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Fourier transform infrared (FT-IR) spectroscopic imaging
combines the specificity of optical microscopy with the
spectral selectivity of vibrational spectroscopy. There is
increasing recognition that the recorded data may be
dependent on the optical configuration and sample mor-
phology in addition to its local material spectral response,
but a quantitative framework for predicting such depen-
dence is lacking. Here, a theory is developed to relate
recorded data to the spectral and physical properties of
heterogeneous samples. The modeling approach com-
bines optical theory through rigorous coupled wave analy-
sis with modeling of sampling geometry and sample
structure. The interplay of morphology and dispersion are
systematically explored using increasingly sophisticated
samples to illustrate the dependence of the detected
optical intensity on the spatial sample structure. Predic-
tions of spectral distortions arising from the sample
structure are quantified, and experimental validation of
the developed theory is performed using a microfabricated
standard from a commercial photoresist polymer. The
developed framework forms a basis for understanding
sample induced distortions in spectroscopic IR micros-
copy and imaging.

Fourier transform infrared (FT-IR) spectroscopic imaging is a
rapidly emerging technology that combines the spatial specificity
of optical microscopy with the chemical selectivity of vibrational
spectroscopy.1-4 It is commonly misconceived that FT-IR imaging
is a simple extension of conventional infrared spectroscopy using
a different sampling accessory, namely a microscope. From the
optics perspective, similarly, it is tempting to conclude that FT-IR
imaging is an extension of optical microscopy with discrimination
of IR light by wavelength. In this series of articles, it is shown
that neither characterization is accurate. In the previous article,5

optical theory for IR microscopy was developed and it was
demonstrated that the combination of the sample-substrate
structure and optical configuration can result in significant
distortions in data recorded from homogeneous samples. Briefly,
optical theory was applied to model interrogation of a sample that
was assumed to consist of a homogeneous layer in a sample-
substrate structure with no transverse variation. The sample was
characterized by upper and lower boundaries and by the frequency
dependent complex relative permittivity ε(νj), or equivalently, by
a constant complex refractive index.

In this article, the analysis is extended to heterogeneous
samples that vary in the lateral sample plane. The sample is
characterized by upper and lower boundaries as well as a
transverse structure defined by permittivity, ε(x, y, νj). An example
of this type of structure is shown in Figure 1. While the sample
has nontrivial structure in the imaging plane, it is assumed to be
piecewise constant as a function of depth. Such a model is
appropriate for thin samples as are usually encountered in IR
microspectroscopy. This structure is amenable to analysis through
coupled wave theory. The notation used here is consistent with
the first article5 and is also listed in the glossary of Table S1 in
the Supporting Information.

In the earliest studies,6 it was noted that heterogeneous sample
structure distorts both the apparent spectrum and the apparent
spatial structure in FT-IR imaging. Other authors have also
attributed spectral distortions to heterogeneous sample structure.7-9

While experiments10 demonstrated that distortions arose from a
mismatch of refractive index between domains in the sample, a
complete theoretical model to predict the effects of heterogeneous
samples on observed spectra and spatial structure has not been
presented. The absence of such a model can lead to misinterpreta-
tion of spatial structure and/or spectral changes observed at the
boundaries of domains. The full analytical capability of FT-IR
imaging can only be realized through proper modeling of the
optical physics of the combined sample-instrument system. These
models help, first, to understand the true spectral and structural
content of the data. Second, they help provide measures of the
systematic error due to distortions. Studies that claim chemical
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or structural changes at edges of domains might employ the model
reported here to verify that the magnitude of those changes is
indeed larger than those due to optical effects alone. In this article,
optical theory for analysis of heterogeneous structures in mid-IR
imaging is developed. The variation of certain parameters in the
model is predicted to lead to specific distortions. Predictions are
compared to experimental data.

THEORETICAL MODEL
In the preceding work,5 it was shown that each planewave

mode of the electric field (indexed by the propagation directions
sx and sy) may be propagated through the sample-substrate
system independently. When transverse sample structure is
introduced this is no longer true. Optical effects such as
scattering and refraction induce coupling between the modes.
These effects are calculated below using rigorous coupled wave
analysis,11-13 which was originally developed for modeling
diffraction gratings. While there are alternative methods which
could be used to solve the problem at hand,14-16 coupled wave
analysis provides a clear description of how the transverse
structure of the object couples planewave modes. The coupled

wave method is also widely used, and the associated numerical
implementation is well studied.17 In the following presentation,
rigorous coupled wave analysis is briefly described and applied
to the mid-IR imaging problem in order to explain artifacts, for
example, from edge scattering.

It is assumed that the transverse area of interest in the sample
is some finite range Λx × Λy in Cartesian coordinates x, y. The
object within this range can then be represented in the Fourier
series

ε(x, y, νj) ≈ ∑
p)-NU

NU-1

∑
q)-NW

NW-1

φp,q(νj) exp[i(pUx + qWy)] (1)

where U ) 2π/Λx and W ) 2π/Λy. The Fourier series has been
truncated to 2NU terms in the x direction and by 2NW terms in
the y direction. Note that this representation repeats the object
periodically outside the region of interest. However, the
problem is formulated below so that light is focused into the
single period Λx × Λy with negligible intensity outside this area.

The reciprocal of the permittivity is well-defined and will be
useful in the analysis below. This function can also be represented
as the Fourier series,

[ε(x, y, νj)]-1 ≈ ∑
p)-NU

NU-1

∑
q)-NW

NW-1

ψp,q(νj) exp[i(pUx + qWy)]

(2)

As with the first article,5 the incident field is decomposed into a
collection of constituent planewaves. Each individual planewave
component is infinite in extent and thus impinges on the periodic
extension of the sample structure. A localized response is
generated by summing over the planewave spectra near the end
of the calculation, but for intermediate steps, it is useful to be
able to appeal to the formal periodicity.

Consider an incident planewave with Cartesian transverse
spatial frequency components δ and σ, that is, a field proportional
to exp[i(δx + σy)] in a fixed z plane. The spatial periodicity of the
sample implies that the scattered field consists only of planewave
components with transverse spatial frequencies that are shifted
from those of the incident field by integer multiples of the
constants, U and W. Explicitly,

up ) pU + δ (3)

wq ) qW + σ (4)

That is, through interacting with the sample, an incident planewave
with transverse frequencies δ and σ must give rise to planewaves
with transverse dependence of the form exp[i(upx + wqy)], due
to the translational periodicity of the problem. At p ) q ) 0,
the undiffracted component is obtained and all other values
represent diffracted modes.

For reasons similar to those given above, the field in any fixed-z
plane of the sample must be composed of fields with the same
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Figure 1. An illustration of the type of sample and substrate
geometry considered in this article. Here the sample (a slab of finite
extent) is illuminated through a substrate. The sample layer is defined
by the permittivity ε(x, y, νj), and the region of interest is of width Λx

in the x direction. In contrast to the previous article, the sample may
scatter light outside of the illumination angles.
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transverse frequencies given in eqs 3 and 4. Therefore, in the
sample layer (indexed by layer l ) ∆), between z(∆-1) and z(∆),
the electric field vector can be written in the form

E(∆)(x, y, z, νj) ) ∑
p

∑
q [Xp,q(z, νj)

Yp,q(z, νj)
Zp,q(z, νj) ] exp[i(upx + wqy)]

(5)

Note that while the Fourier transform of the object function was
truncated in eq 1, the field resulting from scattering from this
approximation to the object need not be similarly band-limited.
However, it is necessary in the numerical calculation of
E(∆)(x, y, z, νj) to make a potentially different truncation of eq
5. This truncation is made such that the diffracted-field coefficients
Xp, q(z, νj), Yp, q(z, νj), and Zp, q(z, νj) have decayed to a negligible
level before the truncation point.

In the inhomogeneous sample layer, the magnetic field is
nontrivially related to the electric field (c.f., the relationship in a
homogeneous layer18). Hence it will be convenient to describe
the magnetic field separately as

H(∆)(x, y, z, νj) ) !ε0

µ0
∑

p
∑

q [ Ip,q(z, νj)
Jp,q(z, νj)
Kp,q(z, νj) ] exp[i(upx + wqy)]

(6)

In the homogeneous layers, e.g., in the substrate or in the
homogeneous sample addressed in the preceding article, each
component of the planewave spectrum of the field can be
propagated independently and the results can be summed to find
the field at any given plane.19 In the structured sample considered
here, the relationship between fields in distinct transverse planes
is more complicated and this is reflected in the very general
dependence of eqs 5 and 6 on z. The evolution of the electric and
magnetic fields with z is found using the Maxwell-Faraday
equation and Ampère’s circuital law. With the use of the time
harmonic form and the fact that c ) 1/(ε0µ0)1/2, these can be
written

∇ × E(r, νj) ) i2πνj!µ0

ε0
H(r, νj) (7)

∇ × H(r, νj) ) -i2πνjε(r, νj)!ε0

µ0
E(r, νj) (8)

Substituting eqs 5 and 6 into eq 7 and equating coefficients for
each transverse frequency pair (up, wq) results in the equations

dXp,q(z, νj)
dz ) i2πνjJp,q(z, νj) + iupZp,q(z, νj) (9)

dYp,q(z, νj)
dz ) -i2πνjIp,q(z, νj) + iwqZp,q(z, νj) (10)

Kp,q(z, νj) ) 1
2πνj[upYp,q(z, νj) - wqXp,q(z, νj)] (11)

Substituting eqs 1, 5, and 6 into eq 8 and equating transverse
frequency pairs for the x and y components of the vector equation
gives the equations

dIp,q(z, νj)
dz ) -i2πνj∑

p''
∑
q''

φp-p'',q-q''(νj)Yp'',q''(z, νj) +

iupKp,q(z, νj) (12)

dJp,q(z, νj)
dz ) i2πνj∑

p''
∑
q''

φp-p'',q-q''(νj)Xp'',q''(z, νj) + iwqKp,q(z, νj)

(13)

Equating transverse frequency pairs, the z component in eq 8 can
be found by first dividing both sides of the equation by ε(r, νj).
The expression for the reciprocal of ε(r, νj), eq 2, can then be
used to give

Zp,q(z, νj) ) - 1
2πνj{∑

p''
∑
q''

ψp-p'',q-q''(νj)[up''Jp'',q''(z, νj) -

wq''Ip'',q''(z, νj)]} (14)

The results seen in eqs 9-14 determine how the electric and
magnetic fields propagate through the sample layer. The depen-
dence on Kp, q(z, νj) and Zp, q(z, νj) can be eliminated by substitut-
ing eq 14 into eqs 9 and 10 and eq 11 into eqs 12 and 13. The
result is four sets of coupled first-order differential equations. The
(up, wq) frequency pairs retained in eqs 5 and 6 are then placed
in a one-dimensional ordering, indexed by m. Using this one-
dimensional ordering, each set of functions can be arranged as a
NF × 1 column vector, where NF is the number of terms
retained. These vectors can then be concatenated and the
system of differential equations written in the form

[dX(z, νj)
dz

dY(z, νj)
dz

dI(z, νj)
dz

dJ(z, νj)
dz

] ) i2πνjΦ(νj)[X(z, νj)
Y(z, νj)
I(z, νj)
J(z, νj)

] (15)

where Φ(νj) is a 4NF × 4NF matrix. For convenience, the
dependence of Φ on νj is suppressed for the remainder of this
work.

The form20 of Φ guarantees that eigenvalues come in
pairs of opposite sign, i.e., the eigenvalues of Φ can be de-
noted by ±γ1, ±γ2, . . . , ±γ2NF. The eigenvectors of Φ are
g1, h1, g2, h2, . . . , g2NF, h2NF, where the vector gj is associated
with the eigenvalue γj and the vector hj is associated with
-γj. The eigenvalue γj is taken to lie in the upper half of
the complex plane, that is γj is chosen such that its imaginary

(18) Equation 2 in ref 5.
(19) Equation 4 in ref 5. (20) Equation 57 in ref 17.
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part is positive. Note that for purely real eigenvalues, +γj

will be chosen to be positive.
Finding the eigenvalues and eigenvectors of Φ allows the

matrix to be decomposed in the form

Φ ) GΓG-1 (16)

where Γ contains the eigenvalues on the diagonal and is zero
elsewhere, and the vectors gj and hj are organized to form the
corresponding columns of G.

An uncoupled set of 4NF first order differential equations can
be written as a single matrix equation dV(z)/dz ) i2πνjΓV(z),
where V(z) is a 4NF × 1 vector. Such a set of equations is easily
solved (each equation can be solved individually) and the result
used to construct a solution of eq 15. That solution can be
constructed as GV(z) so that

Xm(z, νj) ) ∑
j)1

2NF

{(j gj,m exp[i2πνjγj(z - z(∆-1))] +

(̂j hj,m exp[-i2πνjγj(z - z(∆))]} (17)

Ym(z, νj) ) ∑
j)1

2NF

{(j gj,m+NF
exp[i2πνjγj(z - z(∆-1))] +

(̂j hj,m+NF
exp[-i2πνjγj(z - z(∆))]} (18)

Im(z, νj) ) ∑
j)1

2NF

{(j g j,m+2NF
exp[i2πνjγj(z - z(∆-1))] +

(̂j hj,m+2NF
exp[-i2πνjγj(z - z(∆))]} (19)

Jm(z, νj) ) ∑
j)1

2NF

{(j gj,m+3NF
exp[i2πνjγj(z - z(∆-1))] +

(̂j hj,m+3NF
exp[-i2πνjγj(z - z(∆))]} (20)

where gj, m is the mth element of the vector gj, hj, m is the mth
element of the vector hj, and (j and (̂j are, as yet undetermined,
coefficients. The field in the sample layer is determined by eqs
17-20, with the z-polarized components given by eqs 11 and 14.
The sample structure determines the values for γ, gj,m, and hj,m

through the eigenvalue decomposition of Φ. The 4NF remaining
coefficients (2NF(j coefficients and 2NF(̂j coefficients) are set
by boundary conditions, i.e., the illuminating field determines
these values.

A representation of the field in the homogeneous layers (e.g.,
the air surrounding the substrate and sample and the substrate)
has been described elsewhere19 and can be rewritten as

E( l )(x, y, z, νj) ) νj ∑
m)1

NF

{B( l )(m, νj) exp[i2πνjsz
( l )(m, νj)(z - z(l-1))]

+ B̂( l )(m, νj) exp[-i2πνjsz
( l )(m, νj)(z - z( l ))]} ×

exp[i(up(m)x + wq(m)y)] (21)

The modes of the field in the homogeneous layers are here
indexed by m, whereas in the previous article5 they were indexed

by the transverse propagation quantities sx and sy. Writing the
modes in the manner above allows the field in the homoge-
neous layers to be matched to the field in the sample. The
relationship between m and sx and sy is

sx(m, νj) )
up(m)

2πνj ) p(m)
Λxνj

+ δ (22)

sy(m, νj) )
wq(m)

2πνj ) q(m)
Λyνj

+ σ (23)

where p(m) and q(m) describe the one-dimensional ordering of
(p, q) onto m. These equations describe the relationship between
the periodicity of the object (Λx and Λy) and the transverse
propagation direction. The axial propagation factor sz

( l ) (m, νj)
is calculated from a dispersion relation.21 In contrast to the
homogeneous layers, at a given transverse spatial frequency,
the field in the transversly inhomogeneous sample consists of
contributions of different axial propagation constants [compare
sz

( l ) (m, νj) in eq 21 to γj in eqs 5, 6, and 17-20].
The field in a homogeneous layer is determined by the vectors

B( l ) (m, νj) and B̂( l ) (m, νj). Just as 4NF coefficients ((j and (̂j)
determine the field in the sample layer, transversality condi-
tions22 reduce the 6NF elements of B( l ) (m, νj) and B̂( l ) (m, νj)
to 4NF independent parameters. Thus, for a sample with L
layers, 4LNF parameters fully describe the field. As with
the case considered in the preceding article, continuity of the
transverse electric and magnetic fields can be enforced at the
boundaries for each transverse spatial frequency to give 4(L
- 1)NF independent constraints. By construction, illumination
comes from only one side of the sample so the condition

B̂(L)(m, νj) ) 0 (24)

eliminates another 2NF unknowns. The remaining 2NF param-
eters are determined by setting the illumination vectors
B(1)(m, νj), as described in the first article.5 The detection of
light scattered from the sample is also the same as in the
previous article.

For the homogeneous layers considered in the first article,
the continuous plane wave spectra19 could be evaluated numeri-
cally by discretizing the transverse propagation cosines sx and sy

on any grid. In the formulation described here, a natural
discrete grid is set by the periodic extension of the object on
length scales Λx and Λy (note that these may be chosen such
that the focused light is localized within a single period). This
grid may be more coarse than desired, particularly for small
values of νj. However, the discretization of the incident field in
the planewave basis, that is the discretization of (sx, sy) in eqs
22 and 23, may be performed for multiple values of (δ, σ). The
resulting fields for each value of (δ, σ) may be summed, giving a
discretization of (sx, sy) on an arbitrarily fine grid, that is at least
as fine and commensurate with the descretization dictated by
Λx and Λy.

SIMULATION AND PREDICTION
Numerical simulations are presented here to demonstrate how

diffraction and scattering effects in heterogeneous samples are

(21) Equation 5 in ref 5
(22) Equations 6 and 7 in ref 5.
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coupled to the sampling geometry, sample morphology, and
spectral profile of the sample such that the bulk or so-called “pure
phase” spectrum is changed. In the preceding article, it was seen
that transmission microspectroscopy is less sensitive to optical
distortions than transflection microspectroscopy when a homo-
geneous layered sample is considered. Further, an overwhelming
majority of studies using IR imaging are conducted in the
transmission mode.23 For these reasons, the transmission mode
is considered exclusively in the following examples. The extension
to transflection is straightforward.

Measurements from two samples are simulated to demonstrate
the potential distortions and estimate their magnitude in a first
principles manner. In the first example, an object whose response
is constant across all wavelengths is considered. Investigation of
focused fields in the sample and at the detector illustrates how
the spatial structure of the sample affects measurements, inde-
pendent of the influence of spectral changes. In the second
example, full spectral data are simulated for a hypothetical sample
of spatially structured toluene, illustrating the increased complexity
when spectral variations are added to the sample structure. Effects
resulting from the spatial structure of the sample can be seen,
and the associated influence on recorded spectra are investigated.
In both examples, the effect of an edge on the microspectroscopy
data is further investigated. While sensitivity to only the imaginary
(absorptive) part of the refractive index is desired, the thickness
of the sample and the real part of the refractive index are both
seen to affect the data through scattering and diffraction. These
effects result in changes in the observed spectral features,
including changes in the absorption band profiles and peaks and
also changes in the ratios between absorption peaks, which are
all quantified.

Frequency-Invariant Sample. In this first example, the
sample material considered has no variation in optical response
as a function of wavelength. By investigation of the interaction of
this sample with focused light of differing wavelengths, some basic
behaviors of the microspectroscopy system can be identified. The
sample considered is a rectangular slab of absorbing material with
index n ) 1.4 + 0.07i mounted on a substrate of index 1.45 (i.e.,
the geometry shown in Figure 1). The slab is 100 µm wide in the
x direction and of infinite extent in the y direction, and various
thicknesses b in the z direction are considered. The area of interest
is taken to be Λx ) 200 µm wide in the x direction and infinite
in the y direction. The sample is illuminated through the
substrate with a y-polarized line-focus. A line-focus is con-
structed by considering only the sy ) 0 line of the aplanatic
Cassegrain angular spectrum.24 A Cassegrain with numerical
aperture of 0.5 and a central obscuration aperture of 0.1 is
considered. In representing both the object and the field, 200
Fourier series coefficients were retained, i.e., NU ) NF ) 200.
This level of detail gives sharp edges in the representation of
the sample, while increasing the number of Fourier terms did
not significantly change the simulation results, indicating that
200 coefficients are sufficient to represent the field. The offsets
(δ, σ) were dithered so that there were at least 50 sample points
within the numerical aperture of the Cassegrain for all values

of νj. The angular spectrum from this discretization level leads
to a smooth and reasonable focused field.

The line-focus is centered on the absorbing slab in Figure 2.
It should be noted that refraction in the substrate has the effect
of shifting the nominal focal point.25 Hence, the sample and
substrate have been moved in the axial direction here so that
focusing is achieved in the sample plane. This wavelength-
dependent (chromatic) shift of the focus has been noted to be a
significant problem for dispersive substrates.25,26 Here it is noted
that the substrate also introduces aberration,25,27 as can be seen
by comparing the fields of Figure 2 to fields without a substrate
(Figure S1 in the Supporting Information). When the line-focus
is positioned between the absorbing slabs, the results of Figure
3 are obtained, while focusing onto the edge of a slab gives the
fields shown in Figure 4.

Several comments apply to all three line-focusing cases. Since
the sample and illumination have no spatial variation with y and
the illuminating light is y-polarized, the field in the sample is also
strictly y-polarized. Thus the plots shown are a complete repre-
sentation of the field. The theory does encompass more general
cases, e.g., x-polarized illumination or two-dimensionally focused
fields, but the resulting vector fields are more challenging to
display. The magnitude of the angular spectrum By

(3)(sx, νj) is
shown in subplots j-l. These spectra can be interpreted as
representations of the field strength as a function of direction
of propagation. The fine oscillations observed in many of these
functions can be attributed to interference between unscattered
light and contributions scattered from edges of the slab. Any
components of the angular spectrum that lie outside the
collection angle of the detection Cassegrain are not collected
upon detection. This range is marked by the empty instrument
response (i.e., the instrument response with no sample or
substrate), in this case 0.1 < |sx| < 0.5. Any light diffracted
outside the collection range leads to an apparent absorption,
as this light is not detected. It should also be noted that any
components at |sx| > 1 correspond to waves that are evanescent
in free space and do not propagate to the detector. The intensity
of light on the detector plane can be calculated from the
emerging angular spectra, as described in the previous article.

For illumination focused into the center of the slab, fields
within the sample and the transmitted angular spectra are shown
in Figure 2. The penetration of the field through the sample is as
expected, thicker samples produce more attenuation and longer
wavelengths (i.e., lower values of νj) are more weakly absorbed.
Standing wave effects due to reflection off the top of the sample
are also clearly visible. For the thin sample (b ) 2 µm) it can be
seen that there is minimal loss of intensity due to diffraction out
of the collection optics, while for thicker samples more light
escapes the collection cone. It should be noted that recorded
spectra in microspectroscopy are usually of lower signal-to-noise
ratio than the bulk recording case. Hence, absorbance of samples
is sought to be maximized by adjusting the sample thickness such
that the absorbance is maximized in the linear regime of Beer’s
law. The typical thickness for most samples is 5-10 µm and
feature sizes in many composites and biomedical samples are of

(23) Koenig, J. L.; Wang, S.-Q.; Bhargava, R. Anal. Chem. 2001, 73, 360A–
369A.

(24) Figure 4 in ref 5.

(25) Carr, G. L. Rev. Sci. Instrum. 2001, 72, 1613–1619.
(26) Wetzel, D. L. Vib. Spectrosc. 2002, 29, 291–297.
(27) Török, P.; Varga, P.; Laczik, Z.; Booker, G. R. J. Opt. Soc. Am. A 1995, 12,

325–332.
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a similar order of magnitude. The unfortunate coincidence of order
of magnitude for wavelengths, sample features, and optimal path
length has an impact on the recorded data for most cases. As
this simulation demonstrates, a trade-off between random error
and systematic distortion due to optical effects may be avoided in
some cases by using thinner samples.

In Figure 3 the same system is considered but with the
illuminating light focused between two slabs. There is little light
incident on the absorbing material and, apart from a reflection at
the substrate boundary, the focused illumination passes through

the system largely unperturbed. However, for the thicker samples
some scattering effects can be seen in the resulting angular
spectra. This illustrates how the optical effects produced by an
edge may have a wider region of influence for thicker samples.
The implication for a heterogeneous material is that the influence
of domains could extend well beyond their obvious morphologic
boundaries and proximal regions in a manner that is coupled to
the thickness of the sample. While dual aperturing is used in point
microspectroscopy to alleviate these effects to some degree, they
will be readily apparent in full-field of view imaging.

Figure 2. Responses for a line-focused y-polarized field incident on the center (x ) 0) of an absorbing slab. The slab has a complex index 1.4
+ 0.07i and is mounted on a substrate (the upper region of the plots) of index 1.45 and thickness 2 mm. The field is focused to the z ) 0 plane
in free space. Focusing through the substrate has the effect of moving this focus by about 640 µm, as shown, and also introducing aberration
(cf., Figure S1 in the Supporting Information, which considers the same scenario but with the sample suspended in free space). Three sample
thicknesses are considered, 2 µm in the left column, 7 µm in the center column, and 15 µm in the right column, that span the usual range in
transmission measurements. The y-polarized field (the only nonzero field direction) in the sample is shown in parts a-i. The substrate boundary
is marked with a dashed line and the slab boundaries with solid lines. Wavelengths of (a-c) 3 µm (νj ) 3333 cm-1), (d-f) 6 µm (νj ) 1667 cm-1),
and (g-i) 14 µm (νj ) 714 cm-1) are shown. The magnitude of the angular spectrum after the sample, By

(3)(sx, sy, νj) is shown in parts j-l.
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The illuminating light is focused onto the edge of the sample
in Figure 4. In this case, as expected, significant changes to the
focused field can be observed. Some of the light is refracted into
the absorbing slab and bent out of the collection cone (this can
be seen in parts j-l particularly clearly). The resulting sample-
induced effects can be seen to trend progressively more prominent
with increasing sample thickness. The net effect of an edge is to
redistribute spatially the total intensity that would otherwise be
incident on the detector. If the distribution is outside of the
collection cone, the total intensity reaching the detector is
decreased and consequently the apparent absorption is increased.
This apparent increase in absorption is only due to optical effects
however and depends on the sample morphology. For nonab-
sorbing spectral regions, the resulting imaging contrast is strong
at the edges of domains and is akin to that observed in optical

microscopy. The contrast between domains is dictated by their
respective refractive indices. While the obvious implication is that
an IR microspectrometer may be used in the manner of an optical
microscope with properties in the mid-IR region, such a use is
not very practical. The primary motivation for working in the mid-
IR region is to obtain chemical contrast using absorbance of
specific chemical species in spatial domains. Hence, the more
important implication is that scattering from nonabsorbing regions
of one domain can influence the data recorded in an absorbing
spectral region for another domain. In this manner, optical effects
complicate data interpretation and make measurements of the
spectrum dependent on sample structure.

Animations showing the interactions of the line-focus with the
sample are included in the Supporting Information. There is an
animation for each combination of wavenumber and sample

Figure 3. Responses for a line-focused y-polarized field incident between two absorbing slabs (x ) 100 µm) separated by a distance several-
fold the wavelength. All other plots and parameters are the same as in Figure 2. A similar scenario, but with the sample suspended in free
space, is illustrated in Figure S2 of the Supporting Information.
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thickness seen in Figure 2, and a second animation for each
combination but with the sample suspended in free space rather
than on a substrate.

When the diffracted components are collected, the distribution
of light intensity in the detector plane is also affected, meaning
that contributions from the edge effects can produce artifacts in
pixels besides the ones associated with the edge position. To
understand the practical effects of spatial redistribution, a fully
two-dimensional focusing solution is needed. Hence, a full focusing
aperture, rather than a line-focus, is considered for the remainder
of this article. In all cases, circular apertures (as shown in the
previous article24) are represented on a discrete Cartesian grid,
as consistent with the analysis presented in the previous section.
The effects of light redistribution are illustrated in Figure 5.

The object from Figure 2 is considered in Figure 5 but
represented with NU ) 40 coefficients. The angular spectrum
of illumination is discretized so that for any wavenumber νj the
sx diameter across the aperture is at least 20 pixels and the sy

diameter is 20 pixels. The field emerging from the sample is
represented using an angular spectrum discretized with the
same pixel spacing and with 20 pixels in the sy dimension and
at least 60 pixels in the sx dimension. The discretization
described here is more coarse than that used in the previous
calculations of the fields in the sample. This is because the
predicted detection data are less sensitive to fine features of
the field (e.g., evanescent waves) so that the desired prediction
ceases to change with the discretization at a more coarse level.
The outer and inner Cassegrain numerical apertures are again

Figure 4. Responses for a line-focused y-polarized field incident on the edge (x ) 50 µm) of an absorbing slab. All other plots and parameters
are the same as in Figure 2. A similar scenario, but with the sample suspended in free space, is illustrated in Figure S3 of the Supporting
Information.
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0.5 and 0.1, respectively, which means that the discrete
representation of the scattered fields extends well into the
evanescent region.

Two modalities were simulated. First, the focus of an unpo-
larized illuminating field was translated in small increments and
the emerging angular spectrum calculated. By calculation of the
total power throughput,28 a point mapping system was simulated,
where a large area detector was used and the Cassegrain edges
set the limiting apertures in the optical path. That is, the sample
was illuminated at a single spot and the transmitted light captured
using a single IR detector. Second, widefield illumination with
array detection was simulated. The transmitted angular spectrum
can be used to calculate the intensity on a detector plane,29 and
for each focal position these intensities can be summed. The fill
factor of the detector is not explicitly considered here but the
consequences of a nonunity fill factor can be included in the model
and are not expected to produce significant qualtitative changes.
These two approaches, point mapping and imaging, are both
employed in contemporary microspectroscopy, and simulations
in Figure 5 for both modalities demonstrate similar results.
However, it is instructive to notice how the measured profile of
the slab depends on wavenumber. For example, both the gradient
of the absorbance at the slab edge and the overshoot at the edge
vary with wavenumber. While the wavenumber dependence of
the achievable spatial resolution is known,30 spectral measure-
ments also change with wavelength due to optical effects (such
as diffraction and refraction) and, additionally, with sample
structure (e.g., thickness). A description of spectral distortions
and their effect on spatial specificity (and, in turn, the resolution
attainable) is lacking. The model sample of constant k(νj) consid-
ered here exhibits differing profiles due to wavelength dependent
phenomena, emphasizing this relationship between recorded
spectra and the apparent morphology of the sample.

Frequency-Variant Samples. To see how optical phenomena
influence a measured spectrum, the simulation parameters de-

scribed for Figure 5 were modified by replacing the constant index
of the slab with the complex refractive index of toluene31 and by
replacing the constant index of the substrate by the index of
barium fluoride.32 A background measurement was calculated by
applying standard transmission coefficients to model the transmis-
sion of light through the air-to-barium-fluoride boundary at the
first substrate surface and the barium-fluoride-to-air boundary at
the second substrate surface. In the presence of the absorbing
toluene slab, both point mapping and imaging profiles were
calculated using the methods described above.

Spectra from the imaging modality are shown in Figure 6. In
these calculations it was assumed that the pixel size was 5 µm at
the sample plane. Spectra are plotted for the center of the slab
and for measurements in the vicinity of the edge. It can be seen
that light scattered outside of the collection cone produces a
nonzero baseline in the measured spectra, as is commonly
observed. A smooth baseline function is often fitted to these
spectra and subtracted out before spectral metrics are calculated.
Here, local linear baselines are fitted to the spectra, as is common
practice in spectral preprocessing, and peak position and height
metrics calculated (as illustrated in Figure 6). The resulting peak
positions are given in Table 1, and the resulting normalized peak
heights are given in Table 2. In both cases an ideal value has
been calculated by determining the true absorbance profile from
the imaginary refractive index.33

It can be seen that the observed spectral metrics depend on
the position at which the spectra are measured. Optical effects
distort the spectra by coupling the real part of the refractive index
and the sample structure into the data. While baselining has
removed some of the gross optical effects, the metrics are not
independent of morphology. It should be noted that correction
algorithms other than baseline subtraction have been proposed,
e.g.,takingderivativesofthespectraormoreadvancedprocedures.34,35

However, these procedures are typically ad hoc or do not fully
account for physical phenomena such as the coupling of the
dispersive line-shape (the real index) into the observed spectra
and the influence of the sample morphology on the collected data.
Hence they cannot capture the physics of the true distortions and
may provide unjustified confidence compared to uncorrected data.

The point mapping modality was also simulated, and the
measured spectra are shown in Figure 7. While there are
differences, the gross behavior can be seen to be similar to that
observed in the imaging modality. In this example, the observed
peak positions (Table 3) are the same as for the mapping case,
while the peak ratio (Table 4) metrics differ but exhibit a similar
amount of variability as the imaging case. The baseline charac-
teristics differ between the imaging and mapping modalities. This
is to be expected as scattering distorts the point spread function
of the light to spatially redistribute light intensity incident on the
detector—in imaging mode this means that light scattered from
an edge can effect neighboring pixels, while for mapping this type
of crosstalk does not occur.

(28) Equation 32 in ref 5.
(29) Equations 30 and 31 in ref 5.
(30) Lasch, P.; Naumann, D. Biochim. Biophys. Acta 2006, 1758, 814–829.

(31) Figure 6 in ref 5.
(32) Malitson, I. H. J. Opt. Soc. Am. 1964, 54, 628–632.
(33) Equation 35 in ref 5.
(34) Kohler, A.; Kirschner, C.; Oust, A.; Martens, H. Appl. Spectrosc. 2005, 59,

707–716.
(35) Thennadil, S. N.; Martens, H.; Kohler, A. Appl. Spectrosc. 2005, 60, 315–

321.

Figure 5. Absorbance profiles of the 7 µm slab of Figure 2, at
different wavenumbers and for both (a) imaging and (b) point mapping
modalities.
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Note that the severity of the metric distortion depends on the
sample morphology and boundaries. For example, Figures S4 and
S5 in the Supporting Information show results for a sample
thickness of 2 µm rather than 7 µm. It can be seen that optical
distortions, such as the nonzero baseline, are less severe for the
2 µm thick sample. As noted earlier, thinner samples can, in
general, be expected to be less susceptible to distortions due to
optical phenomena than comparable thicker samples. Spectral

metrics are also affected to a lesser extent as can be seen by
comparing the metric tables for the 2 µm thick sample (Tables
S2-S5 in the Supporting Information) to the metric tables for the
7 µm thick samples above. For example, in the latter, a maximum
peak shift of 2.5 cm-1 is observed, while for a 2 µm thick sample,
the maximum peak shift is 1 cm-1.

The dependence of spectral distortions on sample parameters
is important from two perspectives. First, the effect of geometry
becomes difficult to quantify in simple terms. Hence, a measure
of the systematic deviations in the spectrum must be individually
calculated for specific samples. This is especially important for
studies that are interested in subtle chemical changes at edges
(often several wavenumber shifts) or in an algorithm-based search.
While careful simulations are prescribed for sensitive chemical
analyses, the strategy in database searching may be to use a
coarse spectral resolution. Second, in automated analysis algo-
rithms such as those for tissue histopathology,36 sample thickness
becomes an important parameter whose impact must be appreci-
ated. One approach may be to carefully control sample thickness
such that deviations are consistent and can be eliminated from
use in classification algorithms by choice of appropriate metrics.
A second approach is to use a large number of samples with a
thickness variation arising from the natural variation of the

(36) Fernandez, D. C.; Bhargava, R.; Hewitt, S. M.; Levin, I. W. Nat. Biotechnol.
2005, 23, 469–474.

Figure 6. Imaging spectra from a 7 µm thick toluene slab on 2 mm of barium fluoride. The absorbance is normalized by the slab thickness.
Spectra are shown from the center of the slab (x0 ) 0) and in the vicinity of the edge (x ) 50 µm). The full spectra (a), and details for x ) 0
(b-d), x ) 45 µm (e-g), x ) 50 µm (h-j), and x ) 55 µm (k-m) are shown. A baseline is illustrated by a dashed line in the detail plots, and
peak heights and positions are calculated as illustrated by the solid vertical lines. The calculated metrics are given in Tables 1 and 2.

Table 1. Peak Positions for the Imaging Data to the
Nearest 0.5 cm-1

peak 1 peak 2 peak 3 peak 4 peak 5 peak 6
ideal 3027.0 2920.0 1495.5 1460.5 1030.0 1081.5
x0 ) 0 3027.0 2920.0 1495.5 1460.0 1030.0 1081.5
x0 ) 45 µm 3027.0 2919.5 1495.5 1460.0 1030.0 1081.0
x0 ) 50 µm 3026.5 2919.0 1495.5 1459.0 1030.0 1081.0
x0 ) 55 µm 3027.0 2919.0 1495.0 1458.0 1029.5 1080.5

Table 2. Normalized Peak Heights for the Imaging Data

peak 1 peak 2 peak 3 peak 4 peak 5 peak 6
ideal 1.00 0.514 1.79 0.436 0.444 0.350
x0 ) 0 1.00 0.505 1.76 0.388 0.416 0.327
x0 ) 45 µm 1.00 0.505 1.74 0.400 0.401 0.314
x0 ) 50 µm 1.00 0.517 1.57 0.401 0.388 0.296
x0 ) 55 µm 1.00 0.517 1.58 0.447 0.486 0.352
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protocol. Any developed classification algorithm then will be
insensitive to optics-induced distortions within the range of
thicknesses used in the development of the protocol.

Experimental Comparison. To test the predictive power of
the model presented here, it is useful to compare experimental
data with simulations for a comparable sample and imaging
system. The sample data were recorded on a Varian Stingray

system using a mid-IR interferometer. The microscope of the
instrument is equipped with a narrowband, liquid nitrogen cooled
mercury-cadmium-telluride (MCT) detector, as well as a 128 ×
128 pixel, liquid nitrogen-cooled focal plane array MCT detector.
Data are recorded at an undersampling ratio of 2 referenced to
the He-Ne laser, zero-filled by a factor of 2, and Fourier
transformed using Happ-Genzel apodization. The nominal spec-
tral resolution was 2 cm-1. The ratios of two similarly collected
image sets (one without a sample to serve as a background
and one with a sample) are taken pixel by pixel to obtain
absorbance image datasets. A common photoresist material,
SU-8 2000.5 (MicroChem Corp., Newton, MA), was spin coated
to an approximate thickness of 10 µm on a 25 mm diameter
barium fluoride (BaF2) disk and pattern cured by UV exposure
using a standard USAF 1951 target (Edmond Optics, Bar-
rington, NJ). The entire sample was baked at 95 °C and
developed as per standard protocols for postcuring. A postbake
at 150 °C for 5 min was performed to ensure complete
polymerization and long-term stability.

An image of the transmittance, at νj ) 2903 cm-1, for a region
of the target is shown in Figure 8. The data measured along the
dashed line will be examined; in particular, the spatial-spectral
response across the edge of a bar structure is of interest. The
absorbance profile along the dotted line shown in Figure 8 is

Figure 7. Point mapping spectra from a 7 µm thick toluene slab on 2 mm of barium fluoride. The absorbance is normalized by the slab
thickness. Spectra are shown from the center of the slab (x ) 0) and in the vicinity of the edge (x ) 50 µm). The full spectra (a) and details for
x ) 0 (b-d), x ) 45 µm (e-g), x ) 50 µm (h-j), and x ) 55 µm (k-m) are shown. A baseline is illustrated by dashed lines, and peak heights
and positions are calculated as illustrated by the solid vertical lines. The calculated metrics are given in Tables 3 and 4.

Table 3. Peak Positions for the Point Mapping Data to
the Nearest 0.5 cm-1

peak 1 peak 2 peak 3 peak 4 peak 5 peak 6
ideal 3027.0 2920.0 1495.5 1460.5 1030.0 1081.5
x0 ) 0 3027.0 2920.0 1495.5 1460.0 1030.0 1081.5
x0 ) 45 µm 3027.0 2919.5 1495.5 1460.0 1030.0 1081.0
x0 ) 50 µm 3026.5 2919.0 1495.5 1459.0 1030.0 1081.0
x0 ) 55 µm 3027.0 2919.0 1495.0 1458.0 1029.5 1080.5

Table 4. Normalized Peak Heights for the Point
Mapping Data

peak 1 peak 2 peak 3 peak 4 peak 5 peak 6
ideal 1.00 0.514 1.79 0.436 0.444 0.350
x0 ) 0 1.00 0.502 1.75 0.386 0.415 0.326
x0 ) 45 µm 1.00 0.504 1.73 0.403 0.397 0.309
x0 ) 50 µm 1.00 0.520 1.56 0.395 0.382 0.292
x0 ) 55 µm 1.00 0.509 1.55 0.435 0.475 0.342
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plotted for three different wavenumbers in Figure 9a. Apparent
artifacts, e.g., overshoot in the absorbance at the sample edges,
can be seen to vary with wavenumber. These distortions arise
from both baseline offset due to redistribution of intensity by the
sample and changes in the apparent peak shape. Other wave-
number-dependent effects are also visible, e.g., the change in
spatial resolution as a function of wavenumber is manifest in the
differing gradients of the absorbance profiles at the edge.

Subtracting a slowly varying baseline is a common method to
compensate for the consequences of optical effects on spectra. In
Figure 9b, the edge profiles are replotted after a linear baseline
has been subtracted from the spectra. For each of the spectra,
the baseline was found by linear interpolation between minima
of the SU-8 response, specifically between the absorbance values
at 910, 1423, 1551, 1827, 2696, 2783, 3111, 3736, and 3931 cm-1.
It can be seen that the baselining procedure qualitatively
improves the edge profiles, at least in absorbing regions of the

spectrum. Such subjective baselining can lead to seemingly
reasonable results, especially when scattering is high and
absorbance is low. For automated analyses, which are required
due to the large number of pixels (spectra) making manual
correction impossible, simple corrections may lead to errors.
For example, at 2100 cm-1, the baselining procedure has
resulted in some nonphysical negative values of absorbance.
Another potential concern is the discrepancy in absorbance
between the two bar targets. For the bar centered around y )
20 µm, the absorbance values at 1283 and 2903 cm-1 are
approximately equal, while the neighboring bar exhibits a
greater difference, despite being made of the same material
and being subject to the same processing history.

Quantitative examination of the collected data reveals spectral
distortions of the type predicted earlier in the article. An illustrative
absorption peak is centered around νj ) 1508 cm-1. Experimental
measurements of this peak are shown for various sample
locations in the left column of Figure 10. Data collection from
this peak can be simulated by first estimating the physical
properties of the sample. By comparison of the absorbance

Figure 8. Transmission image of a SU-8 bar target on barium
fluoride at 2903 cm-1. In subsequent figures, profiles will be displayed
from along the dashed line, and spectra will be plotted for the points
marked with a circle.

Figure 9. Absorbance profiles, before (a) and after (b) baseline
correction, across the bar target for three different wavenumbers. At
νj ) 1283 cm-1 and νj ) 2903 cm-1, the SU-8 polymer is absorbing.
At νj ) 2100 cm-1, the polymer is nonabsorbing but scattering effects
produce apparent absorption at the edges.

Figure 10. Experimental absorbance spectra taken at y ) 22 µm
(a), y ) 60.5 µm (c), and y ) 71.5 µm (e) (i.e., the points marked
with a circle in Figure 8) and simulated spectra taken from the polymer
50 (b) and 6 µm (d) from the edge and from off the polymer 5 µm
from the edge (f). The peak location, after the illustrated baseline
correction, is displayed on the plots.
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measured at y ) 22 µm in relation to the imaginary part of the
refractive index of SU-8 calculated in the previous article, the
thickness of the SU-8 was estimated to be approximately 7 µm.
The imaginary part of the refractive index was then estimated
from the absorbance33 (again from the measurement at y ) 22
µm). Kramers-Kronig37 analysis was used to calculate the real
part of the refractive index, thus completing the description of
the object. Note that the SU-8 refractive index calculated in the
previous article was not employed, as differences in sample
preparation were found to have introduced small but significant
differences in the optical properties of the polymer.

The sample edge profile and the instrument were modeled in
the same manner used to generate Figure 6, except that the inner
and outer numerical apertures of the Cassegrain were taken to
be 0.26 and 0.4, respectively. These values are consistent with
those used for the same instrument in the previous article. The
experimental and predicted spectral profiles of parts a and b of
Figure 10 agree well. This is to be expected as the SU-8 refractive
index used in the simulations was calculated from Figure 10a,
and this region of the sample is a relatively simple layered
structure.

In the vicinity of the polymer edge, the peak position in the
experimental data can be seen to shift. Since the target structure
is made of a single material, this shift can most likely be attributed
to optical effects. Nonuniform curing occurring at the sample
edges can be ruled out due to extensive postreaction thermal cure.
The simulations also predict a peak shift toward lower wavenum-
ber; however, this shift is greater in the predictions than it is in
the measurements. There are several possible causes for this
overestimation. The characterization of the sample relied on a
chain of estimation procedures, the real index was estimated from
the imaginary index which was in turn dependent on the assumed
sample thickness, with the possibility of propagating errors. The
correct prediction of bulk spectra, however, suggests that this
error is small. The sample geometry may also lead to errors in
prediction. In simulation, the edge is represented by a steep
gradient between two perfectly flat surfaces. In reality, the sample
edges can be expected to have some finite and unknown slope,
and the horizontal surfaces in the bar targets may not be perfectly
flat. The broad agreement between the experimental and simu-

lated results of Figure 10 indicate that the model developed has
significant predictive power and allows an understanding of the
causes and effects of optical artifacts.

CONCLUDING REMARKS
This article presents the first attempt at applying rigorous

optical theory to heterogeneous samples in IR microspectroscopy.
It is shown that lateral structure in thin samples leads to significant
effects on the recorded spectral data arising from a coupling
between wavelength, sample geometry, optical properties within
the sample, presence of interfaces, and the optical setup. With
the use of progressively sophisticated simulations, the effect of
each of these factors was demonstrated in a quantitative manner.
It was shown that the redistribution at the detector place of the
intensity incident upon the sample can be quantitatively modeled
and verified with experiments. The implications for the practice
of spectroscopy are that the spatial and spectral variation of the
real and imaginary parts of the index of the sample cannot be
decoupled from FT-IR imaging data, as is currently practiced. It
is emphasized that recording the true data will require the
development of both new instruments that can provide additional
data to extract true spectral properties from the data, as well as
numerical methods to assist in the same. The theoretical frame-
work presented here should serve as a useful guide to estimate
the true structure and quantify distortions in present instruments
as well as a platform for future development.
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