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Abstract: Three-dimensional image formation in microscopy is greatly enhanced by the
use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Mi-
croscopy (ISAM) allows the removal of out-of-focus blur in broadband, coherent microscopy.
Earlier methods, such as optical coherence tomography (OCT), utilize interferometric rang-
ing, but do not apply computed imaging methods and therefore must scan the focal depth to
acquire extended volumetric images. ISAM removes the need to scan the focus by allowing
volumetric image reconstruction from data collected at a single focal depth. ISAM signal pro-
cessing techniques are similar to the Fourier migration methods of seismology and the Fourier
reconstruction methods of Synthetic Aperture Radar (SAR). In this article ISAM is described
and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR
system are placed in a common mathematical framework and compared to OCT and radar re-
spectively. This article is intended to serve as a review of ISAM, and will be especially useful
to readers with a background in SAR.

Keywords: Microscopy, Interferometric, Synthetic Aperture, Radar, Optical Coherence To-
mography.
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1. Introduction

Traditional sensing modalities such as X-ray projection imaging [1], nuclear magnetic resonance
(NMR) spectroscopy [2, 3], radar [4] and focused optical imaging [5] rely primarily on physical instru-
mentation to form an image. That is, the instrument is constructed so that the resulting relation between
the object of interest and the collected data is sufficiently simple so as to allow data interpretation with
little or no data processing. However, for more than 40 years the performance of microelectronic de-
vices has improved exponentially, as famously quantified, in part, by Moore’s law [6]. The resulting
abundance of powerful computing resources has been a great boon to almost every area of science and
technology, and has transformed sensing and imaging. When significant computational data processing
is added to an imaging system, the effect of the physical sensing may be mathematically inverted, al-
lowing the use of instruments with more complicated, multiplex object-to-data relations. The resulting
sensing systems provide new imaging modalities, improved image quality and/or increased flexibility
in instrument design. This coupling of sensing instrumentation and physically-based inference is often
known as computed imaging.

The application of computed imaging techniques to the imaging and non-imaging sensor systems
listed above has been revolutionary: X-ray projection imaging has evolved into computed tomography
[7, 8]; the contrast mechanisms of NMR spectroscopy form the basis of magnetic resonance imaging
[9]; radar has led to synthetic aperture radar (SAR) [10–12]; while the subject of this article, ISAM
[13–20], is an example of computed imaging in focused optical systems. Computed imaging techniques
also appear in nature—perhaps the most ubiquitous example of what can arguably described as computed
imaging is the stereoptic human visual system, where a pair of two-dimensional images (one collected by
each eye) are processed in the brain to give depth perception [21]. These examples of computed imaging
are far from forming an exhaustive list—the field is large field and growing. Other examples include
array-based radio astronomy [22], diffusion tomography [23–25] and positron emission tomography
[26]. New applications and contrast mechanisms are still being discovered and the escalation of available
computational power is allowing increasingly difficult inverse problems to be solved. For example, the
recent explosion of activity in compressive sampling has already brought certain problems in analysis,
inference and reconstruction, thought to be intractable, into the realm of tractable problems [27, 28].
Instruments employing compressive sensing not only draw inferences from data using a physical model,
they exploit statistical redundancy in the description of the object to significantly decrease the amount of
data required, e.g. [29].

This article is focused specifically on ISAM imaging technologies. In addition to the broad com-
monality ISAM has with other computed imaging techniques, it has strong physical and mathematical
connections to a family of instruments including SAR, synthetic aperture sonar [30–32], seismic migra-
tion imaging [33, 34] and certain modalities in ultrasound imaging [35, 36]. All of these systems apply
computed imaging to multi-dimensional data collected using both spatial diversity and a time-of-flight
measure from a spectrally-broad temporal signal. In this article ISAM and SAR are cast in the same
mathematical framework, with similarities and differences between the two systems discussed through-
out.

In the following section, OCT, the forerunner of ISAM, is described. In Sec. 3 a general framework
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for ISAM, OCT, SAR and radar is developed. The distinctions between the ISAM/SAR and OCT/radar
models are discussed within this framework in Sec. 4. In Sec. 5 it is shown how the models used lead
to a simple Fourier-domain resampling scheme to reconstruct the imaged object from the collected data.
Simulated and experimental results are shown in Sec. 6, while alternative ISAM instrument geometries
are briefly discussed in Sec. 7. Conclusions and references appear at the end of this article.

2. Optical Coherence Tomography

An obvious distinction between ISAM and SAR is the spectrum of the electromagnetic field used
to probe the sample—ISAM operates in the near infrared (IR), while most SAR systems operate in the
radio spectrum. Probing in the near-IR allows the formation of an image with resolution on the order
of microns. Additionally, in many biological tissues the near-IR spectral band is primarily scattered
rather than absorbed [37], allowing greater depth of penetration than at other wavelengths. Near-IR light
backscattered from an object can be used to form a three-dimensional image using OCT [38–41]. Since
the image is formed based on the natural scattering properties of the object, OCT and related methods
are non-invasive and non-perturbing, c.f., methods such as histology (which requires destruction of the
sample) or fluorescence microscopy (which requires staining of the object).

OCT combines interferometry, optical imaging, and ranging. Due to its sensitivity to wavelength-
scale distance changes, interferometry has been an important tool in physics (e.g., Young’s experiment
[42] and the Michelson-Morley experiment [43]) and is now widely applied using many techniques [44].
OCT can be implemented in a Michelson interferometer arrangement as shown in Fig. 1. The focusing

Figure 1. A basic illustration of an OCT system. Light traveling in one arm of a Michelson
interferometer is focused into the sample. The length of the reference arm can be adjusted
using a moveable mirror. The reference light and the light backscattered from the sample
interfere at the detector.
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optics localize the illumination and collection operations around a transverse focal point. This focal
point is scanned in two (transverse) dimensions across the sample. Interferometry with a broadband
source is used to image the sample along the third, axial, dimension. The coherently backscattered light
and the reference light only interfere for backscattering from a narrow axial (depth) region, of length Lc,
determined by the statistical coherence length of the source (see Ref. [45], Sec. 4.2.1). That is, Lc is
inversely proportional to the source bandwidth. The interferometric signal is then obtained as a function
of axial position by altering the length of the reference arm for each point in the transverse scan. In this
manner optical coherence ranging is used to construct a three-dimensional image.

As described above, depth discrimination in OCT is achieved via coherence gating, while transverse
resolution is achieved using focusing optics. Ideal focusing optics would produce a thin collimated beam
in the sample, described as a pencil beam in Fig. 2. These ideal optics may not be physically realized,
as the propagation laws of electromagnetic radiation prohibit beams that are both perfectly collimated
and localized. For focusing systems, the beam is often quantified using a scalar Gaussian beam model
[46], within which the depth of focus b (i.e., the axial depth over which the beam is approximately
collimated) is proportional to the square of the minimum width w0 of the beam. As illustrated in Fig. 2,
this relationship between w0 and b implies that the resolution, which improves with decreasing w0, and
the depth of focus are competing constraints in OCT. When the coherence gate is set to image planes
outside of the depth of focus, the transverse resolution suffers as the beam becomes wider.

Figure 2. Illustration of focusing in OCT and the trade-off between depth of focus and
resolution (figure adapted from Ref. [17]). In OCT the light is implicitly assumed to be
perfectly collimated in a pencil beam. In reality the light must diverge away from the focus.
In low numerical aperture systems the beam width w0 and the depth of focus b are both large.
In high numerical aperture systems a tight focal width implies a small depth of field. Axial
resolution depends on the coherence length, Lc, of the broadband source.

The collected signal is an interferogram, i.e., the cross-
correlation signal, or the intensity versus difference in
reference and sample path lengths, and is given by the ex-
pression

S!r0,t" =# dt!Er!t!"Es
*!r0,t! − t", !2.1"

where Er!t" and Es!r0 , t" are the reference and sample
electromagnetic fields in a scalar model for the received
signal S!r0 , t". An interferogram for a single perfect reflec-
tor, such as a mirror, is displayed in Fig. 1(b).

The envelope of the interferogram is the point response
function in the axial direction of the system and corre-
sponds directly to the axial resolution of the system. Axial
resolution is directly proportional to the optical coherence
length of the light and thus inversely proportional to the
spectral bandwidth of the source. It is often convenient to
work with the Fourier transform of Eq. (2.1) with respect
to time, which is given by

S!r0,!" = Er!!"Es
*!r0,!". !2.2"

This signal S!r0 ,!" can be measured directly using
spectral-domain OCT.20,21

The sample under investigation may be known to con-
sist of a semitransparent background with an index of re-

fraction n. In the medium then, the wavenumbers k are
related to the frequencies ! by the dispersion relation
k!!"=!n /c. It will be advantageous to work with data
that are a function of k rather than !. To preserve energy
content of the signal, the data must also be multiplied by
the Jacobian of the transformation,

Sk!r,k" = S!!r,!"!!k/!!"−1. !2.3"

OCT images are formed by assembling adjacent low-
numerical-aperture axial scans to generate two-
dimensional, cross-sectional images.4,5 Figure 2 illus-
trates the common assumption among OCT researchers
that the low-numerical-aperture lens is a tool for generat-
ing collimated planar wavefronts. This assumption ne-
glects the characteristics of the incident Gaussian beam.
Therefore a standard OCT system will exhibit transverse
resolution that is not constant, but depends on depth and
the focal properties of the lens. This apparent loss of reso-
lution, or distortion, does not necessarily result in a loss
of signal power. By characterizing this distortion, it is
possible to correct it and produce images that are com-
mensurate with ideal beam collimation. Lenses of a
higher numerical aperture (NA) are able to focus a beam
to a relatively smaller spot size in the focal plane. How-
ever, high-NA lenses produce a more pronounced distor-
tion of features out of the focal plane. Hence, high-NA
lenses are good for optical sectioning in parallel planes (en
face) such as in multiphoton or confocal microscopy.22

Lenses with a lower NA are usually used for OCT imag-
ing, since they produce a relatively uniform transverse
resolution over the axial (depth) scan. Furthermore, the
confocal parameter of the lens (distance around the focus
where the beam profile has a relatively uniform width) is
generally chosen to closely match the penetration depth of
a particular type of tissue.

Many OCT images exhibit poor transverse resolution
outside of the confocal region, manifested as curved and
blurred features imaged in those areas. If a relatively
high-NA objective is used, where the axial scan length ex-
ceeds the length of the confocal region (twice the Rayleigh
range), then there is a more pronounced apparent loss of
transverse resolution outside of the confocal region. The
goal of this work is to digitally reduce the distortion out-
side of the confocal region by solving the inverse problem
based on the physics of the scattering process. By solving
the inverse problem we are able to produce images with
more sharply defined features. More importantly, the so-
lution resolves closely adjacent scatterers, even those that
produce interference in the raw OCT image. This is a cru-
cial advantage of inverse scattering over simple deconvo-
lution of a real-valued point-spread function.

3. MATHEMATICAL DESCRIPTION OF THE
EXPERIMENT
As discussed in the previous section, to simplify the model
for OCT data acquisition, several assumptions are gener-
ally made about an OCT system. These assumptions do
not take into account the shape of wavefronts produced by
lens optics, the spectrum of the source, or unbalanced dis-
persion in the media. The ideal instrument produces a
perfectly collimated beam of zero width at every point in

Fig. 1. (a) Typical Michelson interferometer for use in OCT. BS
is the beam splitter, PS is the sample path, PR is the reference
path, and h is the distance traveled by the reference mirror. (b)
Interferogram of an impulse response for an OCT system with a
low-coherence source having a Gaussian spectrum and a full
width at half-maximum (FWHM) coherence length Lc.

Fig. 2. Geometry of a Gaussian beam for low- and high-
numerical-aperture (NA) lenses. These geometries are con-
trasted with the assumption of a collimated axial OCT scan. b is
the confocal parameter, w0 is the beam radius at the focus, and Lc
is the coherence length of the source.

1028 J. Opt. Soc. Am. A/Vol. 23, No. 5 /May 2006 Ralston et al.

ISAM uses computational imaging to overcome the trade-off between depth of focus and resolution.
By accurately modeling the scattering processes and the data collection system, including the defocusing
ignored in OCT image formation, the scattering properties of the object can be quantitatively estimated
from the collected data. As in SAR, diffraction-limited resolution is achieved throughout the final image.
For both ISAM and SAR the key to this capability is the coherent collection of a complex data set.
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Interferometric microscopes [47], such as OCT systems, give holographic data, i.e., the phase of the
backscattered light can be recovered from the raw data. This is a substantial advantage over standard non-
interferometric systems where the phase information is lost at detection. This holographic data collection
is analogous to the coherent data collection used in SAR systems. Indeed, parallels between SAR and
holographic microscopy were recognized and discussed in a series of papers [48–50]. In both ISAM
and SAR, the collection of complex coherent data allows the numerical implementation of advantageous
operations that would be prohibitively difficult to implement physically. In SAR the multiple along-
track range profiles collected from a small aperture can be used to synthesize an aperture corresponding
to the whole along-track path. In ISAM, multiple complex OCT range profiles can be computationally
reconstructed so that all planes appear simultaneously in-focus, i.e., the blurred out-of-focus regions seen
in OCT can be brought into focus numerically.

3. General Framework

In both SAR and ISAM an electromagnetic wave is used to probe the object, the detection apparatus
is scanned in space, and a time-of-flight measurement is used to image an additional spatial dimension.
Thus, in a fundamental sense, the connection between the data and the object is determined by the same
physical laws in either case. This analogy can also be extended to other wave-based techniques such
as ultrasound and seismic migration imaging. In this section a general model for radar, SAR, OCT and
ISAM techniques is presented. While there are significant differences in system scale and operation,
see Fig. 3, the analogy between SAR and ISAM is sufficiently strong to allow a common mathematical
description.

As shown in Fig. 3, both SAR and ISAM systems involve a translation of the aperture. This aperture
position will be described by a vector ρ, while the vector r describes the position in the imaged object.
In the SAR case, a linear-track strip-map system is considered so that the detector is moved along points
ρ = [x, 0, 0]T (superscript T indicates a transpose) and the object may be imaged at points in a plane
r = [x, 0, z]T . In OCT and ISAM the data are collected as a function of two spatial variables in order
to image a three-dimensional volume, so that the detector ranges over ρ = [x, y, 0]T and the object
may be imaged for r = [x, y, z]T . Throughout this work a vector will be denoted by bold type, while
the corresponding scalar magnitude is given in plain type, e.g., r is the magnitude of the vector r. The
Fourier transform kernel is exp(iωt) for time domain signals and exp(−ik ·r) for spatial domain signals,
so that the complex plane wave exp[i(k0 · r−ω0t)] is a delta function centered on (k0, ω0) in the Fourier
domain.

3.1. The Back-Scattered Field

Consider the scattered field returned to the aperture when the aperture is offset from the origin by ρ,
the object consists of a point scatterer at the position r, and an ideal temporal impulse response is used as
input to the aperture. This returned scattered field will be denoted by ĥ(r− ρ, t), where the dependence
on r − ρ is indicative of the transverse spatial invariance of the system. Under the assumption linearity
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Figure 3. An illustration of the differences between the data acquisition geometries in SAR
and ISAM. SAR involves a one-dimensional scan track, while ISAM scans over a plane.
Unlike SAR beams, ISAM fields include a region within the object that is in focus. Note
that the same aperture is assumed for both transmission and reflection in SAR; similarly the
source is imaged onto the detector by the reference arm in ISAM (see Fig. 1). This figure is
adapted from Ref. [51].

and temporal invariance, the response to an arbitrary transmitted waveform Êr(t) is then,

Ês(ρ, t) =

∫
d3r

∫
dt′ Êr(t

′)ĥ(r− ρ, t− t′)η(r). (1)

The linearity of the system is predicated on the assumption that multiple scattering effects are negligible—
this is often known as the first Born approximation (see Ref. [45], Sec. 7.6.2). The system input Êr(t)

is the transmitted radar pulse for SAR systems and the temporal dependence of the optical plane wave
incident on the objective lens in ISAM. The object is described by the reflectivity function η(r) which,
in terms of Maxwell’s equations, can be identified as the susceptibility (see Ref. [52], Sec. 2.3). Note
that in Eq. (1) the integration over r has been written in three dimensions, while it is a two-dimensional
integration for the SAR system.

It is often convenient to represent the temporal convolution seen in Eq. (1) in the Fourier domain so
that,

Es(ρ, ω) =

∫
d3r Er(ω)h(r− ρ, ω)η(r). (2)

A caret (ˆ ) above a function denotes that the function is represented in the space-time domain, while the
absence of a caret denotes a function represented in the space-frequency domain. The fact that η(r) is
not a function of ω in Eq. (2) is indicative of an implicit assumption made in Eq. (1). The assumption is
that the imaged susceptibility is a constant function of the probing signal frequency, i.e., that the object
is not dispersive. This assumption is adequate over sufficiently narrow regions of the spectrum or when
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the object does not have significant absorbing resonant peaks over the imaging band. This is often true
to a good approximation in the biological samples imaged using ISAM.

3.2. Signal Detection in Radar

The backscattered field incident on the detecting aperture is represented in Eq. (1). Rather than
being used directly, this field is typically processed in radar systems, in a technique known as pulse
compression. The most common processing used is a matched filter [53], which can be expressed as,

ÎR(ρ, τ) =

∫
Ês(ρ, t)Ê∗

r (t− τ)dt, (3)

where ÎR represents the processed radar data. In Eq. (3), the detected field is filtered with a function
matched to the broadcast pulse Êr(t). Note that, following standard practice, a complex analytic repre-
sentation of the signals has been employed (see Ref. [45], Sec. 3.1), so that a one-sided Fourier analysis
can be used. Implicit in Eq. (3) is a coherent radar detection system sensitive to both the amplitude and
phase of the detected oscillating field Ês(ρ, t).

Expressing Eq. (3) in the Fourier domain and using the description of the scattered field given by
Eq. (2), the Fourier-domain SAR data may be written

S(ρ, ω) = Es(ρ, ω)E∗
r (ω),

= A(ω)

∫
d3r h(r− ρ, ω)η(r), (4)

where
A(ω) = |Er(ω)|2, (5)

represents the spectral power distribution of the source.

3.3. Signal Detection in Time-Domain OCT and ISAM

While coherent detection of Ês(ρ, t) is possible at the frequencies used in radar, there exist no de-
tectors capable of directly measuring the amplitude and phase of an optical field. However, the phase is
indirectly captured through the use of the interferometer. Accurate control of the amplitude and phase
of the probing optical signal presents a further complication. These obstacles are surmounted by using a
broadband stochastic source and by relying on the coherence-gating effect to measure the time of flight.
As shown below, broadband interferometry in OCT and ISAM essentially produces the same effects as
coherent detection and pulse compression in radar.

The response times of optical detectors are generally of such a scale that the measured data can be
considered a long-time average over optical time scales. Assuming that the fields in the system are
statistically stationary and ergodic (see Ref. [45], Sec. 2.2), these long time averages can be written as

ÎT (ρ, τ) = 〈|Êr(t− τ) + Ês(ρ, t)|2〉,
= Γrr(0) + 2Re {Γsr(ρ, τ)}+ Γss(ρ, 0), (6)
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where τ is the temporal delay on the reference arm, Γαβ(ρ, τ) = 〈Êα(ρ, t)Ê∗
β(ρ, t−τ)〉 and the brackets

〈 〉 represent an ensemble average. That ÎT (ρ, τ) does not depend on t is ensured by the assumption of
stationarity.

Because Γrr(0) and Γss(ρ, 0) do not depend on τ in Eq. (6), they may be removed from the data.
It can be seen that the data ÎT (ρ, τ) depend only on the real part of Γsr(ρ, τ), but by taking multiple
measurements that include a phase shift in the reference arm (introduced by, for example, a very small
translation of the reference arm) it is possible to recover the full complex function Γsr(ρ, τ) [44].

Using the definition of Γsr(ρ, τ) and Eq. (1),

Γsr(ρ, τ) = 〈Ês(ρ, t)Ê∗
r (t− τ)〉

=

∫
d3r

∫
dt′ 〈Êr(t

′)Ê∗
r (t− τ)〉ĥ(r− ρ, t− t′)η(r),

=

∫
d3r

∫
dt′ Γrr(τ − t′)ĥ(r− ρ, t′)η(r). (7)

As in Eq. (4), these data can be written in the Fourier domain. The Fourier domain data will again be
denoted by S(ρ, ω) so that,

S(ρ, ω) = A(ω)

∫
d3r h(r− ρ, ω)η(r), (8)

where, in this case, A(ω) is the power spectral density of the reference beam, which is found, via the
Wiener-Khintchine theorem (see Ref. [45], Sec. 2.4), as the Fourier transform of Γrr(τ). This power
spectral density and the Fourier intensity of Eq. (5) are both real, nonnegative functions which, for the
purposes of the data processing examined here, play the same role describing the ω bandwidth of the
data.

The identical forms of Eq. (4) and Eq. (8) illustrate the commonalities between radar and OCT. Both
can be regarded as linear systems collecting data in N − 1 spatial and 1 spectral dimension, in order to
estimate a spatial-domain object of N dimensions. Note that these data collection models have different
integral kernels h(r − ρ, ω) and that simplifying assumptions are made to get to the forms of Eq. (4)
and Eq. (8). For example, both multiple scattering and nonlinear object responses have been neglected,
and it is assumed that a stable phase relation exists between points collected at different scan locations
ρ. This last assumption can become problematic in both SAR and ISAM as small unknown variations
in the scan path can disturb the assumed relation between data collected at different locations. In both
instruments it is usually necessary to introduce some data preprocessing to address this problem. In SAR
systems autofocus algorithms [54] are employed, while in current implementations of ISAM, a known
structure (e.g., a coverslip boundary) is placed in the object and used as a phase reference point [18, 55].
Such techniques are not necessary in OCT and radar, where phase stability is not required for computed
imaging and only the magnitude of the data is typically displayed.

3.4. Signal Detection in Fourier-Domain OCT and ISAM

The instrument modality described in the section above and illustrated in Fig. 1 is known as time-
domain OCT or time-domain ISAM. It is however, possible to collect the data directly in the frequency
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domain, in a methodology known as Fourier-domain OCT [56]. In this system the reference mirror seen
in Fig. 1 is fixed and the detector replaced with a spectrometer. Fourier-domain OCT eliminates the
need for scanning the reference mirror position and has significant advantages in terms of image acqui-
sition time and/or signal-to-noise ratio (SNR) [57, 58]. A complementary principle is applied in Fourier
transform infrared spectroscopy [59, 60], where spectral information is measured using interferometric
time-domain measurements.

In Fourier-domain OCT or ISAM the collected data are,

IF (ρ, ω) = 〈|eiωτ0Er(ω) + Es(ρ, ω)|2〉,
= 〈|Er(ω)|2〉+ 2Re

{
e−iωτ0〈Es(ρ, ω)E∗

r (ω)〉
}

+ 〈|Es(ρ, ω)|2〉, (9)

where τ0 represents the fixed delay on the reference arm. Note that the Fourier-domain reference and
sample fields appearing above are spectral domain representations of random processes. These Fourier
domain representations are assumed to exist, at least in the sense of mean-square stochastic convergence
of the Fourier integral [61].

The first term of Eq. (9) is the power spectral density A(ω) used above. This term is constant in ρ and
typically slowly varying with ω, and thus can be removed. The last term is known as the autocorrelation
artifact and is often small in comparison to the other terms. For this reason it will be assumed negligible
here. Note that there are scenarios in which the autocorrelation term may be significant, and in these
cases ISAM processing has been shown to mitigate this artifact via a blurring effect [13].

The Fourier spectrum, S(ρ, ω), appearing in Eq. (4), in the deterministic-field context is analogous to
the cross-spectral density for the stochastic field,

S(ρ, ω) = 〈Es(ρ, ω)E∗
r (ω)〉. (10)

This suggests that the remaining term in Eq. (9) be written 2Re{exp(−iωτ0)S(ρ, ω)}, with S(ρ, ω)

being the desired complex data. While it is possible to determine the complex value of S(ρ, ω) through
multiple measurements with different reference phases (as in the time-domain case), a simpler method
may be employed if the reference mirror position is set appropriately. Since the sample generally has a
well-defined boundary, it is possible to set the reference arm delay τ0 to be shorter than the least time-
of-flight in sample arm plus the coherence length Lc. When this condition is met, the real and imaginary
parts of S(ρ, ω) are related via a Hilbert transform. Using simple Fourier transform computations, it
is thus possible to recover the imaginary part of S(ρ, ω) from the real observation given in a single
measurement [13, 62].

In this section equivalent detection models have been posed for OCT and radar, as represented by
Eq. (4) and Eq. (8) respectively. To understand image formation, the integral kernel h(r− ρ, ω) must be
examined. This is done in the following section.

4. System Modeling

As shown by Eq. (4) and Eq. (8), the relationship between the object η(r) and the data S(ρ, ω) can be
described by the same linear integral equation in both radar/SAR and OCT/ISAM. The modalities differ
only in the specific kernels h(r − ρ, ω) which are determined from physics-based models. This section
examines the models used for each modality.
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4.1. Radar and OCT

As described in Sec. 3.1, the time-domain kernel ĥ(r − ρ, t) is the signal returned from a temporal
impulse reflected from a scatterer at position r when the beam scan position is ρ. In OCT and strip-map
radar, the transmitted and received beams are limited in the transverse directions by focusing, while the
range is determined by the signal time of flight. This leads to the kernel,

ĥ(r− ρ, t) = u(r‖ − ρ)v(r‖ − ρ)δ[t− td(z)], (11)

where r‖ is the transverse component of r, u(r‖) describes the width of the illuminating beam, v(r‖)

describes the width of the detection sensitivity, and td(z) is the time of flight. The kernel described by
Eq. (11) is separable in the transverse and axial coordinates and is therefore consistent with the pencil
beam approximation illustrated in Fig. 2.

The temporal delay td(z) is proportional to the twice depth of the scatterer, as a round-trip time of
flight is measured. Thus

td(z) =
2z

c
, (12)

where c is the speed of light. If the same aperture is used in both transmission and detection, reciprocity
[63] requires that u(r‖) = v(r‖). Appealing to Eq. (11) and Eq. (12), Eq. (7) becomes,

Γsr(ρ, τ) =

∫
d3r Γrr

(
τ − 2z

c

)
u2(r‖ − ρ)η(r‖, z). (13)

This expression relates time-domain OCT data to the imaged object. The object is convolved with a PSF
with transverse extent governed by u2(r‖) and axial extent determined by Γrr(τ). This relation is similar
to one encountered in radar, where the beam width also determines the transverse resolution and the
axial resolution is proportional to the length of the compressed broadcast pulse. As illustrated in Fig. 2,
Eq. (13) is only valid within the focal region. Beyond this range, blurring and interference artifacts are
observed because of beam spread.

It is convenient to take Eq. (13) into the temporal Fourier domain:

S(ρ, ω) = A(ω)

∫
d3r u2(r‖ − ρ)ei2k(ω)zη(r‖, z), (14)

where k(ω) is the wavenumber given by the dispersion relation,

k(ω) =
ω

c
. (15)

This expression is an alternative representation of the time-domain data and directly describes the infor-
mation bearing term in Fourier-domain OCT. Comparing Eq. (14) to Eq. (8) reveals that the kernel used
for the OCT forward model is given by the expression

h(r− ρ, ω) = u2(r‖ − ρ)ei2k(ω)z. (16)

Reliance on this approximate model limits OCT and radar imaging systems—OCT images are of in-
creasingly poor quality away from the depth of focus, and transverse radar resolution is limited by the
beam width and hence the maximum aperture size.
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4.2. SAR and ISAM

The computed imaging approaches of SAR and ISAM are based on models that more closely approx-
imate solutions of Maxwell’s equations. Contrary to the assumptions made in OCT, the transverse and
axial system responses cannot be decoupled accurately, due to the beam-spreading illustrated in both
Fig. 2 and Fig. 3. The changes in the model are reflected by changes in the kernel h(r − ρ, ω) that
appears in Eq. (8). Below, this kernel is analyzed at each temporal harmonic, i.e., the form of the kernel
is found at each fixed value of ω.

The kernel h(r− ρ, ω) is again separable into the product of illumination and detection patterns as,

h(r− ρ, ω) = k2(ω)g(r− ρ, ω)f(r− ρ, ω). (17)

Here the objective lens (ISAM) or transmitting aperture (SAR) produces a field g(r− ρ, ω) in the sam-
ple, the detection sensitivity varies with f(r − ρ, ω) and the factor of k2(ω) describes the frequency
dependence of scattering. A detailed discussion of this form for h(r− ρ, ω) can be found in Ref. [14].

When the same aperture is used for both illumination and detection (as is typically the case), reci-
procity can again be invoked to show that the illumination and detection patterns are equal. Furthermore,
the illumination field g(r − ρ, ω) must obey propagation laws. This means that in a homogenous back-
ground medium, the illuminating field can be represented by a spectrum of plane waves (see Ref. [52],
Sec. 11.4.2),

g(r, ω) =

∫
d2q‖ G(q‖, ω) exp

{
i[q‖ · r‖ + kz(q‖, ω)z]

}
, (18)

where,
kz(q‖, ω) =

√
k2(ω)− q2

‖. (19)

In free space k(ω) is given by Eq. (15), however more complicated dispersion relations can also be used
for dispersive materials [18, 64, 65], where the speed of light depends on ω.

The angular spectrum of Eq. (18) must be modified for the two-dimensional SAR system. In SAR a
two-dimensional (x, z) object is imaged, meaning that r‖ and q‖ are each one-dimensional. However,
the electromagnetic fields present in the system spread in three dimensions. In the simple strip-map
SAR system considered here, the SAR aperture track and the object are both assumed to lie in the x–z

plane, i.e., the aperture altitude is neglected. In this geometry the spreading in y can be modeled as a
[k(ω)z]−1/2 decay so that, for the SAR system, Eq. (18) becomes,

gs(r, ω) =
1√

k(ω)z

∫
dqx Gs(qx, ω) exp {i[qx x + kz(qx, ω)z]} . (20)

As will be seen subsequently, this difference in dimensionality between SAR and ISAM does not change
the nature of the data processing required, only the dimensionality of the processing.

The angular spectra G(q‖, ω) and Gs(qx, ω) seen in Eq. (18) and Eq. (20) can be related to the aperture
shapes used in ISAM and SAR. In ISAM the focal plane is defined to be at z = 0, resulting in the
function G(q‖, ω) being directly related to the lens aperture. For high numerical aperture lenses the
function G(q‖, ω) is broad and the beam width at the focus narrow. Aberrations on the lens can be
included in the phase of the angular spectrum. A simple model for g(r, ω) is a Gaussian beam [46],
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where G(q‖, ω) is a Gaussian function. More thorough models, e.g., [66], can also be used within the
developed framework. In SAR, the z = 0 plane is chosen to coincide with the track of the radar aperture.
In this case the spectrum Gs(qx, ω) corresponds to the Fourier transform of the aperture profile. A small
aperture gives a highly divergent beam.

The forward model used in SAR and ISAM (Eq. (17)) is more accurate than that assumed in radar
and OCT (Eq. (16)). In the simple OCT model each point in the data set is associated with a point in
the object, as described in Eq. (13). To correct for the out-of-focus blurring described by the more ac-
curate kernel of Eq. (17), mathematical processing must be applied. The appropriate computed imaging
algorithm is described in the next section.

5. The Inverse Problem for SAR and ISAM

The linear integral equation of Eq. (8) and the expression for the kernel, given in Eq. (17), form the
forward model used in SAR and ISAM. This relation describes the dependence of the data on the object.
Estimating the object from the data, using the forward model, requires solving the inverse problem. In
general this problem may be ill-posed, but with the use of regularization techniques [67–69], an estimate
of the object may be found. The quality of this estimate will depend on how much information is passed
by the instrument.

Since the ISAM forward model is well defined, the inverse problem can, in principle, be solved
using numerical techniques. However, an approximation to the forward model allows a more elegant,
and significantly more efficient [20], solution to the inverse problem. This solution is explained in this
section.

5.1. Transverse Spatial Fourier Representation of the Model

The angular spectrum representations seen in Eq. (18) and Eq. (20) give the transverse spatial Fourier
transform of the illuminating field g(r, ω). The model kernel can then be taken to the transverse spatial
Fourier domain, denoted by a tilde, by noting that the product seen in Eq. (17) becomes a convolution,

h̃(q‖, z, ω) = k2(ω)

∫
d2q′‖ G(q′

‖, ω)G(q‖ − q′
‖, ω) exp

{
i[kz(q

′
‖, ω) + kz(q‖ − q′

‖, ω)]z
}

. (21)

Comparing Eq. (18) and Eq. (20), it can be seen that the SAR result is similar to the expression above
but in one fewer dimension and with a prefactor of [k(ω)z]−1.

As a first step towards the solution of the inverse problem, it is useful to recognize that the transverse
part of the integral appearing in Eq. (8) is in the form of a two-dimensional convolution. Thus, by
taking the two-dimensional (transverse) spatial Fourier transform of the data, the inverse problem may
be reduced from a problem involving a three-dimensional integral equation to one of a series of one-
dimensional integral equations, i.e.,

S̃(q‖, ω) = A(ω)

∫
dz h̃(−q‖, z, ω)η̃(q‖, z). (22)
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5.2. Model Approximation in Diverging Regions

As illustrated in Fig. 3, the fields used in SAR and ISAM are divergent away from the z = 0 plane.
In Eq. (21), this implies that the complex exponential factor in the integrand is rapidly oscillating. Such
oscillatory integrals can be approximated using the method of stationary phase (see Ref. [45], Sec. 3.3).
The stationary point occurs when the argument of the exponential has zero gradient, which in this case
is at the point q′

‖ = q‖/2.
Applying the method of stationary phase in two dimensions gives the ISAM result,

h̃(q‖, z, ω) ≈
HD(q‖, ω)

k(ω)z
exp

{
i2kz

(q‖

2
, ω

)
z
}

, (23)

where HD(q‖, ω) describes the bandwidth of the data (see Ref. [14] for an exact description of this
function). The factor of [k(ω)z]−1 appearing above describes the signal decay away from focus. In SAR,
the method of stationary phase in one dimension is applied to a kernel based on the angular spectrum of
Eq. (20). The result is of the same form as Eq. (23) but with a decay of [k(ω)z]−3/2.

5.3. Model Approximation in Focused Regions

As seen in Fig. 3, the object in ISAM, unlike in SAR, contains the focused z = 0 plane. Around this
region the exponential seen in the integrand of Eq. (21) is not highly oscillatory, meaning the method of
stationary phase can not be accurately applied. However, it is still possible to approximate the function
h̃(q‖, z, ω) to obtain an elegant inversion [19].

In the focal region, the integrand of Eq. (21) is dominated by the product G(q′
‖, ω)G(q‖−q′

‖, ω). For
symmetric apertures, this product will be peaked around the point q′

‖ = q‖/2. The exponential factor
may be expanded in a Taylor series about this point and, since it is slowly varying for small k(ω)z, all
but the leading term discarded. The consequent analysis, given in detail in Ref. [14], then results in an
approximation of the form,

h̃(q‖, z, ω) ≈ HF (q‖, ω) exp
{

i2kz

(q‖

2
, ω

)
z
}

. (24)

The exponential factor above is the same as for the diverging region.

5.4. Reduction to Resampling

The approximated models described above can be substituted into the data model of Eq. (22) to give,

S̃(q‖, ω) ≈ A(ω)H(−q‖, ω)

∫
dz

η̃(q‖, z)

R(z)
exp

{
i2kz

(q‖

2
, ω

)
z
}

, (25)

where H(q‖, ω) = HF (q‖, ω) and R(z) = 1 when considering z in the focused region, and H(q‖, ω) =

HD(q‖, ω) and R(z) = k(ω)z (or R(z) = [k(ω)z]3/2 in the SAR case) for z in the diverging region. The
transition point between these two regimes is discussed in Ref. [14].

In Eq. (25), A(ω)H(−q‖, ω) act as linear filters on the data. The effects of these filters can be
compensated by standard means, such as the Wiener filter [70]. For systems without aberrations, the
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function H(q‖, ω) is slowly varying, as is A(ω), meaning that it may be acceptable to neglect the effects
of A(ω)H(−q, ω) in many situations.

In either case, the remaining integral in Eq. (25) can be seen to be of the form of a Fourier transform.
Consequently,

S̃(q‖, ω) ∝ ˜̃η′
[
q‖, qz(q‖, ω)

]
, (26)

where ˜̃η′ is the three-dimensional Fourier transform of η(r)/R(z), the object with an attenuation away
from focus, and

qz(q‖, ω) = −2kz(q‖/2, ω),

= −
√

4 k2(ω)− q2
‖. (27)

This equation describes a Fourier domain warping relating the data and the object. This warping is
known as the Stolt mapping and is illustrated in Fig. 4. The Stolt mapping was originally developed
in the field of geophysical imaging [71, 72] and is used in Fourier migration techniques. In ultrasonic
imaging, Eq. (27) forms the basis of the Synthetic Aperture Focusing Technique (SAFT) [73–76]. The
Stolt mapping was also recognized as applicable in SAR [77], where it is typically known as the ω–k

algorithm or the wavenumber algorithm. This work shows the utility of the Stolt mapping in the field of
interferometric broadband microscopy.

Figure 4. A geometric illustration of the Stolt mapping relating a point [q‖, k(ω)] in the
Fourier-domain data to a point [q‖,−2kz(q‖/2, ω)] in the Fourier-domain object. Note that
the ω dependence of the displayed quantities has been dropped for convenience. This figure
is adapted from Ref. [14].

The equivalent Fourier mapping for OCT, found from the kernel of Eq. (16) and valid only within the
focal region, is

qz(q‖, ω) = −2k(ω). (28)
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This OCT model describes only a rescaling of the axial coordinate, while the Stolt mapping of Eq. (26)
describes the physical effects of out-of-focus beam spreading.

The relation given in Eq. (26) gives a clear indication of how to estimate the object from the collected
data S(ρ, ω). This procedure can be summarized as

1. Starting with the complex data S(ρ, ω), collected as described in Sec. 3, take the transverse spatial
Fourier transform to get S̃(q‖, ω).

2. Implement a linear filtering, i.e., a Fourier-domain multiplication of a transfer function with
S̃(q‖, ω), to compensate for the bandpass shape given by A(ω)H(−q‖, ω) in Eq. (25). This step
may often be omitted without significant detriment to the resulting image.

3. Warp the coordinate space of S̃(q‖, ω) so as to account for the Stolt mapping illustrated in Fig. 4.
Resample the result back to a regular grid to facilitate numerical processing.

4. Take the inverse three-dimensional Fourier transform to get an estimate of η(r)/R(z), the object
with an attenuation away from focus.

5. If required, multiply the resulting estimate by R(z) to compensate for decay of the signal away
from focus.

The operations described above are computationally inexpensive and allow a fast implementation of
ISAM processing [20].

6. Results

In this section ISAM images are compared to those obtained using standard OCT methods. The
high quality of the results obtained validates the calculations made above, while also showing that the
approximations made to the forward model in Sec. 5, do not introduce significant error in the solution to
the inverse problem.

6.1. Simulations

Numerical simulations of the ISAM system are useful for providing a theoretical corroboration of the
proposed methods in a tightly controlled and well understood environment. In Fig. 5, simulation results
are shown for the imaging of an isotropic point scatterer located out of focus on the z axis.

The data were produced using the focused vector beam formulation given in [66]. The electromag-
netic field defined in that paper is an exact solution to Maxwell’s equations, and obeys geometrical-optics
boundary conditions on the lens aperture. An objective lens with 0.75 numerical aperture was simulated
and light between the wavelengths of 660nm and 1000nm was collected. Further details of this type of
data simulation can be found in Ref. [14].

The magnitude of the spatial-domain OCT data gives a broadly spread and low-amplitude response.
Ideally the image would be point-like, corresponding to the point scatterer. The blurring observed is
due to the scatterer being in the out-of-focus region. When the OCT image is examined in the Fourier
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Figure 5. Simulated OCT image from a point scatterer located at (0, 0, 10)µm (a) and the
real part of the corresponding Fourier representation (c). The ISAM Fourier resampling takes
the data shown in (c) to the reconstruction of (d). The corresponding spatial-domain ISAM
reconstruction is shown in (b). The ISAM reconstruction describes the point scatterer accu-
rately, while defocus is clearly observed in the OCT image. Note that the two-dimensional
images shown represent one plane of three-dimensional functions. This figure is adapted
from Ref. [51].
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domain, curved phase fronts can be seen. For the offset point scatterer imaged, the Fourier spectrum
should have flat phase fronts parallel to the qx–qy plane.

The Fourier resampling of ISAM can be seen to take the curved OCT phase fronts to the expected
straight lines. When the ISAM image is represented in the spatial domain, the desired high-amplitude,
point-like image is seen. These simulations lend strong support to ISAM, as the detailed, vectorial
forward model is inverted accurately by a simple Fourier-domain resampling only.

6.2. Imaging a Phantom

Beyond simulations, the next step in ISAM validation is to image an engineered object (i.e. a phantom)
with known structure. Here the phantom was constructed by embedding titanium dioxide scatterers, with
a mean diameter of 1µm, in silicone. This phantom was imaged with a spectral-domain ISAM system
employing an objective lens with a numerical aperture of 0.05. A femtosecond laser (Kapteyn-Murnane
Laboratories, Boulder, Colorado) was used as a source, to give a central wavelength of 800nm and a
bandwidth of 100nm. The resulting focused pattern g(r, ω) can be approximated as a Gaussian beam
with a spot size of 5.6µm and a depth of focus of approximately 240µm. Further details of the ISAM
instrument and the phantom can be found in Ref. [18].

ISAM processing, including dispersion compensation [64], was applied to the collected data to pro-
duce an image. Specific details of the computational implementation can be found in Ref. [18], while
Ref. [20] gives a thorough general description of ISAM algorithms and computational demands. The
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raw data and the ISAM reconstruction are shown in Fig. 6 and Fig. 7 (transverse-axial and transverse-
transverse planes respectively), with corresponding renderings in Fig. 8.

Figure 6. Images of titanium dioxide scatterers—OCT image before dispersion compensa-
tion (a), OCT image after dispersion compensation (b), and ISAM reconstruction (c). This
figure is adapted from Ref. [18].ARTICLES

9090 µµm

a b c

Figure 4 Cross-sectional scan of the tissue phantom. a–c, A stepwise image sequence of image reconstruction illustrating the unprocessed temporal data (a), the
dispersion-compensated data (b) and the two-dimensional ISAM reconstruction (c).

range of depths over nine times the Rayleigh range from the
focus, where the Rayleigh range is commonly defined as half
of the depth of field, or what is considered in focus in optical
imaging systems. In the unprocessed data, the interference between
the signals scattered from adjacent scatterers is evident. Our
method properly accounts for the diffraction of the beam, and so
separates the superimposed signals from the scatterers to form well-
resolved point images on all planes. Figure 3 shows the volume-
rendered tissue phantom with both the unprocessed (Fig. 3a) and
the reconstructed (Fig. 3b) interferometric data. A constant axial
scaling of 0.25 has been applied to Fig. 3 to fully visualize the
volume. Again, the unprocessed data show point scatterers outside
the confocal region that are not resolved, whereas the ISAM
reconstruction shows all points resolved. It should be noted that the
SNR of the reconstruction decreases away from the focus. However,
this is a minor effect compared with the defocus and fringing effects
of the unprocessed data. Animations of these data are included as
on-line supplements and demonstrate spatially invariant resolution
(See Supplementary Information Movies S1–3).

ISAM is a novel image-formation method that uses the
fundamental resolution potential of the acquired optical signal
on the basis of the physics of the scattering within the
detection beam. ISAM is a physics-based solution of the inverse
scattering problem yielding understood quantitative results. The
ISAM image-formation algorithm can be implemented with a
computational complexity of O(N logN ), where N is the number
of volume elements to resolve, which makes ISAM amenable
to real-time imaging. Furthermore, the ISAM algorithm can be
applied paraxially to planes as well as volumes, thus enhancing
cross-sectional imaging.

Dispersion compensation algorithms with the same
computational complexity as ISAM are currently being used in real-
time cross-sectional optical imaging systems at 10 frames s−1, where
each frame is 1,000 axial scans34,35. Our ISAM model incorporates
dispersion compensation as a prior when computing S(r0,k) from
the acquired signal S(r0,ω) (ref. 27). A third-order polynomial is
commonly sufficient for modelling the resampling necessary for

dispersion compensation. To re-index the detected digital signal
from ω to a uniform k space, a re-indexing array in is calculated,

in = n+β2

( n

N
−ωctr

)2

+β3

( n

N
−ωctr

)3

,

where N is the array size, ωctr is the centre frequency and n is an
integer between zero and N −1. By selecting from a range of values
for β2 and β3, we can adjust the amount of second- and third-
order dispersion correction, respectively. Values of β2 and β3 should
be selected to be less than N/2 and N/3, respectively, to prevent
aliasing. To illustrate the application of dispersion compensation in
ISAM imaging, Fig. 4 shows selected frames and magnified sections
from a Supplementary Information Movie S4 provided on line.
This movie shows a cross-sectional scan of the previously described
tissue phantom for an evolution of the resampling parameters,
starting from the raw data (Fig. 4a), progressing through the
dispersion-compensated data (Fig. 4b) and finishing with the full
two-dimensional ISAM reconstruction (Fig. 4c).

Human tumour tissue was resected and imaged ex vivo.
Sections were marked with India ink after imaging and before
embedding to register locations. Figure 5 includes en face planes
(sections A and B) of the unprocessed data (Fig. 5c,d), where
the beam diffraction effects are evident, the computed ISAM
reconstructions (Fig. 5e,f) and images of corresponding registered
histological sections (Fig. 5a,b). Although embedding, sectioning
and staining of tissue can disrupt features to some degree, the
registered histological sections provide prominent features for
comparison. In the reconstruction, boundaries between adipose
cells and the margin between adipose and fibrous tissue are clearly
identified, with a strong correspondence to histology. Whereas
the histological images were obtained by destroying the sample,
ISAM could readily be applied for in vivo applications because
signal collection is in the back-scattered epi-direction. All sections,
regardless of the distance from the focus, were reconstructed
with the resolution equivalent to the in-focus plane of the
unprocessed data.
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Figure 4 Cross-sectional scan of the tissue phantom. a–c, A stepwise image sequence of image reconstruction illustrating the unprocessed temporal data (a), the
dispersion-compensated data (b) and the two-dimensional ISAM reconstruction (c).
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imaging systems. In the unprocessed data, the interference between
the signals scattered from adjacent scatterers is evident. Our
method properly accounts for the diffraction of the beam, and so
separates the superimposed signals from the scatterers to form well-
resolved point images on all planes. Figure 3 shows the volume-
rendered tissue phantom with both the unprocessed (Fig. 3a) and
the reconstructed (Fig. 3b) interferometric data. A constant axial
scaling of 0.25 has been applied to Fig. 3 to fully visualize the
volume. Again, the unprocessed data show point scatterers outside
the confocal region that are not resolved, whereas the ISAM
reconstruction shows all points resolved. It should be noted that the
SNR of the reconstruction decreases away from the focus. However,
this is a minor effect compared with the defocus and fringing effects
of the unprocessed data. Animations of these data are included as
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computational complexity of O(N logN ), where N is the number
of volume elements to resolve, which makes ISAM amenable
to real-time imaging. Furthermore, the ISAM algorithm can be
applied paraxially to planes as well as volumes, thus enhancing
cross-sectional imaging.
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computational complexity as ISAM are currently being used in real-
time cross-sectional optical imaging systems at 10 frames s−1, where
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for β2 and β3, we can adjust the amount of second- and third-
order dispersion correction, respectively. Values of β2 and β3 should
be selected to be less than N/2 and N/3, respectively, to prevent
aliasing. To illustrate the application of dispersion compensation in
ISAM imaging, Fig. 4 shows selected frames and magnified sections
from a Supplementary Information Movie S4 provided on line.
This movie shows a cross-sectional scan of the previously described
tissue phantom for an evolution of the resampling parameters,
starting from the raw data (Fig. 4a), progressing through the
dispersion-compensated data (Fig. 4b) and finishing with the full
two-dimensional ISAM reconstruction (Fig. 4c).

Human tumour tissue was resected and imaged ex vivo.
Sections were marked with India ink after imaging and before
embedding to register locations. Figure 5 includes en face planes
(sections A and B) of the unprocessed data (Fig. 5c,d), where
the beam diffraction effects are evident, the computed ISAM
reconstructions (Fig. 5e,f) and images of corresponding registered
histological sections (Fig. 5a,b). Although embedding, sectioning
and staining of tissue can disrupt features to some degree, the
registered histological sections provide prominent features for
comparison. In the reconstruction, boundaries between adipose
cells and the margin between adipose and fibrous tissue are clearly
identified, with a strong correspondence to histology. Whereas
the histological images were obtained by destroying the sample,
ISAM could readily be applied for in vivo applications because
signal collection is in the back-scattered epi-direction. All sections,
regardless of the distance from the focus, were reconstructed
with the resolution equivalent to the in-focus plane of the
unprocessed data.
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Figure 4 Cross-sectional scan of the tissue phantom. a–c, A stepwise image sequence of image reconstruction illustrating the unprocessed temporal data (a), the
dispersion-compensated data (b) and the two-dimensional ISAM reconstruction (c).

range of depths over nine times the Rayleigh range from the
focus, where the Rayleigh range is commonly defined as half
of the depth of field, or what is considered in focus in optical
imaging systems. In the unprocessed data, the interference between
the signals scattered from adjacent scatterers is evident. Our
method properly accounts for the diffraction of the beam, and so
separates the superimposed signals from the scatterers to form well-
resolved point images on all planes. Figure 3 shows the volume-
rendered tissue phantom with both the unprocessed (Fig. 3a) and
the reconstructed (Fig. 3b) interferometric data. A constant axial
scaling of 0.25 has been applied to Fig. 3 to fully visualize the
volume. Again, the unprocessed data show point scatterers outside
the confocal region that are not resolved, whereas the ISAM
reconstruction shows all points resolved. It should be noted that the
SNR of the reconstruction decreases away from the focus. However,
this is a minor effect compared with the defocus and fringing effects
of the unprocessed data. Animations of these data are included as
on-line supplements and demonstrate spatially invariant resolution
(See Supplementary Information Movies S1–3).

ISAM is a novel image-formation method that uses the
fundamental resolution potential of the acquired optical signal
on the basis of the physics of the scattering within the
detection beam. ISAM is a physics-based solution of the inverse
scattering problem yielding understood quantitative results. The
ISAM image-formation algorithm can be implemented with a
computational complexity of O(N logN ), where N is the number
of volume elements to resolve, which makes ISAM amenable
to real-time imaging. Furthermore, the ISAM algorithm can be
applied paraxially to planes as well as volumes, thus enhancing
cross-sectional imaging.

Dispersion compensation algorithms with the same
computational complexity as ISAM are currently being used in real-
time cross-sectional optical imaging systems at 10 frames s−1, where
each frame is 1,000 axial scans34,35. Our ISAM model incorporates
dispersion compensation as a prior when computing S(r0,k) from
the acquired signal S(r0,ω) (ref. 27). A third-order polynomial is
commonly sufficient for modelling the resampling necessary for
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where N is the array size, ωctr is the centre frequency and n is an
integer between zero and N −1. By selecting from a range of values
for β2 and β3, we can adjust the amount of second- and third-
order dispersion correction, respectively. Values of β2 and β3 should
be selected to be less than N/2 and N/3, respectively, to prevent
aliasing. To illustrate the application of dispersion compensation in
ISAM imaging, Fig. 4 shows selected frames and magnified sections
from a Supplementary Information Movie S4 provided on line.
This movie shows a cross-sectional scan of the previously described
tissue phantom for an evolution of the resampling parameters,
starting from the raw data (Fig. 4a), progressing through the
dispersion-compensated data (Fig. 4b) and finishing with the full
two-dimensional ISAM reconstruction (Fig. 4c).

Human tumour tissue was resected and imaged ex vivo.
Sections were marked with India ink after imaging and before
embedding to register locations. Figure 5 includes en face planes
(sections A and B) of the unprocessed data (Fig. 5c,d), where
the beam diffraction effects are evident, the computed ISAM
reconstructions (Fig. 5e,f) and images of corresponding registered
histological sections (Fig. 5a,b). Although embedding, sectioning
and staining of tissue can disrupt features to some degree, the
registered histological sections provide prominent features for
comparison. In the reconstruction, boundaries between adipose
cells and the margin between adipose and fibrous tissue are clearly
identified, with a strong correspondence to histology. Whereas
the histological images were obtained by destroying the sample,
ISAM could readily be applied for in vivo applications because
signal collection is in the back-scattered epi-direction. All sections,
regardless of the distance from the focus, were reconstructed
with the resolution equivalent to the in-focus plane of the
unprocessed data.
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Out of focus blurring is clearly visible in the collected data. This blurring limits the depth of field
in OCT. The ISAM reconstruction can be seen to bring the out-of-focus regions back into focus, as
evidenced by the point-like features in the image, which correspond to individual titanium dioxide scat-
terers. It should be noted that the point-like reconstructions observed are produced by the physics-based
computational imaging, not by the use of any assumed prior knowledge of the sample, e.g., [78]. The x–
y details of Fig. 7 provide further insight into the action of the ISAM resampling algorithm. In Fig. 7(b)
and Fig. 7(c) interference fringes can be clearly seen. These result from the simultaneous illumination
of two (or more) point scatterers and the consequent interference of the light scattered from each. The
reconstructions of Fig. 7(g) and Fig. 7(h) show that these interference fringes are correctly interpreted as
multiple point scatterers in the ISAM reconstruction.

To further illustrate the SAR-ISAM analogy, ISAM and SAR images are compared below. Strip-map
radar and SAR images from a linear rail SAR imaging system [79, 80] are shown in Fig. 9. This imaging
system consists of a small radar sensor mounted on linear rail that is 225cm in length. The radar sensor
is moved down the rail at 2.5cm increments, acquiring a range profile of the target scene at each location
along the rail. The radar sensor is a linear FM radar system with 5GHz of chirp bandwidth spanning
approximately 7.5GHz to 12.5GHz. The chirp time is 10ms, the transmit power is approximately 10dBm,
the receiver dynamic range is better than 120dB, and the digitizer dynamic range is 96dB. Range profile
data from each increment across the rail are fed into a range-migration SAR algorithm [12], a Stolt
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Figure 7. Planar x–y slices of the OCT image volume (d) and the ISAM reconstruction
volume (e). Three planes are shown, with details of extent 80µm×80µm for each. The
planes are located at z = −1100µm (c,h), z = −475µm (b,g) and z = 240µm (a,f), where
z = 0 is the focal plane. This figure is adapted from Ref. [18]

(b) (c)

(a)

(d)
(e)

(h)

(f) (g)

Figure 8. Three-dimensional renderings of the OCT (a) and ISAM (b) images of titanium
dioxide scatterers. Out of focus blur can be seen in the OCT image, while the ISAM recon-
struction has isotropic resolution. Note that the axial axis has been scaled by a factor of 0.25
for display purposes. This figure is adapted from Ref. [18].

(a) (b)
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Fourier resampling, to yield a high-resolution SAR image of the target scene. Raw radar range profile
data are similar to out of focus data in coherence microscopy, as seen in Fig. 9(a) for radar and Fig. 6(b)
for OCT. The SAR image, after Stolt Fourier resampling, is shown in Fig. 9(b), which is analogous to
the ISAM image of Fig. 6(c).

Figure 9. Raw strip-map radar image of a 1:32 scale model of a F14 fighter aircraft before
Stolt Fourier resampling (a), and after Stolt Fourier resampling (b).

(a) (b)

50cm

6.3. Imaging Tissue

OCT and ISAM are primarily biological imaging methods. As such, the most important capability of
ISAM is the imaging of tissue. As described in Ref. [18], human breast tissue was acquired and imaged
with the same ISAM system used to image the titanium dioxide scatterers. Examples of the resulting
images can be seen in Fig. 10. Once again, it can be seen that ISAM successfully removes blur and
resolves interference artifacts in otherwise out of focus regions.

The improvement observed in the ISAM reconstructions has significant consequences in terms of the
diagnostic utility of the images. In the out-of-focus OCT images, the cellular structure is almost entirely
lost, while in the ISAM reconstructions, significant features can be seen on the micrometer scale. For
example, cell membranes can be recognized, and the boundary between the adipose and fibrous tissue can
be clearly seen. There is also a strong correspondence to the histological sections, although embedding,
sectioning and staining of the tissue disrupt the sample to some extent. ISAM, unlike OCT, can be seen
to allow diffraction-limited imaging at all planes within the sample, rather than just at the physical focus.
As a result, significantly more information regarding the tissue can be extracted without increasing the
measurement duration or scanning the focal plane. In contrast to the histological images, the structure
visible in the ISAM images is observed without destruction of the sample. This suggests ISAM may
be particularly useful in applications where in vivo imaging over a large tissue volume is preferable to
biopsy.

7. Alternate ISAM Modalities

ISAM is a microscopic imaging technique and is implemented on a bench-top scale. This provides
significant flexibility in the design of alternative ISAM modalities. In this section some alternative ISAM
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Figure 10. Breast tissue is imaged according to the geometry illustrated in the rendering in
the upper left. Data are shown in the x–y plane for two different values of z. Plane A is at
z = −643µm, while plane B is at z = −591µm. ISAM image reconstruction can be seen to
produce a significant improvement in image quality over the unprocessed OCT data in both
planes. The ISAM reconstructions exhibit comparable features to histological sections. This
figure is adapted from Ref. [18].

37

ISAM vs Histology

instruments are briefly discussed.

7.1. Vector ISAM

To achieve a maximum-resolution image it is necessary to use the highest possible numerical aperture
objective lens (high-numerical-aperture OCT is often known as optical coherence microscopy [81]). For
such high-angle lenses the electromagnetic fields present in the system cannot be accurately approxi-
mated as scalar fields. Furthermore, it has been shown that the vectorial nature of the high-aperture
focused field can be explicitly exploited to probe anisotropic properties of the object, e.g., [82–87].
ISAM can be generalized to vectorial fields [14].

In the vectorial system, scattering from the object is recognized as being dependent on the polarization
state of the relevant fields. As a result, the object is not a scalar function η(r), but a rank-two tensor func-
tion of position η̄(r). The illumination and detection patterns, g(r, ω) and f(r, ω), are vectorial, which
results in six independent ISAM kernels—one for each possible pair of field directions in illumination
and detection. That is,

h(r− ρ, ω, α, β) = k2(ω)g(r− ρ, ω, α)f(r− ρ, ω, β), (29)
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where g(r − ρ, ω, α) is an element of the field g(r, ω), and α takes on values of x, y and z. The scalar
kernel of Eq. (17) is a special case of this expression.

It can be shown that the data then depend on the scattering tensor as [14],

S(ρ, ω) =
∑

α∈{x,y,z}

∑
β∈{x,y,z}

∫
d3r h(r− ρ, ω, α, β)η̄(r, α, β), (30)

where η̄(r, α, β) is an element of the tensor η̄(r). The scalar case of Eq. (8) is a special case of this
expression.

It can be seen from Eq. (29) that h(r − ρ, ω, α, β) = h(r − ρ, β, ω, α). Symmetry arguments [88],
can be used to show the equivalent property, η̄(r, α, β) = η̄(r, β, α), for the scattering tensor. The effect
of each independent element of the scattering potential on the data is therefore described by a distinct
kernel.

7.2. Full-Field ISAM

Full-field OCT systems [89–93] involve capturing x–y images sequentially, one frequency ω, or delay
τ , at a time. A similar system has been analyzed for ISAM [15]. In this system the object is illuminated
with a z-propagating plane wave, so that the illumination pattern is

g(r, ω) = exp[ik(ω)z]. (31)

The angular spectrum of the illuminating light is then,

G(q‖, ω) = δ(q‖). (32)

The scattered light is collected by an objective lens, so that the detection pattern f(r, ω) is of the same
form as g(r, ω) in Eq. (18).

The spatial-domain kernel of Eq. (17), can then be taken into the Fourier domain using the same
process as that used to find Eq. (21). That is,

h̃(q‖, z, ω) = k2(ω)

∫
d2q′‖ δ(q′

‖)F (q‖ − q′
‖, ω) exp

{
i[kz(q

′
‖, ω) + kz(q‖ − q′

‖, ω)]z
}

= k2(ω)F (q‖, ω) exp
{
i[k(ω) + kz(q‖, ω)]z

}
. (33)

This exact kernel is of the same form as the approximated forward models of Eq. (23) and Eq. (24). As a
result, the relationship between the Fourier-domain data and the Fourier-domain object for the full-field
ISAM system is of the same form as Eq. (26), but with the new mapping,

qz(q‖, ω) = −k(ω)− kz(q‖, ω). (34)

Thus the inverse problem in full-field ISAM is also solved by a Fourier-domain resampling, albeit on a
different grid.

Confocal ISAM is analogous to SAR, and both techniques share the Stolt mapping. The full-field
ISAM mapping of Eq. (34) also appears in diffraction tomography [94–96], a technique applied in ultra-
sound, optical and microwave imaging.
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7.3. Rotationally-Scanned ISAM

Rotationally-scanned ISAM [16] is a sensing system compatible with catheter-based imaging, as
illustrated in Fig. 11. Rather than scanning the aperture in two coplanar dimensions, the aperture is
scanned in one linear dimension (along the catheter) and one rotational dimension (along the azimuthal
angle).

Figure 11. An illustration of the rotationally-scanned ISAM system. A single-mode fiber
delivers light to focusing optics which project the beam into the object. The beam is scanned
linearly inside a catheter sheath and is rotated about the long catheter axis. This figure is
adapted from Ref. [16].

beam is diverging or converging. This loss of resolution is
usually assumed to be an inevitable consequence of defo-
cus.

In previous work, we showed that, after solution of the
inverse scattering problem, the transverse resolution of
scatterers in the unfocused region is the same as the reso-
lution of scatterers at the focus. More specifically, we de-
rived a set of equations connecting the structure of the
sample with the OCT data. We then obtained an analytic
solution of these equations and developed a set of com-
puter algorithms based on that solution. The algorithms
produce reconstructions with a uniform resolution equal
to that seen in the focus of the unprocessed data.12 That
analysis was for the case in which the beam orientation is
fixed and the position of the central axis of the beam is
translated on a 2-D linear Cartesian grid to obtain an im-
age. The improvement in resolution for the out-of-focus
regions was effected by treating the data as input to an
inverse scattering problem based on the physics of OCT
imaging. In a similar manner, this paper addresses the
inverse scattering problem for OCT, but for the case of an
azimuthally scanned catheter rather than the lateral
translation as in the earlier paper. We show that features
may be resolved by computed reconstruction outside the
focus, thus extending the region in which features can be
visualized, and potentially improving our ability to detect
changes that are clinically significant.

In this work, the OCT catheter design considered is one
where a focused beam is directed perpendicular to the
catheter. Typically these catheters consist of a single-
mode optical fiber, a focusing lens (typically a graded-
index lens cemented or fused to the fiber), and a right-
angle prism or a custom cleaved surface for reflecting the
beam by 90 deg to the side of the catheter. An illustration
of this design is given in Fig. 1. By rotating the catheter
about its long axis, the beam may be directed along any
path perpendicular to the axis. By pushing or pulling the
catheter, the beam is translated along the long axis of the
catheter. Together these two degrees of freedom enable
the instrument to scan a cylindrically shaped volume
around the catheter. Typical imaging with this catheter
design involves acquisition of axial scans (either in the
time or frequency domain) while rotating the catheter
through 360 deg, advancing the catheter a small distance
along its long axis, and then repeating the measurement.

After acquisition, one possesses a data set parameterized
by the illumination frequency (or time delay), the angular
coordinate of the catheter during the scan, and the trans-
lational position of the catheter along its axis. With our
solution of the inverse problem, we infer the object sus-
ceptibility from these data.

We note that a similar synthetic aperture imaging
problem also arises when imaging with ultrasound
catheters16 because some ultrasound catheters employ
angularly scanned focused beams. A related inverse prob-
lem common to synthetic aperture imaging is the inver-
sion of reflectance data from spherical averages.17–21 The
following analysis differs in that it addresses the finite
NA Gaussian beam, rather than approximating the
Gaussian beam by a spherical wave. Other approaches to
inversion of data from focused ultrasound beams include
the virtual source method,22 which uses the synthetic ap-
erture focusing technique to form the image.23,24 These
methods do not provide a quantitatively meaningful solu-
tion of the inverse scattering problem in the way our
method does. Additionally, this solution to the inverse
scattering problem also may have computational speed
advantages when combined with fast inverse Radon
transform techniques and fast Fourier transforms, rather
than the backprojection- and backpropagation-based im-
age formation methods.

2. FORWARD PROBLEM
This work draws heavily on a previous paper12 in which
the inverse problem for OCT with a linearly scanned
Gaussian beam is developed. In the previous paper, the
Gaussian beam is translated in a straight line perpen-
dicular to its axis, rather than being rotated about the ori-
gin.

We consider an experiment in which a Gaussian beam
originates at a position with Cartesian coordinates
!0,p ,0". Let us denote Cartesian coordinates fixed rela-
tive to the sample by r= !x ,y ,z", and let us denote Carte-
sian coordinates fixed relative to the beam by r!
= !x! ,y! ,z!". For each fixed axial position of the fiber, y
=y!=p. The beam is directed at an angle ! from the z axis
and along the z! axis. The coordinates may be related by a
rotation matrix R!!" so that r=R!!"r! where

R!!" = # cos ! 0 sin !

0 1 0

− sin ! 0 cos !
$ . !1"

The beam is focused a distance z0 from the y axis. The
field is polychromatic with power spectrum A2!k" where
k=" /c is the wavenumber associated with frequency ".
The width of the beam waist is a function of frequency
given by W!k"=# /k, where #=$ /NA, and NA is the nu-
merical aperture of the focused beam. The beam is rota-
tionally scanned so that the signal is sampled for all
angles −$%!&$, and the beam is also translated along
the y axis to cover all axial coordinates p. Figure 2 illus-
trates this notation.

In our previous work, it was assumed that the direction
of propagation of the beam was fixed to be along the z di-
rection. The location of the center of the beam in the waist

Fig. 1. Diagram of an OCT catheter. A single-mode fiber guides
an optical signal, which is focused into a converging beam by the
lens. The prism directs the beam at a right angle to the catheter.
The beam is scanned azimuthally, rotating around the long axis
of the catheter and is translated along the long axis of the cath-
eter to collect cylindrical 3-D volumes of data.
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The complex analytic signal, S(p, θ, ω), is sampled at points given by the displacement p along the y

axis and the azimuthal coordinate θ, as well as the usual frequency ω. Taking the Fourier transform with
respect to both p (argument ξ) and θ (argument nθ) results in the data S̃(ξ, nθ, ω). After some calculation
an approximate expression is obtained for the transformed data:

S̃(ξ, nθ, ω) = K(ξ, nθ, ω)˜̃κ(ξ, nθ, ω), (35)

where K(ξ, nθ, ω) describes the bandpass function of the rotationally-scanned ISAM system. The func-
tion ˜̃κ(ξ, nθ, ω) is a Fourier transform of a resampled version of the Fourier transform of the object being
sought. That is,

˜̃κ(ξ, nθ, ω) =

π∫
−π

dθ exp(iθnθ) ˜̃η′′
{
−

[
x̂ cos θ

√
4k2(ω)− ξ2 + ŷξ + ẑ sin θ

√
4k2(ω)− ξ2

]}
, (36)

where x̂, ŷ, ẑ are unit vectors and

˜̃η′′(q) =

∫
d3r exp(ir · q)

η(r)

P (r)
, (37)

is a weighted Fourier transform of the object η(r), with P (r) a function of the radial distance to fo-
cus [16]. It is thus seen that the solution of inverse problem may again be reduced to a filtering and
resampling of the data between appropriate Fourier transforms and inverse Fourier transforms.
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7.4. Partially-Coherent ISAM

In a recent analysis [97], it has been shown that a spatially-extended, statistically partially-coherent
source can be incorporated in full-field ISAM to produce differing illumination and detection patterns
g(r, ω) and f(r, ω). Varying the source coherence length allows considerable control of g(r, ω) and also
results in a changing resampling scheme in the inverse problem. The multiple scattering artifacts that
can be problematic in full-field ISAM can be effectively mitigated using partially-coherent ISAM.

8. Conclusions

ISAM is a computed imaging technique that quantitatively estimates a three-dimensional scattering
object in broadband coherent microscopy. The solution of the inverse problem allows the reconstruction
of areas typically regarded as out of focus. The result obviates the perceived trade-off between resolution
and depth of focus in OCT.

ISAM, like OCT, is a tomographic method, i.e., the images produced are truly three-dimensional.
While ISAM addresses an inherent weakness in OCT, namely the need to scan the focus axially to
obtain images outside of the original focal plane, ISAM is not merely a method to refocus the field com-
putationally. Refocusing may be achieved from a single interferometric image at a fixed frequency, but
the resulting image is still inherently two-dimensional, failing to unambiguously distinguish contribu-
tions to the image from various depths. As in other ranging technologies, the broadband nature of ISAM
allows a true three-dimensional reconstruction.

ISAM and SAR are closely related technologies, to the point where they can be cast in the same
mathematical framework. Both techniques employ a Fourier domain resampling, based on the Stolt
mapping, in the inverse processing. While the mathematics of the two systems are closely related,
each uses a significantly different region of the electromagnetic spectrum and images objects of com-
mensurately different scales. In SAR, translation of the aperture and computational imaging allow the
synthesis of a virtual aperture of dimension dependent on the along track path length, rather than the
physical aperture size. This larger synthetic aperture produces an image of higher resolution than would
otherwise be achievable. In OCT the limitations on the size of the physical aperture (i.e., the objective
lens) are not the limiting factor, rather the image acquisition time becomes prohibitively long if the focal
plane must be scanned through an object of extended depth. The computational imaging in ISAM gives
diffraction-limited resolution in all planes, not just at the physical focus, and hence eliminates the need
for focal-plane scanning.

ISAM and SAR are examples in the broad class of modalities known as computed imaging. Like
almost all computed imaging modalities in common practice today, they are based on the solution of
linear inverse problems. Linear inversion problems offer advantages such as the option to pre-compute
and store the elements of an inversion kernel for rapid computation of images from data. Moreover, error
and stability may be well understood and there exist a wealth of well-studied methods for regularization
(stabilization) of the inversion algorithms. ISAM and SAR are also members of the more restrictive class
of problems that may be cast as data resampling. To arrive at the resampling view of these problems, the
data must be Fourier transformed and the resampled data Fourier transformed again. Thus the methods
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take advantage (are even reliant on) one of the greatest advances in applied mathematics in the last
half-century, the fast Fourier transform [98]. They may be made to run very fast and are amenable to
parallelization.
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