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Compositional prior information is used to bridge a gap in the theory between optical coherence tomography
(OCT), which provides high-resolution structural images by neglecting spectral variation, and imaging spectros-
copy, which provides only spectral information without significant regard to structure. A constraint is proposed in
which it is assumed that a sample is composed of N distinct materials with known spectra, allowing the structural
and spectral composition of the sample to be determined with a number of measurements on the order of N . We
present a forward model for a sample with heterogeneities along the optical axis and show through simulation that
the N -species constraint allows unambiguous inversion of Fourier transform interferometric data within the spa-
tial frequency passband of the optical system. We then explore the stability and limitations of this model and
extend it to a general 3D heterogeneous sample. © 2015 Optical Society of America

OCIS codes: (300.0300) Spectroscopy; (180.0180) Microscopy; (100.3200) Inverse scattering.
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1. INTRODUCTION

Optical measurements of an unknown sample are affected by
the real and imaginary parts of its refractive index. The problem
of how to decouple these influences was first addressed by
Fourier transform refractometry, in which the complex refrac-
tive index is estimated for a homogeneous slab [1,2]. The
subsequently developed optical coherence tomography (OCT)
[3–7] and microscopic spectroscopy [8–10] have found a wide
range of applications in medicine, biology, and material sci-
ence. In each, broadband light is focused at multiple positions
in a sample, and elastically scattered light is collected through
interferometric measurements, which are used to reconstruct
aspects of the sample.

In OCT, it is assumed that the object is composed of a sin-
gle material, and a measurement yields a spatially dependent
density of the sample. In infrared spectroscopic imaging and
microscopy [11], the density of the object is ignored within
the focal volume, and a measurement yields the spatially
dependent spectral response. In most heterogeneous samples,
the density and spectral response vary, which is apparent in
the measurements [12–14]. In this paper, we propose an
“N -species” constraint, in which the object is assumed to be
composed of a finite number of materials, each with a known

spectral response. We show that, by taking interferometric data
using focused, broadband light at multiple focal planes, such an
object can be reconstructed unambiguously.

2. SPECTRAL–SPATIAL COUPLING

Spectral measurements of an object are affected by its spatially
dependent density and the bulk spectral response of its
composite materials. The structure of the sample causes diffrac-
tion, which can significantly influence the spectral response and
is regarded as a confounding effect [12,13,15]. Nonetheless, it
is possible to collect enough independent data to determine the
spatially dependent density and spectrum of an object. We have
previously demonstrated, for example, that the measured spec-
tra can be successfully predicted using a rigorous solution of
Maxwell’s equations formulated in a coupled-wave picture
[14]. An inversion of such a forward model would require
diffraction-limited sampling along all three spatial dimensions
and would have large computational complexity. As the dimen-
sionality and number of species composing an object grow, the
required data sets are correspondingly larger, resulting in more
expensive computation.

Several strategies for recovering separate spatial and struc-
tural information from OCT-like measurements have been
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developed. The short-time Fourier-transform [16–21],
wavelet-transform [22], Wigner–Ville [23], and dual-window
[24,25] methods are able to recover spatially dependent spectra.
In these methods, it is assumed that the structure varies slowly
such that its spatial frequencies are outside the optical band-
width recorded or do not overlap with the spectral features
of the sample. They imply a well-known trade-off among
spatial resolution, spectral resolution, and spectral accuracy.
For a detailed comparison, see [26].

Here, we propose a strategy in which we do not make as-
sumptions about the spatial bandwidth but, instead, on the
composition of the object. In particular, we assume that the
sample is composed of a finite number N of spectrally distinct
species with known bulk spectral response. We use this prior
information to reduce the size of the data set required to re-
trieve full chemical and structural information under the first
Born approximation. This can be seen as a special case of the
partial separability assumption used to take advantage of spar-
sity in magnetic resonance spectroscopic imaging and other
spatiotemporal imaging modalities [27,28].

A forward model is constructed for scattering, propagation,
and measurement for a sample in an interferometric imaging
experiment. We consider for simplicity a sample with inhomo-
geneities only along the propagation axis. The model is inverted
using a number of measurements on the order of N to recover
the object. We investigate the stability of the inversion with
respect to various experimental parameters, as well as the par-
ticular spectral responses of the sample.

3. FORWARD MODEL

The sample is presumed to be located in one arm of an asym-
metric Fourier-transform infrared spectroscopic microscope, as
illustrated in Fig. 1. Light from a broadband source is split into
the two interferometer arms and recombined on the detector,
resulting in an interferometric measurement. The reference
mirror is translated along the optical axis to change the optical

path difference linearly in time, resulting in a sampled time-
dependent signal (inset of Fig. 1) whose complex discrete
Fourier transform is influenced by the absorption spectrum of
the sample and also the phase acquired on scattering. As in
OCT, the full complex field is, thus, determined at the detector
for each sample position. The size of the focal spot dictates the
lateral spatial resolution of the instrument and is limited by
diffraction to approximately half the center wavelength of
the source, on the order of 1–10 μm for mid-IR sources.

The sample is described by a linear optical susceptibility
η!r; k0", which may be thought of as the projection of an object
vector jηi onto the spatial–spectral basis element hr; k0j and is a
function of sample coordinate r and the free-space wave vector
k0 # 2π∕λ, where λ is the wavelength.

The measurement set is represented by S!k∥; k0; zF " #
hk∥; k0; zF jSi and can be described approximately as the result
of a linear operation on the sample:

hk∥; k0; zF jSi ≈ hk∥; k0; zF jKWjηi; (1)

where we have parameterized the measurement by the wave
vector magnitude k0 # jkj, the position of the focus along
the z axis zF , and the transverse Fourier component k∥.
The linear operators W and K describe an intensity weighting
due to the focus and the interferometric measurement, respec-
tively. As previously reported [29], they can be evaluated
asymptotically and written as

W #
Z

d2k∥ dk0 dz
X

zF

jk∥; k0; z; zF i (2)

×W !k∥; k0; z; zF "hk∥; k0; zj; (3)

where

W !k∥; k0; z; zF " #
4π3U 0!k0"g̃2!k∥∕2; k0"

jz − zF j$ zR
; (4)

and

K #
Z

d2k∥ dk0 dz
X

zF

jk∥; k0; zF i (5)

×e−2ikz !k∥∕2"!z−zF "hk∥; k0; z; zF j: (6)

Here, z is the coordinate along the propagation direction,
U 0!k0" is the source amplitude as a function of wavenumber,
eg is the normalized transverse beam shape in Fourier
space, which we take as a zero-order Gaussian: g̃ #
exp!−NA2jk∥j2∕2πk20", zR # 2∕!k0 NA2" is the Rayleigh
range, w0 is the beam waist, and the longitudinal component
of the wave vector is related to the transverse component by

kz #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − jk∥j2

q
. We note that g̃ need not be Gaussian

but may be any square-integrable function in Fourier
space. Acting on jηi with KW produces an intensity at the
detector, which must then be sampled to make a measure-
ment. To that end, we introduce a sampling operator
D: L2!R3" × RNz → l 2!Z3" × RNz , defined as

D #
Z

dk0 d2k∥
X

κ∥ ;κ;zF

jκ∥; κ; zF iD!k∥; k0"hk∥; k0; zF j; (7)

x

y
z

Fig. 1. Presumed experimental setup. Light from a mid-IR source is
focused on the sample, which can be moved in three dimensions. The
scattered light is combined with a reference field in a Michelson inter-
ferometer. The reference mirror moves to generate a sampled center-
burst as a function of time at the point detector.
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where κ (with jκj # κ) and κ∥ are wave-vector components
defined on a sampling grid, rather than continuous parameters,
and D!k∥; k0" is a sampling function. In the simplest case, we
can choose D # δ!k0 − κ"δ!k∥ − κ∥", representing the process
of sampling instantaneously on a discrete, evenly spaced lattice.
The summation over κ in Eq. (7) is over the range %κmin; κmax&,
which is, in turn, dictated by the position resolution of the
reference mirror.

This model works under the first Born approximation and
uses scalar Gaussian fields. It, thus, fails in cases of high sample
contrast or high numerical aperture. We also assume that the
autocorrelation terms in the interference measurement can be
neglected. For a discussion of the effect of these terms and their
removal, see [30,31].

A. Single Species, 1D Heterogeneous Object

First, we consider the case of a sample heterogeneous object
only in the principal direction of light propagation, such that
jη1d i # δ!k∥"jηi, where δ is the Dirac delta function. Then,
our estimate of the object is given by

jη̃i # !D1dK1dW1d "$jSi; (8)

where the + superscript denotes the Moore–Penrose pseudoin-
verse, and the operators above reduce in the 1D case to

W1d #
Z

dk0 dz
X

zF

jk0; z; zF iW 1d !k0; z; zF "hk0; zj; (9)

K1d #
Z

dk0 dz; ∶
X

zF

jk0; zF ie−2ik0!z−zF "hk0; z; zF j; (10)

and

D1d #
Z

dk0
X

κ;zF

jκ; zF iD!κ"hk0; zF j; (11)

where

W 1d !k0; z; zF " #
4π3U 0!k0"
jz − zF j$ zR

: (12)

Here, we have used the fact that kz jk∥#0 # k0.
In OCT/interferometric synthetic aperture microscopy

(ISAM), the susceptibility is implicitly taken as separable, such
that jηi # jρijf i and hr; k0iη # hriρhk0if # ρ!r"f !k0".
That is, the sample consists of a single species with spectral re-
sponse f as a function of wavenumber k0, and spatial density
variation ρ as a function of spatial coordinate r. The spectral
response is typically estimated from a known sharp feature of
the sample (e.g., a planar interface). Figures 2(a) and 2(b) are
simulated demonstrations of OCT under these conditions. In
(a), the z-dependent density of a single-species object is plotted
as a function of depth. A measurement is produced using
the matrix D1dW1dK1d assuming a numerical aperture (NA)
of 0.5 and three foci, equally spaced throughout the depth
of the object. In (b), the density of the sample is retrieved.
Here, and, in subsequent results, Tikhonov regularization is
used, such that the pseudoinverse of an operator is given by
G$ # !G'G$ ϵI"G', where # I is the identity operator
and ϵ is a constant. A discrete fast Fourier transform is used
to compute the Fourier transform.

B. Multispecies, 1D Heterogeneous Object

We now consider a special class of objects known to be com-
posed of a limited number of species with different absorption
spectra, so that the susceptibility can be represented as
hr; k0iη #

PN
j#1 ρj!r"f j!k0". In Fig. 2(c), the simulated sam-

ple is composed of a mixture of two species with complex
Lorentzian spectra, given by

f n!k0" ∝
k̄2n − k20

!k̄2n − k20"2 $ k20γ2
$

iγk0
!k̄2n − k20"2 $ k20γ2

; (13)

where k is the center wavenumber and γ is a damping constant.
Moreover, we assume that the f j’s are linearly independent.
The N ×M matrix formed by the spectral functions (M being
the number of spectral points) needs to be full rank, so it is
implicitly assumed that M > N , i.e., the number of spectral
points collected is at least as many as the number of species.

The real parts of these spectra for two species are plotted in
Fig. 2(d). Figure 2(e) shows the result of applying an OCT-type
inversion scheme in which only the spectrum of species 1 is
known. The total density of the object is recovered but not the
individual densities of each species. Since we have no way to

Fig. 2. Comparison of OCT with and without compositional prior
information. (a) Density profile of a single-species object. (b) OCT-
type regularized inversion for single-species object, in which it is as-
sumed that we have knowledge of its spectral response. (c) Density
profile of a two-species object. (d) Real parts of the spectral responses
of species 1 and 2. (e) OCT-type regularized inversion of two-species
object, in which we are missing information about the spectral re-
sponse of species 2. The inversion reconstructs the total density profile
but assigns equal weight to each species at each depth. (f) Retrieved
regularized density with full spectral information, as provided by the
N -species constraint. The individual densities of species 1 and 2 are
retrieved as well as the total density.

1128 Vol. 32, No. 6 / June 2015 / Journal of the Optical Society of America A Research Article



distinguish species 1 from species 2, the Tikhonov-regularized
solution assigns equal density to each species.

We now apply compositional prior information by defining
jηi # MjPi, where the compositional operator,

M1d #
X

z;j
jk0; zif j!k0"hz; jj; (14)

acts on the object, now represented as a vector parameterized by
position and species index, P!z; j" # hz; jjPi, with j ∈ !1; N ".
The spectral response of species j is described by the complex
function of wavenumber, f j!k0".

For a number of foci NF at different sample locations, we
have a well-posed problem in the noiseless case, within the
spatial-frequency passband of the optical instrument.
Inverting the operator H1d # D1dK1dW1dM1d and acting
on the measurement jSi yields the object estimate shown in
Fig. 2(f). The density of each species is retrieved accurately,
in addition to the total density.

Figure 3 illustrates two examples of density retrieval with
prior compositional information. In Fig. 3(a), the density
profile of smooth sample, including five species, is shown.
Inverting H1d results in the retrieved density profile shown
in Fig. 3(b). Another commonly encountered geometry in
OCT and spectroscopy is that of a layered sample, in which
the composite material types may be known. Figure 3(c) shows
an example of the density profile of such a sample, in which the
density has been chosen to be identical at all z positions, but the
species index varies. The retrieved density is shown in Fig. 3(d).
The correct densities and species indices are retrieved, with
some noise in the inversion due to numerical instabilities.

C. Limiting Cases

In the limit that the sample is composed of a single species (plus
vacuum), we have N # 1. The density vector becomes
jP1i # δj1jPi, where δ1j is the Kronecker delta function, equal

to 1 at species index j # 1 and 0 elsewhere. For a single focal
position, the measurement is described by

jS1i ∝
X

z;k0

jk0i
e2ik!z−zf "f 1!k0"
jz − zF j$ zR

hzjP1i; (15)

which is the standard OCT/ISAM problem in one dimension.
In practice, f 1 may be estimated from the data by identifying a
sharp feature in the sample. An example of this situation is
shown in Figs. 2(a) and 2(b).

In the other extreme, the sample may have a completely un-
known, spatially dependent spectral response. If the sample is
parameterized by Nk spectral bins at each position z, we can
project it on a basis such that

F !k0" #
XNk

i#1

f iδk0;ki : (16)

This represents the limiting case of spectroscopic microscopy.
Generally, the result of such a measurement is assumed to
approximate the spectral response at each pixel, such that
hk0; rjSi ≈ hk0; rjPi, but the structure of the object influences
the measurement through scattering. Our model accounts for
this effect in the single-scattering limit.

4. DISCUSSION
A. Stability and Condition Number of the Operator
KWM

In the noiseless case, we are able to retrieve the object within
the spatial-frequency passband of the instrument (high spatial
frequencies are lost due to the limiting aperture or the diffrac-
tion limit cannot be recovered). However, the stability of the
inversion is sensitive to many parameters, including the num-
ber of species and foci, the NA corresponding to the focus, and
the particular spectral behavior of the species. Figure 4 is a sum-
mary of trends in the stability of the inversion in the absence of
regularization. In Fig. 4(a), a density plot is shown of the log of
the condition number, C , of G$

1d as a function of the number
of species N , and foci NF with other parameters fixed to those
used in Fig. 2(f). The condition number indicates the stability
of the result with respect to small changes in the measurement,
with lower C corresponding to a more stable inversion. For
NF < N , the problem is ill-posed (i.e., the matrix is singular),
and more foci provide redundant information, leading to a
more stable inversion. Similarly, Fig. 4(b) shows how C varies
with respect to the NA of the system. As the NA approaches
zero, the “focus” becomes a plane wave, and it is impossible to
retrieve the structure. As the NA increases, the stability im-
proves. For very high NA (not shown), there is significant dark
space between the foci, resulting in a loss of information and
decreased stability. Note that this model is only strictly appli-
cable to low NA, but this analysis captures the basic stability
characteristics of the model as the NA increases.

One important tool used in the stability of linear inversions
is the Gramian matrix, which quantifies correlations among the
vectors on which the object is projected. In the spatially homo-
geneous case, the normal operator M'M is equal to the
Gramian matrix of the system. The condition number, there-
fore, results directly from the degree of similarity among the

Fig. 3. Examples of inversions with compositional prior informa-
tion. (a) Smooth sample density as a function of z, with five species.
(b) Inversion using compositional prior information and data from 10
foci. (c) Layered sample density as a function of z, with five species.
(d) Inversion using compositional prior information and data from
15 foci.
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spectra as well as the total signal strength. Figure 4(c) shows the
condition number of !M'M"$ for a spatially homogeneous
sample composed of a mixture of five species with complex
Lorentzian spectra as a function of the spectral width. As the
width changes from 1/8 to 7/8 of the spectral bandwidth, the
spectra begin to overlap significantly, which leads to a higher
condition number and less stable inversion. As the spectral
width decreases, the stability improves until there is significant
space between the spectral peaks. Note that, if we were free to
choose an orthonormal basis of spectral functions,M'M would
be diagonal, maximizing the stability of the inversion.

B. 3D Samples

The linear model above is extended easily for a 3D object. We
simply define an operator M analogous to that in Eq. (14),

M #
X

k∥ ;z;j
jk∥; k0; zif j!k0"hk∥; z; jj; (17)

and insert MjPi # jηi into Eq. (1) such that H # DKWM.
Inverting HjPi now requires N measurements for each com-
ponent of k∥. This can be accomplished, for example, by raster
scanning at each of N different focal planes. The inversion
process is identical, but the computational cost is large. The
matrix represented by H has Nf · Nkx · Nky · Nk rows and N ·
Nkx · Nky · Nk columns. For an object sampled on a cubic grid
of sideM pixels with the minimum number of foci (NF # N )
and no prior information regarding the spatial frequency spec-
trum, the complexity of such a matrix inversion scales with a

lower bound of Of!M 3 · Nk"2.37g in the most optimistic case
for a general matrix [32] but may be faster if the matrix
symmetries in this problem were exploited.

5. CONCLUSIONS

We have considered a linear model for spatial–spectral optical
measurements in which it is known that the sample consists of a
number of known species and found that the problem is well
posed in the noise-free case, as long as the number of foci is
equal to or greater than the number of species. In the extreme
cases of single-species objects and complete ignorance, we find
the standard cases of OCT/ISAM and spectroscopic micros-
copy, respectively. This work, thus, bridges a theoretical gap
between the two.

Beckman Postdoctoral Fellowship.
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