMALISM

In this work, laser arrays are modeled as coupled
waveguides terminated by the top and bottom reflectors,
forming simple Fabry—Perot cavities. A schematic repre-
sentation of the problem under investigation is shown in
Fig. 1. This formulation is applicable to a wide variety of
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devices such as VCSEL arrays, edge-emitting laser ar-
rays, and laser amplifier arrays. For VCSELs, an effective
mirror model can be used to reduce the structure to the
one investigated here [18].

Following the analysis given in [19], the field solutions
for two coupled waveguides, a and b, are given by

Ulx,y,2) = a(2) U (x,y) + b()U(x,y), 1)

where U@ and U® are the unperturbed transverse mode
profiles of the waveguides with complex propagation con-
stants B, and B, respectively, and all quantities should
be understood to depend on frequency. In [20], an approxi-
mate theory of coupled Fabry—Perot devices is derived,
giving the transmitted field at the output mirror located

at z=z:
[a(zO)} _VFV_{MO)} -
bzg) |~ b0) |’
where
v [ KoK ] 5
“lag+y ag-y| ®
F_{am) 0] "
Lo Ew]

The terms used here are given in Table 1 and all have di-
mensions of inverse length.

The diagonal terms of F are the responses of the
Fabry—Perot cavity for the propagation constants, 8, and
B_, of the + and — mode solutions of the coupled eigen-
value problem. The model does not account for effects of
gain saturation, mode competition, gain clamping, etc. As-
suming that these effects manifest themselves simply as
changes in the overall spectral intensities of the two
coupled modes, we arrive at the expressions for a cavity of
length L with mirrors of amplitude reflectivity R{=R,
=R:

© 2010 Optical Society of America
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Fig. 1. (Color online) Sketch of the laser array system under
investigation.
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It also is assumed that the propagation constants and
coupling constant vary linearly with frequency:

w

ﬂp = Zn’p’ (6)
w

K=—k, (7
Cc

where the subscript p is a, b, +, or —, n,, is the frequency-
independent effective refractive index, « is a unitless cou-
pling term, and c is the vacuum speed of light. The first
restriction put on the propagation constants assumes that
the waveguides are operating in a linear regime of the
dispersion curve. Additionally, in general, « is frequency
dependent, but it is assumed that, over the narrow fre-
quency range of interest, this dependence is negligible
and « may be assumed to be constant.

In terms of the variables defined in Table 2, the matrix
V is given by

\Y% “ “ 8
“|An+n An-g|’ ®)

while the matrix F remains unchanged. Since the lasers
of interest in this work have only a single longitudinal
mode, the expressions of Egs. (5) are simplified to Lorent-
zians:

(47

é(w) = U+m,

{(w)=0_ 9)

a+ilo-w.)

where w, and w_ are the resonances of the two modes and
a is the total cavity loss.

The theory presented in the following sections is en-
tirely general and does not depend on the specific form of
&, and &_. These assumptions are made for clarity of pre-
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Table 1. Definitions of Terms (units, um~1)

Variable Value Definition
Bap Propagation constant in a, b
K Coupling strength
B B+ Pa Average propagation constant
2
AB By =Pa Propagation constant difference
2
¥ [AB%+|K[*]V
B By Propagation constant of = mode

Table 2. Definitions of Unitless Terms

Variable Value Definition
Ngp Effective index of a, b
Coupling strength
n Myt Average effective index
2
An Np—Tg Effective index difference
2
v (el
n, nxy Effective index of + mode
w, Ne Resonance of = mode (IV integer)
n.L

sentation; i.e., an explicit frequency dependence of the
propagation constants is necessary for numerical calcula-
tions.

3. DETERMINISTIC ANALYSIS

Preliminary to addressing the stochastic problem, it is il-
lustrative to review the deterministic coupled mode prob-
lem. Explicitly carrying out the matrix and vector opera-
tions of Eq. (2) yields the solution

a(zo) 1 [ A%/(0) + A%b(0)
=45 a b ’ (10)
blzp) | 27| Ala(0) +Ayb(0)
where
A% = ¢ (0)(7-An) + £ (w)(7+ An),
Al = ¢ (0)k - E(0)k,
Af = () = £ (0)k*,
Ab = £, (0)(n+An) + £ (0)(n-An). (11)

For comparison to the stochastic case, it is useful to cal-
culate the products of the amplitudes, ¢ and b. For an er-
godic, stationary, random field, these products form the
cross-spectral density matrix, the diagonal elements be-
ing the power spectral densities. The cross-spectral den-
sity is simply related by Fourier transform to the time-
domain correlation and cross-correlation functions; i.e.,
the Wiener—Khintchine-Einstein theorem [21-23] ap-
plies. In computing the deterministic analogue of the
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cross-spectral density, some care must be taken. No
simple relationship exists between the products of the co-
efficients of the fields in the frequency domain at a single
frequency and the products of coefficients of the fields in
the time domain. With this caveat, we refer to the matrix
of Hermitian products of coefficients as the deterministic
cross-spectral density. The deterministic cross-spectral
density matrix of the output field is given by

_ a*(zp)alzg) a*(zo)b(zo) _ 1 (We We
T b*=0)alzg) b*(z)b(zo) | 1272 Wea Wip |

(12)

Solving for the matrix in Eq. (12), it is found that the off-

diagonal element is expressible in terms of the diagonal
terms, viz.,

Wab = [WaaWbb]1/2ei¢> (13)

where ¢ is real, and therefore the magnitude of the spec-
tral degree of coherence, defined as

Wa b

—— I 14
[WaaWbb]l/Z ( )

|w(w)| =

is found to be equal to unity, implying that the fields in
the two waveguides are completely coherent with each
other as must be expected.

Moreover, the coherent mode decomposition is com-
puted via the eigenvalue problem

v, Vv,
vl =N v | (15)

Vi
There is only one coherent mode with a nonzero eigen-
value, given by

v, 1 (W24 1 [ A%(0) +Abb(0) |*
, (16)
Vi

T2y | Wi |7 20| Afa(0)+ALB(0)
with eigenvalue (W,,+W;;)/|27|?, as one would expect for
a spectrally fully coherent field. Again, some care must be
taken in the comparison here as the deterministic field is
not statistically stationary.

w

4. COUPLED MODES FROM INCOHERENT
SOURCES

In order to treat stochastic fields, the boundary conditions
are taken to be random, stationary, and ergodic. More-
over, it is supposed that the boundary fields in waveguide
a and waveguide b are uncorrelated:

(@*(0)a(0)) =S,
(b*(0)b(0)) =S¥,

(a*(0)b(0))=0. (17)

Analogously to the deterministic spectral density matrix
in Eq. (12), the modal cross correlation at the output mir-
ror is defined by the matrix
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_{w*(zO)a(zO» <a*(20>b(20>>]_ 1 [Ww Wab}
" [(breolate)) (b*(0)bo) ] 292 Woa Wes |
(18)

In terms of the definitions given in Egs. (11) and (17), the
elements of the cross-correlation matrix are

Wao =4SP, +|AGSY,
Wi = |A51°S,” + |AgPS},

W= AZAISY + AZAYSD. (19)

Unlike in the deterministic case, the spectral degree of co-
herence is not necessarily of unit magnitude.

One again can solve for the coherent modes of this
cross-correlation matrix, although a general expression is
particularly complicated. However, two limiting cases can
provide insight: when the two spectral terms (¢, and &)
are equal and when only one spectral term is nonzero. For
¢ (w)=¢ (w)=&(w), the coherent modes are given by

v,] [1
v,|=lo| (20)
v,] [o
ARk (21)

with eigenvalues |¢(w)[2S'” and |¢(w)[2SYY, respectively. It
can be seen here that there are two coherent modes, the
intensity of each localized in one waveguide or the other.
Additionally, the magnitude of the spectral degree of co-
herence, since W,,=0, is zero.

In the limit where ¢;(w)=0, there is only one mode with
a nonzero eigenvalue,

V, Kk |*
V| |Anxqg|” (22)

with the eigenvalue (W,,+Wy)/|27[2. Respectively, these
two modes can be identified as the + and — modes as de-
fined in [19]. Since these two cases represent single-mode
states, the magnitude of the complex spectral degree of
coherence is unity.

Thus, in these two limiting case, the two extremes of
complete coherence and incoherence are observed. For
conditions lying between these two limits, partial spectral
coherence can be observed as is seen below. Therefore, the
stochastic coupled mode formalism is capable of predict-
ing partially coherent behavior that was previously inac-
cessible through deterministic methods.

As a final note, it is important to point out that the re-
sults as obtained in the previous section on the determin-
istic theory can be recovered by using the stochastic
theory. That is, when the random seeding fields of the sto-
chastic theory, a(0) and b(0), are completely mutually co-
herent, the output is single mode and the component
mode amplitudes are the same as the deterministic field
amplitudes. Thus, the two theories agree for the calcula-
tion of observables dependent on the mutual coherence,
such as the interference pattern produced in the far zone.
However, with the stochastic theory, the fields are station-
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Table 3. Parameters Used for Symmetric

Calculation
Variable Definition Value Units
N Effective index of a, b 3.5
K Coupling strength 5x1073
a Cavity loss 1.2x1012 rad/s
L Cavity length 0.243 pm

ary and ergodic, so it is possible to compute quantities
that depend not just on the mutual coherence, but on the
degree of coherence, such as the power spectra or the au-
tocorrelation. Thus, the stochastic coupled mode theory is
capable of making predictions that are in agreement with
previously investigated deterministic approaches as well
as ones that are inaccessible to the deterministic ap-
proach.

5. NUMERICAL SPECTRAL ANALYSIS OF
COUPLED LASERS

The results of the previous sections can best be illustrated
through numerical calculations. Two particular cases are
treated: symmetric and asymmetric waveguides. Calcula-
tions are performed for both deterministic and random
boundary conditions to demonstrate the significance of
the statistical nature of the fields seeding the coupled sys-
tem.

A. Symmetric Coupled Guides

The device being modeled here is a two-element VCSEL
array. The parameters used for the calculations are pre-
sented in Table 3. The VCSELs are assumed to operate at
850 nm (angular frequency of 2.218x10% rad/s) and
have a full width at half-maximum linewidth of approxi-
mately 0.95 nm (2.4x 102 rad/s). This corresponds to
VCSELs with cavity loss of about 40 cm™!. This value of
loss is larger than a typical value for a VCSEL, but it is
used primarily for illustration.

The deterministic boundary conditions are a(0)=5(0)
=1, and the random conditions are specified by
(a*(0)a(0))=(b*(0)b6(0))=1 and (a*(0)6(0))=0. In other
words, the sources seeding the two waveguides are of
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Fig. 2. (Color online) Unperturbed power spectra for no detun-
ing between the propagation constants of guides a and 6. The
spectra are identical.
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equal intensity. Figure 2 shows the unperturbed spectra
for the two guides when no coupling is present. Note that
since the waveguides are symmetric, the spectra for
guides a and b are identical.

The spectra for guides a and b, respectively repre-
sented by W,, and Wy, with deterministic boundary con-
ditions are shown in Fig. 3. In this plot, it can be seen that
the spectra from the two guides are identical. Moreover, it
is apparent from the single peak that only one coupled
mode is excited, specifically the + mode. The coupling be-
tween the guides causes a frequency shift of the modes,
which is apparent in Fig. 3 since the peak is at a lower
frequency than in Fig. 2. This illustrates that, for the de-
terministic problem, the boundary conditions entirely de-
termine the mode or admixture of modes that is excited,
just as here a(0)=b(0) excites the + mode.

From the analysis of the previous section, it is expected
that both coupled modes will turn on with equal intensity
when stochastic boundary conditions are used. Figure 3
shows the power spectra for guides a and b in the case
that the boundary conditions are random. Again, the
spectra from the two guides are identical. However, as a
result of the stochastic boundary conditions, now both the
+ and — modes are excited. Thus, unlike the determinis-
tic case, the random boundary conditions equally excite

0.8
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1
0.8
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2
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£
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8.2 2.21 222 2.23 2.24
Frequency (rad/sec) x10'®
Fig. 3. (Color online) (a) Deterministic and (b) stochastic

coupled power spectra for no detuning between the propagation
constants of guides a and b. The spectra from the two guides ex-
actly overlap.
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both modes. This implies that one would expect both
modes to turn on in a symmetric, coupled laser array
(note that this analysis neglects mode competition, gain
saturation, hole burning, etc., which would impose asym-
metry in the array). In typical experiments, one mode is
preferentially excited, and this mode usually dominates.
As mentioned above, the deterministic approach cannot
predict partial spectral coherence regardless of the spec-
tra or the coupling strength. However, this is not the case
for stochastic boundary conditions, as is illustrated by
Fig. 4. In this figure, the maximum spectral degree of co-
herence is plotted as a function of the coupling strength,
k. The frequency of maximum coherence changes with the
value of «, but it is typically at or near the resonances of
the + and — modes. The plot shows that the maximum
spectral degree of coherence increases as the coupling
strength increases. This comes as a result of a decrease in
the overlap between the line shapes of the two modes.

B. Asymmetric Coupled Guides
For the asymmetric calculations, the same definitions as
in Table 3 are used except that n;,=3.495. This example
represents a two-element VCSEL array with some asym-
metry between the array waveguides, such as a difference
in aperture geometry or core index. Figure 5 shows the
unperturbed spectra of the two uncoupled guides. As a re-
sult of the asymmetry, there is a noticeable splitting be-
tween the unperturbed resonances of the two guides.

The coupled spectra for deterministic boundary condi-
tions are shown in Fig. 6. In this case, there is one mode
that is dominant, again the + mode. However, it is appar-
ent that there is some power in the — mode. This comes
as a result of the detuning altering the + and — modes
such that the boundary conditions excite an admixture of
them. Despite this, the admixture represents a single co-
herent mode, and the spectral degree of coherence re-
mains unity. Thus, the deterministic problem is shown to
not allow for any partial spectral coherence between the
fields of the two guides, even when more than one mode is
present.

The random boundary conditions again provide an
equal total excitation of the + and — modes as shown in
Fig. 6. Now, however, the + mode is more localized in

0.8f

0.6f

[l

0.41

0.2f

00 0.005 0.01 0.015

K

Fig. 4. (Color online) Maximum complex degree of coherence
plotted as a function of the coupling strength « for random
boundary conditions and no detuning.
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Fig. 5. (Color online) Unperturbed power spectra for a small de-
tuning between the propagation constants of guides a and 4. The
spectrum from a is shown with a solid curve, and the spectrum
from b is shown with a dashed curve.

guide a, and the — mode is more present in guide b. Thus,
random boundary conditions still cause both modes to
turn on with equal total intensity, but the detuning serves
to redistribute the modal power between the guides. In
experiments, this redistribution of modal power can break
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Fig. 6. (Color online) (a) Deterministic and (b) stochastic

coupled power spectra for a small detuning between the propa-
gation constants of guides ¢ and b and k=0.005. The spectrum
from a is shown with a solid curve, and the spectrum from b is
shown with a dashed curve.
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the symmetry that allows mode competition to select only
one mode, and thus two incoherent modes can simulta-
neously lase.

Considering again the spectral degree of coherence for
random boundary conditions, it is found that the trend is
very similar to that seen in Fig. 4. The increase in coher-
ence with « is slightly slower with detuning, which sug-
gests that the coupling strength has more influence on the
degree of coherence than the detuning.

6. TIME-DOMAIN ANALYSIS OF
STOCHASTIC COUPLED LASERS

A. Analytical Solutions

Real detectors provide a signal that is proportional to a
time integral of the intensity falling on the detector.
Therefore, the time-domain correlation functions are of
primary importance. The time-domain correlation matrix
is found by taking the Fourier transform of the frequency-
domain matrix and is expressed as

1 m\Y2[T,, T.
F=——al — ) 23
|27;|2a<2) oo Top 23

In order to directly measure the time-domain cross cor-
relations, let us assume that a pinhole is placed at the
output facet over each waveguide such that the single-
pinhole emissions are I',,(0) and I';;(0) from guides a and
b, respectively. The far-field intensity produced by two
pinholes is then (up to a multiplicative factor) [24]

Iyp =T'44(0) + T'pp(0) + 2R{[ 15 (D)}, (24)

where 7 is the time offset between the signals from the
two pinholes.

If the seeding fields are of equal intensity (szo)zSéO)
=8©) and there is equal gain or loss in the two guides (An
is real), the far field then becomes

Ipp =L + I} + I + I + 2[I:T;]%e " cos(w, 7+ ¢)
= (L1121 cos(w_T+ &), (25)
where
I;= 028 (n- An)® + |1,
I = 2SO+ An)* + [P,

Iy = %SO+ An)? + |1,

I, = o?S(n- An)* +[«*]. (26)

In terms of the average frequency and the frequency dif-
ference

w_+ w,
0= ,
2
w_—w,
Aw= , 27
© 2 (27)

and for sufficiently small Awr and a|7], Eq. (25) can be ap-
proximated as
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Ipp =I} + I} + I, + I + 2 1312 = [I1;1Y%)cos (@ + o).
(28)

From this expression we can identify the temporal degree
of coherence, v, as defined in [24]

[1212]1/2 _ [1;15]1/2
(I} + 1) I} + I;)]?

A= ) (29)

The visibility of the far-field fringe pattern is

[I;-IZ] 172 _ [Ia_II;] 1/2
e 20
a b a b

Thus, using this analysis, it is possible to calculate the
degree of coherence and visibility from the mode intensi-
ties in the two waveguides. Alternatively, partial coher-
ence comes as a result of the existence of more than one
coupled mode. It is proposed here that Egs. (29) and (30)
are general expressions that can be used to experimen-
tally determine the degree of coherence of a laser array
from measurement of the mode intensities present in the
two guides. Note that, unlike in previous work [16], the
visibility and degree of coherence are known exactly from
the modal intensities, and a direct measure of the visibil-
ity is unnecessary. In other words, this theory directly
predicts the visibility.

B. Numerical Analysis

Equations (29) and (30) describe the trends in visibility
and degree of coherence with changing system param-
eters. To begin, let us consider a symmetric structure. The
example of a VCSEL used in the previous numerical
analyses is considered again here. For symmetric guides,
the expressions for coherence and visibility reduce to
identical forms. Therefore, it is sufficient to look at only
the degree of coherence. Moreover, the degree of coher-
ence can be found to be the same for any nonzero value of
the coupling strength. Figure 7 shows the trend of degree
of coherence with a changing ratio of spectral weightings.
It can be seen here that the coherence monotonically de-
creases as the ratio of the modes approach unity.

0.8 1

0.61 1

i

0.4r 1

0.2¢ 1

0 1 1 1 1
0 0.2 04, ,06 0.8 1
o /o
Fig. 7. (Color online) Degree of coherence for symmetric coupled
waveguides as a function of the ratio of the — Mode spectral
weighting to that of the + mode.
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As soon as there is some degree of detuning between
the waveguides, the coupling strength has a significant
influence. This can be seen in Fig. 8, where the degree of
coherence is plotted for a detuning of An=0.005 and cou-
pling strengths «=0.01, k=0.001, and x=0.0001. It can be
seen that stronger coupling tends to pull up the degree of
coherence for intermediate ratios of the spectral weight-
ings. This suggests that stronger coupling will tend to re-
sult in a higher degree of coherence even if two coupled
modes are present.

As a result of the detuning, the visibility is no longer
equal to the magnitude of the degree of coherence. Figure
8 illustrates the trends in visibility for the same condi-
tions. It can be seen that the visibility is strongly influ-
enced by the coupling strength. Moreover, with this de-
tuning, the visibility never reaches unity as a result of the
difference in intensities present in the two waveguides.

This analysis reveals that coupling strength plays a
significant role in maintaining high coherence and visibil-
ity. In any practical laser array, some degree of asymme-
try is present. If coupling is weak, the effects of the asym-
metry will dominate, and low coherence will be observed.

0.8

0.6

Iyl

04}

0.2r Vo

0 0.2 0.4

0.8}

0.67

0.4}

0.2r

(b)

Fig. 8. (Color online) (a) Degree of coherence and (b) visibility
for detuning An=0.005 as a function of the ratio of the — mode
spectral weighting to that of the + mode. The three curves are
for coupling strengths «=0.01 (solid), x=0.001 (dashed), and «
=0.0001 (dotted).
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However, stronger coupling tends to counteract the asym-
metry, and the degree of coherence increases with stron-
ger coupling.

7. CONCLUSION

The coupled mode formalism with stochastic boundary
conditions has been used to predict and investigate par-
tial coherence in coupled semiconductor laser arrays. This
model is an improvement over previous approaches as it
is directly applicable to partially coherent coupled laser
systems. In particular, the spectra and coupling can be
calculated from the physical laser structure ab initio.

Calculations reveal that there is a strong connection
between the spectral and temporal coherence and the
number of coupled modes. For asymmetric systems (real
devices are generally asymmetric to some degree), the de-
gree of coherence scales with the coupling strength.

The approach presented here can be particularly useful
for the design of single-mode coupled laser arrays. This
work clearly demonstrates that more strongly coupled ar-
rays are more likely to exhibit high coherence. Moreover,
the formalism can be expanded to describe larger arrays
without much increase in the complexity of the analysis.
The future direction of this work will be to use this model
to analyze and design coupled VCSEL arrays with a high
degree of coherence.
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