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The linear inverse problem for near-field optical microscopy is solved for a broadband scanning modality.
Pseudo-inverse formulae are derived and illustrated with numerical simulations.
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1. Introduction

The resolution of far-field optical imaging systems is
subject to the diffraction limit [1]. To overcome this
limit and infer structure at subwavelength scales,
near-field techniques can be employed [2–8]. While
near-field instruments produce data sensitive to
subwavelength-scale sample variations, it is not neces-
sarily obvious how the data relate to the physical
properties of the sample [9,10]. In the last decade, there
has been significant progress both in the modeling of
near-field imaging systems and in the subsequent
interpretation of the data collected, see e.g. [11].
In addition to allowing a quantitative understanding
of the data collected by standard instruments, the
modeling of near-field systems enables the application
of computed imaging techniques [12]. That is, new
near-field modalities with multiplex data-to-sample
relations can be paired with numerical processing to
infer sample structure, see e.g. [13–15]. The raw data
need not provide an obvious representation of the
spatial object structure.

Traditional near-field scanning optical microscopy
(NSOM) systems collect data in two dimensions using
probe scanning. To image a three-dimensional sample
it is necessary to acquire additional data which, in
near-field scanning optical tomography (NSOT), are
then incorporated into the image using computed
imaging techniques. For example, a microwave
near-field tomography system has been demonstrated
where additional data are acquired by scanning the
sample using probes of different sizes [16].

Alternatively, additional near-field data may be col-
lected using multiple observation angles or
scan-heights [13,17–21].

In this work, a spectral NSOT modality is
proposed. Rather than using multiple observation
angles or multiple probes, it is proposed to collect
data in a third dimension using the spectral degree of
freedom. The approach of constructing an image in N
spatial dimensions by collecting data in (N! 1) spatial
dimensions and a spectral dimension has found appli-
cation in techniques such as optical coherence tomo-
graphy [22] and synthetic aperture radar [23]. The
recent demonstration of an interferometric, spectral
near-field system [24] suggests that this approach may
also find success in NSOT. Multiple images corre-
sponding to different wavelengths can be collected
from each probe scan and are therefore inherently
coregistered.

Broadband NSOT theory is developed below for
two cases: a simplified model that provides a frame-
work to understand. First, a scalar model with a simple
source and background configuration is considered.
Specifically, a point source is scanned above a
perturbative sample. The sample is suspended in
free-space for simplicity. Second, a more involved
model is developed and proceeds along the same lines
as the first. The field is taken to be a vector
electromagnetic field in a background that includes a
substrate. Following the monochromatic treatment
given in [17], an instrument model is developed, an
inversion formula based on the singular value
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decomposition (SVD) is derived, and simulations are
used to determine the expected system performance.

2. Scalar forward problem

The first system considered is illustrated in Figure 1.
The NSOT probe is assumed to behave as a point
source illuminating the sample. The resulting scattered
light is then collected coherently as a function of angle
and/or wavelength depending on the NSOT modality
considered. Using the first Born approximation
(i.e. single scattering) the scattered field can then be
expressed as

Uðr, rd, kÞ ¼
ð
d3r 0Gðr, r 0, kÞGðr 0, rd, kÞVðr 0Þ, ð1Þ

where r is the position of the probe, r 0 is a dummy
variable describing the scattering position within the
sample, rd is the detector position, k is the wavenumber
and the Green function is

Gðr, r 0, kÞ ¼ exp ikjr 0 ! rjð Þ=jr 0 ! rj: ð2Þ

Equation (1) describes light originating from a point
source at r, scattering from all sample positions r 0 and
propagating to rd. Here the NSOT system is described
in illumination mode but the theory may be applied to
detection mode by considering a source at rd and a
point detector at r. It is also implicit that the probe
does not strongly interact with the sample – an
approximation investigated in [20].

The second Green function in Equation (1) is
asymptotically

Gðr 0, rd, kÞ % exp !ik & r 0ð Þ exp ikrdð Þ=rd, ð3Þ

since rd is in the far-field. Note that k and rd determine
the detection wavevector k and that this approxima-
tion assumes r 0 is near the origin. Collecting the
angular and spectral dependence of U in k and

dropping dependence on rd (the constant distance to
a detection hemisphere) gives

Uðr, kÞ ¼
ð
d3r 0Gðr, r 0, kÞ exp !ik & r 0ð ÞVðr 0Þ: ð4Þ

It is now convenient to express the remaining
Green function using the Weyl representation [25]

Gðr,r 0,kÞ ¼ i

2p

ð
d2q

kzðq,kÞ
exp iq & ðq!q 0Þþ ikzðq,kÞjz! z 0j½ ),

ð5Þ
where r¼ (q, z) and kz(q, k)¼ (k2! q2)1/2 (the principal
branch is used to evaluate this square root).

It is assumed that the probe-scan plane is fixed
above the sample and is set to z¼ 0. The definition
Q(q, k)¼ [q, kz(q, k)] is used so that the data are
written as

Uðq, kÞ ¼ i

2p

ð
d2q expðiq & qÞ

kzðq, kÞð
d3r 0 expf!i½kþQðq, kÞ) & r 0gVðr 0Þ: ð6Þ

Taking the Fourier transform with respect to the scan
dimensions q,

~Uðq, kÞ ¼ 2pi
kzðq, kÞ

ð
d3r 0 expf!i½kþQðq, kÞ) & r 0gVðr 0Þ,

ð7Þ
where ~ represents a transverse Fourier transform. The
transverse Fourier transform contained in the remain-
ing integral can also be evaluated by defining ~V, the
two-dimensional transverse Fourier transform of V.
The observation model now simplifies to a
one-dimensional integral equation,

~Uðq, kÞ ¼ 2pi
kzðq, kÞ

ð
dz 0 expf!i½kzðkk, kÞ

þ kzðq, kÞ)z 0g ~Vðkk þ q, z 0Þ, ð8Þ

Figure 1. The scalar model considered first is illustrated on the left. The probe is the source of illumination and the sample is in
free-space (so there is no substrate to produce reflections). The vector model considered second is illustrated on the right. The
probe–sample system is illuminated. The illumination is scattered from both the probe and the inhomogeneities in the sample.
The scattered field is reflected from a supporting substrate.
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where k¼ [kk, kz(kk, k)]. This model applies to
multi-angle and/or broadband NSOM. The depen-
dence on both angle and wavelength is contained in k.

The Fourier-domain model expressed in Equation
(8) implicitly assumes an infinite and continuous scan
range. A finite and discrete sampling grid approx-
imates Equation (8), provided that the probe scanning
step is sufficiently small to preclude aliasing and the
scan range covers all significant signal.

3. Scalar inverse problem

While the model given in Equation (1) could be used in
the design of an inversion process, Equation (8) is
much more appealing as it is only a one-dimensional
integral equation. The transverse component of the
data collection is linear and shift-invariant and is
therefore diagonalized in the Fourier-domain, reducing
the dimensionality of the problem. Regarding the
transverse Fourier-transform variables q as para-
meters, the model can be rewritten,

~UqðkÞ ¼ Aq
~Vq

" #
ðkÞ

¼
ð
dz expf!i½kzðkk, kÞ þ kzðq! kk, kÞ)zg ~VqðzÞ,

ð9Þ
where ~UqðkÞ ¼ kzðq! kk, kÞ ~Uðq! kk, kÞ=ð2piÞ. The
operator kernel is

Aqðk, zÞ ¼ expfi½k*z ðkk, kÞ þ k*z ðq! kk, kÞ)zg, ð10Þ

with [Aqu](k)¼hAq (k, z), u(z)iz, and angle brackets
denoting an inner-product. In z space, hs(z), u(z)iz¼

Ð

dz s*(z)u(z). The adjoint operator is Ay
q , with

½Ay
qw)ðzÞ ¼ hA*

qðk, zÞ,wðkÞik and the k-space
inner-product being hv(k),w(k)ik¼

P
kv

*(k)w(k). The
operator Aq maps a continuous function on z to data
collected on a discrete set K of k vectors. The SVD
analysis of such semi-discrete systems is standard [26]
and will be used to invert the mapping from z to K.

The Gram matrix for Aq is

Mqðk, k 0Þ ¼ hAqðk, zÞ,Aqðk 0, zÞiz,

¼
exp !iQðq, k,k 0Þz½ )

!iQðq, k, k 0Þ

%%%
zmax

zmin

, Qðq, k, k 0Þ 6¼ 0,

zmax ! zmin, Qðq, k, k 0Þ ¼ 0,

8
><

>:

ð11Þ

where k and k0 index the rows and columns,
respectively,

Qðq, k, k 0Þ ¼ kzðkk, kÞ ! k*z ðk
0
k, k

0Þ þ kzðq! kk, kÞ
! k*z ðq! k 0

k, k
0Þ, ð12Þ

and zmin and zmax giving the longitudinal boundaries of
the sample. Matrix multiplication by Mq is a mapping
from K to K and represents the normal operator for
this system. Note that the Gram matrix is Hermitian
and nonnegative definite.

The real nonnegative eigenvalues of Mq and the
corresponding eigenvectors are found numerically. The
‘th eigenvector c‘qðkÞ (where the measurement wave-
vector k indexes the vector element) is the ‘th
left-singular vector of Aq, and the square root of the
‘th eigenvalue of Mq is the singular value !‘q. The ‘th
right singular vector can then be calculated as,

 ‘q ðzÞ ¼ Ayq c
‘
q

h i
ðzÞ ¼ hA*

qðk, zÞ, c
‘
q ðkÞik: ð13Þ

This defines the SVD, so ~UqðkÞ can be expressed as

Aq
~Vq

" #
ðkÞ ¼

XN

‘¼1

!‘qc
‘
q ðkÞh 

‘
q ðzÞ, ~VqðzÞiz, ð14Þ

where N is the number of elements in K.
The preprocessed data ~Uq can then be used in the

inversion of Equation (9). The truncated singular value
decomposition (TSVD) is employed to find ~Vþ

q ðzÞ, an
estimate of the sample in q–z space. The TSVD is used
to provide stability to noise and is expressed as

~Vþ
q ðzÞ ¼

XNþ

‘¼1

1

!‘q
 ‘q ðzÞhc

‘
q ðkÞ, ~UqðkÞik, ð15Þ

where Nþ is the number of singular components
included in the reconstruction. The regularization of
the inverse problem is controlled by Nþ – a greater Nþ

gives better reconstruction fidelity while a lesser Nþ

reduces sensitivity to measurement noise.

4. Vector forward problem

We turn our attention to a model more applicable to
optical near-field microscopy, but superficially more
complicated. In this section, a vector field is consid-
ered. The tip serves as a scatterer of illuminating light
rather than a primary source. The realistic presence of
a supporting substrate is included in the incident field
and the Green tensor. The data are assumed measured
on a discrete grid. Despite rather longer expressions,
the structure of the problem remains largely the same.
The illumination, scattering by the tip then the sample,
scattering by the sample then the tip, reflections from
the substrate and subsequent detection are illustrated
in Figure 1.

A weakly scattering sample, described by the
dielectric susceptibility "(r) (rather than the scattering
potential V for scalar fields), is placed in vacuum above
a half-space with a uniform index of refraction n. The
interface is assumed to coincide with the z¼ 0 plane.

Journal of Modern Optics 3
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An apertureless tip with an effective polarizability ae
[20] is scanned over the sample while the system is
illuminated by an incident plane wave E i, with
free-space wave vector kd¼![qd, kz(kd, k)], and
polarization p, given by

E iðr, kdÞ ¼ IþRð!qd, kÞ exp½2ikzðqd, kÞz)
& '

exp½iqd & q! ikzðqd, kÞz) p, ð16Þ

where R is the reflection tensor at the half-space
interface [20].

The detector is assumed to be placed to collect the
back-reflection. That is the position of the detector is
given by rd¼ (qd, zd), a vector parallel to kd. At the
detector, the same polarization as was incident, p is
assumed to be measured. The first Born approximation
(linear in the sample susceptibility) is given by [20]

Es ¼ p & ½TSþ ST) & E i, ð17Þ

where T and S represent integral operators mapping a
field incident on the tip or the sample to the respective
scattered field. They are given by

½S & E )ðrÞ ¼ k2
ð
d3r 0 Gðr, r 0, kÞ"ðr 0ÞEðr 0Þ, ð18Þ

and

½T & E )ðrÞ ¼ k2
ð
d3r 0 Gðr, r 0, kÞae#ðr 0 ! rtÞEðr 0Þ, ð19Þ

where rt¼ (qt, zt) is the position of the tip and G is the
half-space Green tensor. It may be noted that while the
scattering from the tip is exactly described by T, the
scattering from the sample, described by S, is of
first-Born type [20].

The Green tensor may be expressed in the plane
wave decomposition [20]

Gðr,r 0,kÞ ¼ i

2p

ð
d2qgðz,z 0,k;qÞexp iq & ðq!q 0Þ½ ), ð20Þ

where g(z, z0; q), the plane wave component, is given by

gðz,z 0,k;qÞ

¼ 1

kzðq,kÞ

"
DðqÞexp½ikzðq,kÞðz! z 0Þ)
þRðqÞexp½ikzðq,kÞðzþ z 0Þ)

#
, 0+z 0+z,

"
~DðqÞexp½ikzðq,kÞðz 0 ! zÞ)
þRðq,kÞexp½ikzðqÞðz 0 þ zÞ)

#
, 0+z5z 0,

8
>>>><

>>>>:

ð21Þ

where dependence on the wave number k of the
polarization tensors D(q) and ~DðqÞ, the reflection
tensor R(q) and the transmission tensors T (q) and

T 0(q), which were given in [20], is understood. The
Green tensor has the asymptotic form

Gðrd,r 0,kdÞ ¼
expðikrdÞ

rd
expð!ikd & r 0Þ

, DðqdÞþRðqdÞexp½2ikzðqd,kÞz 0)
" #

ð22Þ

with the observation point rd in the far field in the
upper half space and the source point r0 near the origin
in the upper half space. Making use of Equations (18),
(19), (22), it is seen that the scattered field given by
Equation (17) can be represented by the scattering
amplitude A¼ATSþAST, i.e.

Esðrd, rt, kdÞ ¼
expðikrdÞ

rd
Aðrt, kdÞ, ð23Þ

where

ATSðrt, kdÞ ¼ k4
ð
d3r 0 exp½!ikd & ðrt þ r 0Þ)p &

h
DðqdÞ

þ RðqdÞ exp½2ikzðqd, kÞzt)
i
aeGðrt, r 0, kÞ

, ½IþRð!qdÞe2ikzðqd, kÞz
0 )p "ðr 0Þ, ð24Þ

ASTðrt,kdÞ ¼ k4
ð
d3r 0 exp½!ikd & ðr 0 þ rtÞ)p &

h
DðqdÞ

þRðqdÞexp½2ikzðqd,kÞz 0)
i
Gðr 0,rt,kÞae

,
h
IþRð!qdÞexp½2ikzðqd,kÞzt)

i
p"ðr 0Þ: ð25Þ

Note that p represents a certain TEMpolarization in the
propagation direction defined by kd, and therefore lies
in the invariant subspace of the polarization operator
D(qd), which implies that p & D(qd)¼ p. Assuming ae is a
symmetric tensor, i.e. ae ¼ aTe where superscript ‘T’
represents matrix transpose, and considering that [20]
R(!qd)¼RT(qd) and G(r 0, rt, k)¼GT(rt, r

0, k), it may
be seen that AST ¼ AT

TS ¼ ATS since ATS is a scalar
quantity. Hence, the scattered field may be represented
by its amplitude A(rt, kd)¼ 2ATS(rt, kd).

Following the procedures outlined above and in
[20], we define the data function F as the lattice
Fourier transform of A(rt, kd)¼ 2ATS(rt, kd) with
respect to qt with lattice spacing h,

Fðqt, zt,kdÞ ¼ h2
X

$t

Aðrt, kdÞ expð!iqt & qtÞ, ð26Þ

where the sum over qt is carried out over all lattice
vectors and qt belongs to the first Brillouin zone (FBZ)
of the lattice. In this case FBZ¼ [!%/h, %/h], [!%/h,
%/h]. By substituting Equation (24) into Equation (26)
and making use of the plane wave representation of the
Green tensor (20), and the identity

X

q

expðiq & qÞ ¼ 2p
h

( )2X

q 00

#ðq! q 00Þ , ð27Þ

4 B.J. Davis et al.
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where q00 denotes a reciprocal lattice vector, the data
function is expressed as

Fðqt, zt, kdÞ

¼ k!1
z ðqd þ qt, kÞ

ð
dz 0 Lðqt, zt, kd, z 0Þ ~"ð2qd þ qt, z

0Þ ,

ð28Þ
where ~"ðq, z 0Þ ¼

Ð
d2$ 0 "ðq 0, z 0Þ exp½!iq & q 0) is the lat-

eral Fourier transform of the sample function ",
assumed to be band-limited to the FBZ, and the
kernel of integration L is given by

Lðqt, zt, kd, z 0Þ ¼ 4pik4 expfi½kzðqd þ qt, kÞ

! kzðqd, kÞ)ztgp &
"
DðqdÞ

þ RðqdÞ exp½2ikzðqd, kÞzt)
#

, ae
"
Dðqd þ qtÞ exp½!ikzðqd þ qt, kÞz 0)

þ Rðqd þ qtÞ exp½ikzðqd þ qt, kÞz 0)
#

,
"
I exp½!ikzðqd, kÞz 0) þ Rð!qdÞ

, exp½ikzðqd, kÞz 0)
#
p: ð29Þ

Equation (28) is the block-diagonalized forward inte-
gral equation, and is more suitable for a numerical
inversion than Equations (24) and (25).

5. Vector inverse problem

The inversion of Equation (28) is very much similar to
the procedure described above for the scalar case. Only
key results are listed below.

By observation, the integral kernel L in Equation
(29) contains a sum of terms like those appearing in the
scalar case, cf. Equation (10). It may be written in the
form of a separation of variables

LQðkd, zÞ ¼
X4

j¼1

C ð j Þ
Q ðkdÞ exp !i&ð j ÞQ ðkdÞz

h i
, ð30Þ

where subscript Q denotes collectively the parameters
(zt, 2qdþ qt), which are held constant during the
reconstruction of one component of ~", i.e.
~"ð2qd þ qt, zÞ - ~"QðzÞ. The coefficients C ð j Þ

Q and &ð j ÞQ

are given by

C ð1Þ
Q ðkdÞ ¼ p & Dðqd þ qtÞ

C ð2Þ
Q ðkdÞ ¼ p & RðqdÞDðqd þ qtÞ

C ð3Þ
Q ðkdÞ ¼ p & Rð!qd ! qtÞ

C ð4Þ
Q ðkdÞ ¼ p & RðqdÞRð!qd ! qtÞ

9
>>>>>=

>>>>>;

& 4pik4ae

,
h
IþRð!qdÞ exp½2ikzðqd, kÞzt)

i
p

, expfi½kzðqd þ qt, kÞ ! kzðqd, kÞ)ztg ð31Þ

and

&ð1ÞQ ðkdÞ ¼ kzðqd, kÞ þ kzðqd þ qt, kÞ,

&ð2ÞQ ðkdÞ ¼ !kzðqd, kÞ þ kzðqd þ qt, kÞ,

&ð3ÞQ ðkdÞ ¼ kzðqd, kÞ ! kzðqd þ qt, kÞ,

&ð4ÞQ ðkdÞ ¼ !kzðqd, kÞ ! kzðqd þ qt, kÞ: ð32Þ

The Gram matrix MQðkd, k 0
dÞ, cf. Equation (11),

defined as

Mqðkd, k 0
dÞ ¼

ð
dzLqðkd, zÞL*

Qðk
0
d, zÞ , ð33Þ

where the integral is carried over an interval in which
the sample function is supported, is found to be

MQðkd, k 0
dÞ ¼

X4

j,l¼1

C ð j Þ
Q ðkdÞC ðl Þ

Q ðk 0
dÞ

*

,
exp i &ðl ÞQ ðk 0

dÞ
* ! &ð j ÞQ ðkdÞ

h i
zmax

n o
! 1

i½&ðl ÞQ ðk 0
dÞ

* ! &ð j ÞQ ðkdÞ)
,

ð34Þ

where zmax is the maximum height of the sample, and
the singularities at points, where the denominator is
zero, are of removable type. A regularized solution is
thus given by

~"þQðzÞ ¼
X

kd,k
0
d

L*
Qðz, kdÞM

þ
Qðkd, k

0
dÞ ~FQðk 0

dÞ , ð35Þ

where Mþ
Q is the regularized pseudo-inverse of the

Gram matrix, and

~FQðk 0
dÞ ¼ kzðq 0

d þ qt, kÞFðq 0
t , zt, k

0
dÞ ð36Þ

is the preprocessed data. Regularization of the Gram
matrix inversion may be trivially modified to achieve
the same effects as regularizing inversion of the
forward operator. The corresponding object recon-
struction may be obtained through a two-dimensional
inverse Fourier transform, usually realized by a fast
Fourier transform (FFT) algorithm.

6. Simulations

The performance of the broadband NSOT systems is
investigated using numerical simulations. Synthetic
data are generated by defining a test sample V(r) and
evaluating Equation (1) for the modality considered. In
this case the sample consists of four point scatterers at
(!3, 0, !0.15)&, (!1.5, 0, !0.35)&, (0, 0, !0.55)& and
(1.5, 0, !0.75)&, where & is a nominal wavelength. The
first scatterer has a scattering potential 80% lower than
the other scatterers in order to give a reconstruction
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with comparable peak amplitudes. For the purposes of
reconstruction, the sample is assumed to lie in the
region !&5 z5!0.1&.

Three NSOT systems are considered: the first is a
single wavelength (&), many-angle system as in [17],
with k lying in the x–z plane and having 32 observation
angles evenly spaced across a semicircle; the second
system has a single observation angle (k lies in the x–z
plane at 45. from vertical) and 32 observation
wavelengths between 0.8& and 1.2&; and the third
system has the same spectral range as the second but
with two observation angles (30. and 60. from vertical
in the x–y plane) and 16 spectral samples per obser-
vation angle. All three systems have a scan step of &/12
in both x and y, with 100 and 80 samples in the x and y
directions, respectively.

The synthetic data were inverted according to
Equation (15), with Nþ chosen so that any singular
components with singular value less than one

one-hundredth of the maximum were discarded. This
criterion corresponds to a signal-to-noise ratio of
approximately 40 dB. The magnitudes of the resulting
reconstructions are shown in Figure 2, where each
reconstruction (one for each system) has been normal-
ized by its maximum value.

From Figure 2 it can be seen that the resolution for
the broadband and limited observation angle NSOT
systems is poorer than for the many-angle case at the
central frequency of the broadband case, but mean-
ingful three-dimensional detail is given. The resolution
in the broadband case may be improved by increasing
the bandwidth. However, once full bandwidth is
achieved, increasing bandwidth requires increasing
central frequency, so the many angle case at the central
frequency always gives superior resolution. In all
systems the resolution degrades with depth into the
sample. Due to asymmetry in the observation angles,
the many-angle and two-angle NSOT systems have
differing resolutions in the x and y directions.

7. Discussion

In summary, this work shows how a broadband NSOT
system may image three-dimensional structure using a
reduced number of observation angles by leveraging
the information available in the spectral degree of
freedom. Such a system could be achieved through
coupling a low-coherence interferometer to a fiber
based NSOM system. The advantage of such a system
is that it provides a proven means to collect phase
sensitive data over a broad band.

It was assumed that the sample is nondispersive,
but the results presented can be easily generalized to
the case where the sample is characterized by a
susceptibility or scattering potential that may be
written as the product of a function of only the
frequency and a function of only the coordinates, that
is, a separable function.
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