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Infrared microspectroscopy is widely used for the chemi-
cal analysis of small samples. In particular, spectral
properties of small cylindrical samples are important in
forensic analysis, understanding relationships between
microstructure and mechanical properties in fibers or
fiber composites, and development of cosmetics and
drugs for hair. The diameters of the constituent cylinders
are typically of the order of the central wavelength of light
used to probe the sample. Hence, structure and material
spectral response are coupled and recorded spectra are
usually distorted to the extent of becoming useless for
molecular identification. In this paper, we apply rigorous
optical theory to predict the spectral distortions observed
in IR microspectroscopic data of fibers. The theory is
used, first, to compute the changes that are observed for
cylinders of various dimensions under different instru-
ment configurations when compared to the bulk spectrum
from the same material. We provide a method to recover
intrinsic material spectral response from fibers by cor-
recting for distortion introduced by the cylindrical struc-
ture. The theory reported here should enable the routine
use of IR microspectroscopy and imaging for the molec-
ular analysis of cylindrical domains in complex materials.

Infrared (IR) vibrational spectroscopy has been extensively
used in the molecular analysis of fibers,1,2 hair, and for composites
with fiber-type inclusions.3-6 For synthetic fibers, IR spectra
provide molecular, microstructural and orientation measurements
used in predicting the mechanical properties of the sample. Since
these properties of the fiber determine its suitability for specific
applications, the accuracy of spectroscopic measurements is
critical. Accurate spectral information is also critical for the
analysis of fiber-type samples of forensic interest, for example
synthetic and natural fibers as well as hair. A rapid and convenient

method to characterize these samples is infrared (IR) absorption
spectroscopy in which the vibrational spectrum of a material can
potentially be used to determine the above properties of interest.
Given the small size of individual fibers, a microspectrometric7

measurement is usually conducted.8,9 Direct recording of spectral
data from fibers leads to extensive distortions in the spectra as
compared to the intrinsic material response.10,11 The sample
refracts light, acting as a lens, and also scatters light, thereby
complicating the otherwise simple equivalence of the geometrical
parameters of the sample and effective path length to be used for
quantitative analysis in Beer’s law. More importantly, the diameter
of fibers is often of the same order of magnitude as the wavelength
of light in the mid-IR. Hence, wavelength-dependent scattering at
the sample boundary imparts a molecularly nonspecific attenuation
that complicates interpretation of the data.12 The effect of these
spectral distortions can be gauged in contrasting the rather limited
progress in IR spectroscopic analysis of fibrous materials with
that achieved, in both theory and practice, using Raman mi-
crospectroscopic analysis.13 To overcome spectral distortions and
enable IR spectral analyses, the use of alternatives such as
microtoming,14,15 solution casting, sample flattening,16 the use of
a diamond anvil cell17 or the use of other spectroscopic tech-
niques18 is prescribed. These methods, however, are suboptimal
as they often destroy some structure of the fibers that may be
useful for forensic analysis19 or for relating fiber structures to their
properties.

We recently developed a rigorous optical theory for infrared
microspectroscopy in which a framework was proposed to relate
the recorded spectroscopic imaging data to the experimental setup
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and sample properties.20,21 Theoretical predictions and experi-
mental validation demonstrated that spectral distortions could be
modeled for simple geometries such as layered samples or simple
edges. Here, we extend the theory to cylindrical objects to
understand spectral distortions in fibers. Correction of distortions
using the developed theoretical treatment can enable truly
nonperturbing IR microspectroscopic analysis. We do not explicitly
address polarization and dichroic or trichroic ratio measurements
here and restrict discussion to isotropic fibers. Nevertheless, the
developed framework can be extended to extract these measures
of orientation as well.

First, classical optical theory is used to describe the interaction
of focused light with a fiber with known radius and optical
properties. For simplicity, scalar optical fields are used in this
analysis but it should be understood that the method can be
readily generalized to vector fields. Similarly, a homogeneous fiber
is considered but the method used can be generalized, in a
straightforward manner, to encompass multicore fibers, that is,
fibers consisting of concentric cylinders of different materials.

The forward model allows the prediction of measurements
given a fiber with a material of known spectral properties and
geometry. However, the goal of this work is to provide a means
of determining the optical material properties from measurements.
To do this an inverse problem must be solved—that is, given
measurements, material properties are determined using the
physical understanding of the system quantified by the forward
model. Finally, a means of solving the inverse problem and an
algorithmic implementation are described.

FORWARD MODEL
To understand the relationship between the collected data and

the optical properties of the fiber material, it is necessary to
understand the interaction of the optical fields in the measurement
system with the fiber. The geometry of this system is illustrated
in Figure 1. In this section the field incident on the fiber, the field
in the fiber and the field scattered from the fiber will all be
described. Using these fields, measurements can be predicted for
a known fiber. This model is based on classical electromagnetic
theory22 and an appropriate detection model.20

General Form of the Optical Field. There are two regions
of homogeneous material in this problem. It is convenient to
represent the total field U differently in each region, that is,

U(θ, F, y, νj) )

{U0(θ, F, y, νj) ) Ui(θ, F, y, νj) + Us(θ, F, y, νj) F > R
U1(θ, F, y, νj) F e R

(1)

where R is the radius of the fiber and νj is the wavenumber (the
reciprocal of the wavelength). Here U0 describes the field outside
the fiber, while U1 describes the internal field. Further, the
external field is the superposition of Ui, the field used to
illuminate the fiber, and Us, the field scattered from the fiber.

The optical properties of each region are determined by a
complex refractive index. The region outside the fiber is assumed
to be air, with a refractive index well approximated as unity. The

fiber has a complex refractive index n(νj) + ik(νj), with the
imaginary part k(νj) determining absorption properties. The fields
in the system are found by using well-known representations of
fields in homogeneous materials and ensuring that boundary
conditions are satisfied at the interface of the fiber and the
surrounding air.

Optical Fields in Cylindrical Coordinates. As illustrated in
Figure 1, the symmetry of the fiber suggests an analysis in
cylindrical coordinates. For this reason, all relevant optical fields
will be represented in (θ, F, y) coordinates and converted to
Cartesian coordinates where required. In cylindrical coordinates,
fields in a homogeneous medium can be written in terms of the
modal expansion22

Uh(θ, F, y, νj) ) ∑
m)-∞

∞ ∫ dsyGh(m, sy, νj)eimθ ×

Zm{2πνjF√[n(νj) + ik(νj)]2 - sy
2}exp(i2πνjsyy)

(2)

based on the solutions to the wave equation found via separation
of variables. Here Zm is a Bessel function of order m and can
represent either Bessel functions of the first kind, Jm, or Bessel
functions of the second kind, Ym. The function Gh(m, sy, νj)
represents coefficients of the cylindrical Bessel modes and can
be thought of as a spectral representation of the homogeneous-
material field Uh(θ, F, y, νj). In eq 2, the general refractive index
n(νj) + ik(νj) appears in the argument of the Bessel function. In
air, this quantity is replaced by 1.

The Illuminating Field. The fiber is illuminated by light from
a focusing system, typically a Cassegrain reflector. In this
treatment, the optical axis of the focusing system is assumed to
be perpendicular to the fiber and is assigned to the z axis. A
focused field is most typically described in Cartesian coordinates
as Ũi(x, y, z, νj), where a tilde will be used to denote a function
on Cartesian axes.

(20) Davis, B. J.; Carney, P. S.; Bhargava, R. Anal. Chem. 2010, 82, 3487–3499.
(21) Davis, B. J.; Carney, P. S.; Bhargava, R. Anal. Chem. 2010, 82, 3474–3486.
(22) van de Hulst, H. C., Light Scattering by Small Particles, Chapter 15; Dover:

Mineola, NY, 1981.

Figure 1. Illustration of the system considered. Light is focused on
to a fiber of fixed radius with the goal of obtaining measurements
that can be used to determine the optical properties of the fiber
material. The analysis used to describe this system employs both
Cartesian and cylindrical coordinates, as shown. The axis of the fiber
is chosen to lie along the y axis of both coordinate systems. The
distance from the origin, r ) (x2 + y2 + z2)1/2 ) (F2 + y2)1/2, also
appears in the resulting expressions.
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The focused field is conveniently described using an angular
spectrum of planewaves.23

Ũi(x, y, z, νj) )

iνjA dsxdsy

B̃i(sx, sy, νj)
sz

exp[i2πνj(sxx + syy + szz)] (3)

where

sz ) √1 - sx
2 - sy

2 (4)

Here the unit vector (sx, sy, sz) gives the direction of propagation
of each planewave component and B̃i(sx, sy, νj) is the planewave
angular spectrum of the illuminating field.

The modal expansion of eq 3 is defined such that the field at
large distances r from the origin is B̃i(x/r,y/r,νj)ei2πνjr/r for positive
values of z and -B̃i(x/r,y/r,νj)ei2πνjr/r for negative values z. The
field on the hemisphere of the illuminating aperture (which
lies in the -z half space) is therefore proportional to the angular
spectrum of the illuminating field. In this scalar treatment, the
field across the illuminating aperture is taken to be constant
so that

B̃i(sx, sy, νj) ) {1 Γ1 g √sx
2 + sy

2 g Γ2

0 else
(5)

where Γ2 is the numerical aperture of the Cassegrain and Γ1 is
the numerical aperture of the central Cassegrain obstruction.

As mentioned earlier, it will be convenient to represent the
illuminating field in cylindrical coordinates. It is therefore neces-
sary to make the coordinate transformation (x, y, z) w (F, θ, y),
which results in the following transformation of the unit propaga-
tion vector

sx ) √1 - sy
2 sin sθ (6)

sy ) sy (7)

sz ) √1 - sy
2 cos sθ (8)

The Cartesian angular spectrum representation of eq 3 then
becomes

Ui(θ, F, y, νj) )

iνjA dsθdsyBi(sθ, sy, νj) exp{i2πνj[F√1 - sy
2 cos(θ - sθ) + syy]}

(9)

It will be necessary to put this equation in the form of eq 2. This
transformation can be achieved using the Jacobi-Anger expan-
sion24

exp(i2πνjF√1 - sy
2cos θ) ) ∑

m)-∞

∞

imeimθJm(2πνjF√1 - sy
2)

(10)

The illuminating field can be written in the form of eq 2 by
substituting eq 10 into eq 9,

Ui(θ, F, y, νj) ) iνj ∑
m)-∞

∞

A dsydsθBi(sθ, sy, νj)e-imsθimeimθ ×

Jm(2πνjF√1 - sy
2) exp(i2πνjsyy)

) ∑
m)-∞

∞ ∫ dsyGi(m, sy, νj)eimθJm(2πνjF√1 - sy
2) ×

exp(i2πνjsyy)

(11)

with

Gi(m, sy, νj) ) im+1νj∫ dsθBi(sθ, sy, νj)e-imsθ (12)

Note that the expression above is closely related to the Fourier
series of Bi(sθ, sy, νj) over sθ.

The Scattered and Internal Fields. The field inside the fiber
can be expressed as in eq 2. In this case,

U1(θ, F, y, νj) ) ∑
m)-∞

∞ ∫ dsyG1(m, sy, νj)eimθ ×

Jm{2πνjF√[n(νj) + ik(νj)]2 - sy
2} exp(i2πνjsyy)

(13)

Here Bessel functions of the second kind, Ym, are not included
in the representation, as these functions are infinite at the origin
and thus are nonphysical.

Similarly, the scattered field can be written as,

Us(θ, F, y, νj) ) ∑
m)-∞

∞ ∫ dsyGs(m, sy, νj)eimθ ×

Hm(2πνjF√1 - sy
2) exp(i2πνjsyy)

(14)

Here Hm is a Hankel function of the first kind, that is, Hm(l) )
Jm(l) + iYm(l). This choice of Bessel function is made because
Hankel functions represent strictly out-going waves, a condition
required for the scattered field. Also note that the refractive
index appearing in the argument of the Hankel function is unity,
as the scattered field is in free space.

Solving for the Fields. It can be seen from eq 11, eq 13, and
eq 14 that the illumination, internal and scattered fields can all
be represented as a superposition of modal fields indexed by m
and sy. Each scattered mode and each internal mode is a
solution of the wave equation and must be linearly related to
the corresponding illumination mode. Consequently,

Gs(m, sy, νj) ) Gi(m, sy, νj)a(m, sy, νj) (15)

G1(m, sy, νj) ) Gi(m, sy, νj)b(m, sy, νj) (16)

(23) Richards, B.; Wolf, E. Proc. R. Soc. London, Ser. A 1959, 253, 358–379.
(24) Cuyt, A. Petersen, V. Verdonk, B. Waadeland, H., Jones, W. B., Handbook

of Continued Fractions for Special Functions; Springer: New York, 2008; p
344.
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Additionally, the superposition of the illuminating, scattered and
internal fields must be continuous and have a continuous first
derivative. Therefore by considering the fields at the fiber
boundary, F ) R, the relationship between the illuminating field
and the scattered and internal fields can be determined.

a(m, sy, νj) )

√[n(νj) + ik(νj)]2 - sy
2Jm(l0)J'm(l1) - √1 - sy

2Jm(l1)J'm(l0)

√1 - sy
2Jm(l1)H'm(l0) - √[n(νj) + ik(νj)]2 - sy

2Hm(l0)J'm(l1)

(17)

b(m, sy, νj) )

√1 - sy
2Jm(l0)H'm(l0) - √1 - sy

2Hm(l0)J'm(l0)

√1 - sy
2Jm(l1)H'm(l0) - √[n(νj) + ik(νj)]2 - sy

2Hm(l0)J'm(l1)

(18)

where l0 ) 2πνjR(1 - sy
2)1/2 and l1 ) 2πνjR([n(νj) + ik(νj)]2 -

sy
2)1/2. The derivatives of the Bessel functions can be calculated

using the property Zm′ (l) ) (m/l)Zm(l) - Zm+1(l). It can also be
seen that a(m, sy, νj) ) a(-m,sy,νj) and b(m, sy, νj) ) b(-m, sy,
νj), as Z-m(l) ) (-1)mZm(l).

The results above provide a means to calculate the fields
resulting from the focused illumination of a fiber. An example is
shown in Figure 2. It can be seen that the calculated fields sum
to give a continuous field distribution. The scattered field (d) is
concentrated in the forward scattering direction. This scattered
field has the effect of canceling some of the field that would be

observed without the presence of the fiber (c). Physically, this
cancellation accounts for the light extinguished by the fiber.25

Scattered Light in the Far-Field. The physical properties of
the fiber are encoded in the scattered field, which is described
by eq 14, eq 15, and eq 17. The integrand seen in eq 14 becomes
highly oscillatory for large values of νjF, that is, as the field is
evaluated a large number of wavelengths from the fiber. Thus
asymptotic evaluation of eq 14 at the detection optics is sensible
and is accomplished using the large-argument form of the Hankel
function, Hm(l) ∼(-i)m ((2)/(iπl))1/2 exp(il). Combining eq 14,
eq 15, recalling eq 12 and applying the Fourier series convolution
theorem gives a highly oscillatory complex exponential in the
integrand that can be evaluated using the principle of stationary
phase.26 The resulting expression for the scattered field many
wavelengths from the fiber is

lim
rf∞

Us(θ, F, y, νj) ) ∫ dsθBi(sθ, y
r
, νj)R(θ - sθ, y

r
, νj)ei2πνjr

r
(19)

where

R(sθ, sy, νj) ) 1
π ∑

m)-∞

∞

a(m, sy, ν)eimθ (20)

This expression is readily evaluated by numerical methods.
The Detected Signal. It will be assumed that an optical

detection system is positioned in the far field of the z g 0 half
space. Recall that the illuminating field is Bi(θ,y/r,νj)exp(i2πνjr)/r
in this region. Consequently, the total field in the far field of
the z g 0 half space is asymptotically, for large values of νjr

U(θ, F, y, νj) ∼ [Bi(θ, y
r
, νj) +

∫ dsθBi(sθ, y
r
, νj)R(θ - sθ, y

r
, νj)]ei2πνjr

r
(21)

The calculation of fields over all space has been described in this
paper. However, if one is interested only in the field many
wavelengths from the fiber it is necessary only: to define the
illuminating field (e.g., by eq 5), the diameter of the fiber and the
refractive index; to calculate the coefficients a(m, sy, νj) by eq 17;
to evaluate R(sθ,sy,νj) via eq 20; and to evaluate eq 21 to get the
resulting far-field amplitude distribution.

The detection optics accept light over some entrance aperture
surface S and the spectrometer resolves the wavenumber νj. In
general, the field on the detection aperture must be mapped to
the detector to determine the measured optical intensity. However,
many common optical detection arrangements are well-approxi-
mated by modeling the detection process as an integration of the
optical intensity over the detection aperture.20 The detected
intensity is then

I(νj) ) ∫S
|U(θ, F, y, νj)|2dS (22)

(25) Carney, P. S.; Wolf, E.; Agarwal, G. S. J. Opt. Soc. Am. A 1997, 14, 3366–
3371.

(26) Mandel, L. Wolf, E., Optical Coherence and Quantum Optics, Chapter 3.3;
Cambridge University Press: New York 1995; pp 350-355.

Figure 2. Illustration of the fields in and around a fiber when it is
illuminated (from left to right) by a field focused to the center of the
fiber by a Cassegrain: (a) the real part of the complex field U(θ, F, y,
νj); (b) the optical intensity of the field, that is, |U(θ, F, y, νj)|2; (c) the
real part of the complex field incident from the focusing Cassegrain
Ui(θ, F, y, νj); (d) the real part of the scattered field Us(θ, F, y, νj). In
each case the x-z plane through the geometric focus is shown. The
fiber (boundary indicated by the dashed blue line) has a radius of
one wavelength and a refractive index of 1.45+ i0.025. The numerical
aperture of the Cassegrain is 0.4 and the numerical aperture of the
obscuration is 0.1.
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For the remainder of this paper, it will be assumed that the
detection optics consist of a detection Cassegrain opposing the
illumination Cassegrain. The Cassegrain pair are matched in both
focal point and aperture extent. It is also assumed that the
common focal point of the Cassegrains lies at the center of the
fiber.

A background measurement I0(νj) is typically taken with no
sample present between the Cassegrains. This signal depends
both on the spectrum of the source and the optical character-
istics of the measurement system. The measurement taken with
the sample present will be denoted by IS(νj). Ideally, the
recorded absorbance is related to the absorption of the sample
by,

A(νj) ) -log10[IS(νj)
I0(νj)]

) 4πνjk(νj)d
loge(10)

(23)

where d is the thickness of the sample. However, even for
relatively simple planar samples, this approach can be subject to
significant errors due to diffraction, scattering and other optical
effects.20 This problem is even more significant in fiber measure-
ment, where fiber radii are often of the order of the wavelength,
leading to significant scattering artifacts. As an example, data are
predicted for hypothetical cylinders made from toluene. Toluene
has a well characterized complex refractive index,27 seen in Figure
3, which allows a rigorous prediction of the measurement. We
have also used toluene in previous theory-related publications,
hence though a fiber of toluene is physically unrealistic, use of
the same material provides a basis for comparison between the
spectral responses from uniform films and cylindrical objects. The
transmittance IS(νj)/I0(νj), and the corresponding absorbance
values, calculated from the first line of eq 23, are plotted in
Figure 4. Significant differences can be seen between the data
predicted for the different physical arrangements.

As seen in Figure 4, the imaginary part of the refractive index,
that is, the spectral absorption profile of the fiber material, strongly
influences the data. However, phenomena other than absorption
also affect the data. Scattering directs light away from the detection

optics in a manner that depends both on the real part of the
refractive index n(νj) and the radius of the fiber. The standard
model presented in the second line of eq 23 is too simple to
provide a quantitative understanding of the data. To measure the
chemical absorption spectrum of the fiber material, it is necessary
to use a rigorous physical model to extract the desired quantity,
the imaginary part of the refractive index. The remainder of this
manuscript describes a method for finding the imaginary index
k(νj) from measured data.

INVERSE PROBLEM
A rigorous model was provided above for the interaction

between the fiber and the focused probing light, that is, the
measured spectrum can be predicted given a description of the
fiber. This forward model must be inverted in order to recover
the physical and true spectral properties of the fiber from the
measurements. This inverse problem is solved by finding the fiber
properties that best explain the measurements.

It is assumed that the fiber radius R can be independently
measured, leaving the complex refractive index as the only
unknown property of the fiber. Recovering the imaginary part of
the index k(νj) is the primary goal, as a corrected absorbance
profile can be calculated (see the second line of eq 23) from k(νj),
that is, an absorbance function corrected for optical effects such
as scattering. However, the real part of the refractive index n(νj)
will also be determined as part of the solution to the inverse
problem.

Finding the Constant Part of the Real Index. The real part
of the refractive index necessarily varies in spectral regions
exhibiting absorption, as quantified by the Kramers-Kronig
relation.28 However, in spectral regions exhibiting no absorption,
the real index can be expected to be approximately constant. In

(27) Bertie, J. E.; Jones, R. N.; Apelblat, Y.; Keefe, C. D. Appl. Spectrosc. 1994,
48, 127–143. (28) Toll, J. S. Phys. Rev. 1956, 104, 1760–1770.

Figure 3. The complex refractive index of toluene.

Figure 4. Data predicted for toluene fibers of radii 5 and 10 µm,
and for an ideal sample, of thickness d ) 10 µm, exhibiting no optical
artifacts. (a) The transmission fraction IS(νj)/I0(νj). (b) The absorbance
A(νj) ) -log10[IS(νj)/I0(νj)]. For the ideal sample the absorbance is
related to the imaginary refractive index by A(νj) ) 4πνjk(νj)d/log10e,
whereas for the fibers the model presented here describes the more
complicated relationship between the physical parameters of the fiber
and the data.
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the inversion procedure described here, a characteristic constant
offset for the refractive index is assumed across the measurement
bandwidth. This constant value, n0, can be loosely regarded as
the refractive index of the fiber absent any changes in the index
produced by absorption peaks of the fiber material.

Most materials of interest exhibit a zero-absorbance zone
between 2100 cm-1 and 2600 cm-1. Within this range the
refractive index will be real and slowly varying (see Figure 3).
The value n0 can be found by finding the real refractive index
that best fits the data within this zero-absorbance band. Results
of such a procedure are shown in Figure 5. It can be seen that
a constant-index model fits the data well in regions of no
absorption. It should also be noted that the estimated values of
n0 agree well between the two fibers, and are also consistent
with the true index plotted in Figure 3.

The values of n0 illustrated in Figure 5 were found via a simple
one-dimensional optimization procedure. The merit of any candi-
date value of n0 can be evaluated by calculating the mean square
error between the n(νj) ) n0, k(νj) ) 0 prediction and the data
(in this case the simulated measurement from the toluene
fiber). Minimizing this one-dimensional cost function gives the
value of n0. Here the golden section search29 algorithm was
used for minimization over the range 1 e n0 e 1.8. It should
be noted that in general the goodness-of-fit will be a smooth
continuous function, however local minima are to be expected.
As the n0 search space is one-dimensional and of limited range,
convergence to local minima can be easily avoided. As il-
lustrated by the n ) 1.45 plots in Figure 5, the predicted data
are sensitive to n0, allowing a precise estimate to be made.

Recovering the Full Complex Index. The ultimate goal of
this work is to find the complex refractive index of the fiber from
measurements. The estimate of the complex index will be denoted

by n̂(νj) + ik̂(νj) and the corresponding predicted intensity will be
written as ÎS[νj;n̂(νj),k̂(νj)]. The difference between the observed
absorbance and the predicted absorbance can then be written
as

E[νj;n̂(νj), k̂(νj)] ) -log10{IS(νj)
I0(νj)} + log10{ ÎS[νj;n̂(νj), k̂(νj)]

I0(νj) }
(24)

Looking at Figure 5, it appears that the data predicted for a real
index of n0 represent a baseline of the measurement. The error
function E[νj;n0,0] therefore represents a baseline corrected
measurement. This sort of correction will be applied iteratively
in an algorithm that reconstructs the complex refractive index
of the fiber. Letting a bracketed superscript indicate the
iteration number, the algorithm is

Initialize Set the initial index estimate to n̂(0)(νj) ) n0 and
k̂(0)(νj) ) 0. Initialize the iteration counter j ) 0.

Predict Calculate the predicted data ÎS
(j)[νj;n̂(j)(νj),k̂(j)(νj)].

Difference Evaluate the error function E(j)[νj;n̂(j)(νj),k̂(j)(νj)]
using eq 24.

Update 1a Update the imaginary part of the complex refractive
index as

k̂(j+1)(νj) ) k̂(j)(νj) + γ
νj

E(j)[νj;n̂(j)(νj), k̂(j)(νj)] (25)

where γ is a positive constant.
Update 1b Set any negative values of k̂(j)(νj) to zero.
Update 2 Update the real part of the complex refractive index

as

n̂(j+1)(νj) ) n0 + K [k̂(j+1)(νj)] (26)

where K is a transformation based on the Kramers-Kronig
relation.

Iterate Increment the iteration counter, j r j + 1, and either
return to the Predict step or terminate if the algorithm has
converged.

The algorithm is initialized with the real refractive index
calculated in above. In each step a prediction of the data is made
for the current estimate of the complex index. The absorbance
corresponding to this prediction is compared to the measured
absorbance and the difference is used to update the estimate of
the imaginary index. As shown in eq 23, there is a νj scaling
relating the imaginary index and the absorbance. This scale factor
appears in the update described in eq 25. The constant γ controls
how much consecutive estimates of the imaginary index may
differ. This constant should be positive to ensure that under-
predicting the absorbance results in increasing the imaginary
index. If γ is small, small updates will be made to the refractive
index. This may result in slow convergence but also a more stable
algorithm than for a large value of γ. The value suggested here
is

γ )
loge(10)
4π(2R)

(27)
(29) Kiefer, J. Proc. Am. Math. Soc. 1953, 4, 502–506.

Figure 5. Data predicted for fibers of (a) radius 5 µm and (b) radius
10 µm. Three fiber refractive indices are consideredsa constant real
index of n ) 1.45, the complex index of toluene, and a constant real
index found via a best fit procedure to the toluene data in the
wavenumber range marked in green (2100 cm-1s2600 cm-1). The
constant indicies n0 are 1.477 for the 5 µm-radius fiber and 1.478 for
the 10 µm-radius fiber.
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This value is motivated by considering eq 23 and an ideal
planar sample with a thickness equal to the maximum thickness
of the fiber (2R). The absorbing volume for the fiber will be less
than the absorbing volume for this hypothetical planar sample,
ensuring that γ is conservatively set. However, the physically
motivated value of γ suggested in eq 27 will also be of ap-
proximately the correct order, leading to a rapidly converging
algorithm.

Once the absorbance error has been used to update the
imaginary index, any negative values of the result are set to zero.
This is because a negative imaginary index is nonphysical,
corresponding to optical amplification. Once the estimate of the
imaginary index has been updated, the real index can also be
updated. Using an algorithm30 based on the Kramers-Kronig
relation, the real index can be calculated from the imaginary index.
Note that the Kramers-Kronig relation does not constrain the

constant component of the real index, and so the value n0 is
enforced explicitly.

The algorithm described above was applied to the data seen
in Figure 4, which were calculated on an axis with a sample
spacing of 2 cm-1. The results are shown in Figure 6. It can be
seen that the algorithm results in a refractive index estimate giving
a close match between the measurement and the predicted data.
The estimate of the index mostly follows the true value, but with
some noteworthy departures.

The differences between the estimated quantities and the true
underlying values are shown in Figure 7. It can be seen that the
algorithm converges rapidly to a small error profile. The final
mismatch between the prediction and the data (illustrated in plots
(a) and (d) of Figure 7) is small, indicating that a feasible estimate
of the refractive index has been found. However, it can also be
seen that the estimated index does differ from the true value in a
few key areas-most notably near the low-wavenumber edge of the
axis and at the strongest absorption peak.(30) Kuzmenko, A. B. Rev. Sci. Instrum. 2005, 76, 083108.

Figure 6. Reconstructions and true values of the complex refractive index and the corresponding predicted data. Fibers of radius 5 µm (a-c)
and 10 µm (d-f) are considered. The transmission percentage is illustrated (a,d), along with the imaginary (b,e) and real (c,f) parts of the
refractive index. The reconstructions shown were produced after nine iterations of the algorithm.

Figure 7. Differences between the estimated quantities and the true values as a function of iteration number. Data for fibers of radius 5 µm
(a-c) and 10 µm (d-f) are shown. Differences are calculated for the transmission fraction (a,d), and the imaginary (b,e) and real (c,f) parts of
the refractive index.
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The departure near the edge of the axis can be explained by
the nonlocal nature of the Kramers-Kronig relation. It is well-
known that each value of the real index estimated by a
Kramers-Kronig procedure is affected by a significant region of
the spectral profile of the imaginary index.30 This results in
difficulty estimating the real index near the edge of the measure-
ment bandwidth, as contributing imaginary-index regions are
unobserved. This problem is borne-out in the example shown
here, as a strong absorption band below the measurement
bandwidth contributes to the real-index profile at the low-
wavenumber region of the measurement. This kind of error may
be corrected if prior knowledge of the refractive index outside
the measurement band is available. It should also be noted that
this error is less significant in the estimate of the imaginary index,
which is all that will typically be of interest in absorption
spectroscopy applications.

The estimate of the imaginary index also contains a significant
error at the strong absorption peak at νj ) 1496 cm-1. High
absorption peaks are necessarily associated with large changes
in the real refractive index, which will in turn correspond to
rapid changes in the scattering from the fiber. Consequently,
at strong peaks it may be difficult to distinguish strong
scattering from strong absorption. However, the algorithm does
consistently distinguish these effects at lower absorption levels.
It is also worth noting that the sign of the error at νj ) 1496
cm-1 differs between the 5 µm-radius and the 10 µm-radius
fibers.

SUMMARY AND OUTLOOK
In conclusion, we have shown that the molecularly specific

spectral response of the constituent material of fibers is signifi-

cantly distorted by the shape-dependent effects of scattering and
refraction by the fiber itself. These results are important and
applicable in the spectroscopic analysis of isolated fibers of a
radius on the order the wavelengths considered. For fibers
considerably smaller than the wavelength,31 conventional spectral
measurements on collections of fibers may be appropriate. For
close-packed bundles of fibers in which the fibers cannot be
considered isolated, these results may be generalized by extending
the framework of the forward model proposed here with a T-matrix
approach.32

A method for recovering the optical properties of the fiber (as
characterized by the complex refractive index) from focused
spectroscopic measurements was also developed. That is, we have
presented a method of solving the inverse problem. This inverse
solution makes possible geometry-independent spectroscopic
characterization of optical fibers. In our implementation, a
simplification was introduced in that the position and size of the
fiber were known independently. These parameters could instead
be jointly estimated along with the bulk spectral response similar
to the approach taken in the analysis of nanoparticles.33 With a
diversity of polarization states incident and polarization-sensitive
measurement, it is possible to include in this approach the
estimation of birefringent susceptibilities. The framework pro-
posed here forms the basis for such an extension.
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