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A theoretical and numerical analysis of spectral self-interference microscopy (SSM) is presented with the goal
of expanding the realm of SSM applications. In particular, this work is intended to enable SSM imaging in
low-signal applications such as single-molecule studies. A comprehensive electromagnetic model for SSM is
presented, allowing arbitrary forms of the excitation field, detection optics, and tensor sample response. An
evanescently excited SSM system, analogous to total internal reflection microscopy, is proposed and investi-
gated through Monte Carlo simulations. Nanometer-scale axial localization for single-emitter objects is dem-
onstrated, even in low-signal environments. The capabilities of SSM in imaging more general objects are also
considered—specifically, imaging arbitrary fluorophore distributions and two-emitter objects. A data-
processing method is presented that makes SSM robust to noise and uncertainties in the detected spectral

envelope. © 2007 Optical Society of America
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1. INTRODUCTION

Fluorescence microscopy is an important tool in biological
and biomedical research because it provides in vivo imag-
ing, and a large range of fluorescent dyes are available for
use as high-specificity molecular markers. Structures can
be imaged using three-dimensional techniques such as
deconvolution microscopy [1] or confocal microscopy [2];
however the resolution of fluorescence microscopes is lim-
ited by diffraction and constraints on the wavelengths us-
able for nondestructive imaging. At length scales below
the diffraction limit, nonlinear techniques such as stimu-
lated emission depletion microscopy have made impres-
sive strides in biological imaging (e.g., [3]); however, they
have yet to become standard laboratory tools.

Less complicated instruments are routinely used to col-
lect subdiffraction-limit fluorescence information but re-
quire specific imaging scenarios. For example, total inter-
nal reflection microscopy (TIRM) [4] uses an evanescent
field to excite fluorophores in a thin volume along the
boundary of the sample. Since the resolution in the lat-
eral dimensions (parallel to the sample boundary) is still
diffraction limited, the main advantage of TIRM is the
elimination of stray signals from outside the excitation
volume. Alternatively, single-molecule microscopy [5,6]
achieves subdiffraction localization of single fluorophores
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when it is known that only one molecule is present in the
diffraction-limited focal volume (see [7] for an important
example). The distinction between localization and reso-
lution is important—given that a single fluorophore is
present, it can be localized with a precision that is limited
only by the signal-to-noise ratio (SNR) [8]. Resolution re-
fers to the minimum feature size that can be imaged in an
arbitrary object.

Spectral self-interference microscopy (SSM) [9] is a
fluorescence technique that allows the inference of axial
sample structure. The instrumentation required to real-
ize this technique is relatively uncomplicated, and SSM
has been shown to be useful in biological imaging appli-
cations [10]. In SSM, a mirror is placed behind the
sample, and the spectrum of the total signal, that is, the
signal from the directly propagated and reflected fields to-
gether, is collected. The distance from the mirror to the
sample is chosen so that the sample-to-mirror optical
path, measured with respect to the wavelength of the
emission, varies by several multiples of 27 across the
spectrum of the fluorophore. The light emitted from the
fluorophore traverses two paths to the detector, producing
interference on arrival. Since the optical path length,
measured in units of wavelength, varies significantly
across the fluorophore emission band, the interference
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Fig. 1. (Color online) Evanescently excited spectral self-
interference imaging system. Light is launched into the guiding
substrate and results in an evanescent field in the sample.
Sample fluorophores are excited in the same manner as in total
internal reflectance microscopy, but the resulting emissions can
travel two paths to the spectrometer. This leads to self-
interference at the detector, which varies with wavelength.

cycles through constructive and destructive cases, produc-
ing oscillations in the spectrum. These oscillations encode
the fluorophore-to-mirror distance and can be used to es-
timate the position of the fluorophore. The initial excita-
tion of the fluorophore may be accomplished in a number
of ways, including excitation by evanescent fields as
shown in Fig. 1, a case considered in this paper. The SSM
localization precision, when estimating the axial position
of a single fluorescent layer, has been shown to be on the
scale of a nanometer [9]. This level of precision is compa-
rable with the lateral precision achieved by single-
molecule imaging. The three-dimensional (i.e., both lat-
eral and axial) localization of single fluorophores can also
provide important biological information (e.g., [11]).

This work describes a number of advances intended to
facilitate the use of SSM in a broader class of applica-
tions, including single-molecule studies, where SSM pro-
vides a means of inferring otherwise unobserved axial
structure. An electromagnetic model of SSM is presented
that encompasses a wide variety of instrument realiza-
tions and objects and generalizes previous SSM charac-
terizations [12]. The electromagnetic nature of the model
allows vectorial effects such as polarization dependence
and molecule orientation to be taken into account. An eva-
nescently excited SSM system, analogous to TIRM, is pro-
posed. Evanescent excitation can be important in low-
signal applications, where the limited excitation volume
results in greatly reduced contributions from background
fluorescence and hence an increase in the SNR. Numeri-
cal simulations are used to investigate the performance of
SSM in low-signal applications. Algorithms are developed
to allow the SSM imaging of objects with multiple emit-
ters and to account for uncertainties in the spectral emis-
sion profile of the object. These algorithms are also inves-
tigated numerically.

The work is organized as follows. In Subsection 2.A a
general model is developed relating an anisotropic fluo-
rescent object to measured data for arbitrary systems of
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illumination and detection. In Subsection 2.B it is shown
that a scalar model emerges under certain conditions, in
Subsection 2.C an example is considered, and in Subsec-
tion 2.D the model is discretized. In Subsection 3.A recon-
struction of arbitrary, continuous distributions of fluoro-
phores is considered. In Subsection 3.B a prior
assumption on the number of emitting fluorophores is
used to condition the inverse problem. A dramatic im-
provement is observed, suggesting that SSM is well
suited to dilute or single-molecule imaging. In Subsection
3.C evanescently excited SSM is compared with TIRM,
and it is demonstrated that the additional reflection
present in SSM makes a significant difference in the in-
formation available in the experiment. In Subsection 3.D
uncertainty in the fluorophore spectrum is addressed, and
SSM image reconstruction is shown to be robust with re-
spect to variations in the spectral envelope. Finally, the
results are summarized and placed in context in Section
4.

2. SSM FORWARD MODEL

An accurate forward model of the SSM system must be
constructed to allow physically meaningful reconstruc-
tions of the object to be obtained. The model is related to
the evanescently excited SSM system seen in Fig. 1; how-
ever, the framework encompasses a more general instru-
ment. The tensor operators representing the excitation
and detection optics can be chosen to represent a variety
of other instrument geometries. The general mathemati-
cal framework is developed before special cases are con-
sidered.

A. General Model

The object to be imaged is illuminated through a linear
optical system, characterized by a tensor f,,(r), so that il-
lumination by a plane wave E; normally incident to the
entrance plane of the system produces a field distribution
fvu(r)Ez in the region of the fluorophore. Here the sub-
scripted symbols index the spatial dimensions, and the
Einstein summation convention is used. The illumination
field is assumed to be quasi-monochromatic with wave-
number %:. This general representation of the illumina-
tion optics can include focusing by a lens (as in previous
implementations of SSM), evanescent excitation from a
waveguide (as shown in Fig. 1), or other more sophisti-
cated techniques such as the use of laterally structured
evanescent fields [13].

The fluorophore, or collection of fluorophores, is de-
scribed by a spatially varying polarizability «,,,(r,%). The
dependence of a,, on %’ is not explicitly noted, since %’ is
assumed to be fixed. The resulting source S,(r,k) is a
function of position and frequency w=ck (k being gener-
ally different from %°) and is given by the expression

S,(1,k) = (k)2 a, (v,k)f,,(r)E.. (1)

This source produces a field that may be computed by the
method of Green’s functions. The radiated field is given by
the expression
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E'(r,k) = f d3r'G(x,r' ,k)S(r',k), (2)

where G is the dyadic Green’s function satisfying the ap-
propriate boundary conditions at the planar interface of
the sample and substrate. Throughout this work bold
type is used to denote a vector, bold type with an overbar
is used to denote a tensor (with two or more indices), and
individual components of vectors or tensors are given us-
ing subscripts and without bold type [as seen in Eq. (1)].
The Green’s function used in Eq. (2) may be expressed in
a plane-wave decomposition [14],

_ i ) 1 L
Gr,r)=— dzku elk(r-r )—[D(k) + o2k ‘Zm)R(k)],
2 k

3)

where it is assumed that the z axis is normal to the
substrate—sample boundary, that z=z,, is the mirror
plane, and that z>2z' (i.e., the observation point is above
the fluorescent object). The vector k=k+£,z (where a hat

" is used to indicate a unit vector) and

VE? ~ ki k=E
k,= . (4)

iR =R R <E,

The dyads D and R enforce the transversality (with re-
spect to k) of the plane waves directly propagated to the
detector and of those reflected from the substrate. The

dyad D is simply the identity on vectors transverse to k

and the dyad R contains the Fresnel coefficients. The
phase acquired by the reflected wave on propagation to
the mirror and back to the source plane is made explicit

in the factor e2i='-2n) multiplying R. The dyads could,
for instance, be written in terms of the transverse electric
(TE) and transverse magnetic (TM) basis vectors, Gy,
relative to k and the normal to the interface n. These unit
vectors may be constructed,

. kXn

(k) = m, (5)
01, (k) = el 6)
TN

and it may be noted that k=1, X @, =k/k so that k, @,
uy,, form an ordered orthonormal triple, with @, always
parallel to the interface. Then

D (k) = G, () [0,(K) 1" + (W) [y, (W], (7

R(k) = t,,(K)r [0, &)+, &) r,,[4,,&], 8)

where T denotes the Hermitian conjugate, r,, and r,,, are
the Fresnel reflection coefficients, and the vector k is the

reflection of k through the z=0 plane, i.e., Ezz—kz.
It may be seen that for large values of &r, the Green’s
function takes the asymptotic form
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G(ré,r') ~ —e ¥ [D(ké) + 242 R (k)] (9)
r

in directions specified by the unit vector . This spherical
wave propagates to an optical system that focuses the
light to a detector. The optical system is formally charac-
terized by the dyad L(&). The propagated field is consid-
ered on a reference hemisphere of constant r=r; with z
>0, and L(&) maps the field at position org to the result-
ing field at the detector. For the case that the imaging sys-
tem is a lens, L is nonzero on the region of the reference
sphere falling within the lens aperture and may be com-
puted by standard means [15]. Any polarization prefer-
ence or efficiency factor for the detector may also be in-
cluded in L. It is useful to then define a new dyadic
function g that takes into account the free-space propaga-
tion and the effects of the detection system, including the
summation over the reference sphere, namely,

g(r' k)= f d6,d6,L(6)Glros,r),
o'§§]_

. L(o)

—eitro f dé,da,

62452=<1 To

x 7%

Xe—ikfr-r'[l_)(ka_) + eZiktArz(Z’—zm)R(k&)],

=§Direct(rl’k) + gReﬂected(rr’k) . (10)

The field at the detector can then be found by propagating
the source S [see Eq. (1)] to the detector:

Ed(k) = J Brigr’ B)Sr' k). (11)

The detector is assumed to perform a time average of
the intensity. All stochastic processes are assumed to be
stationary and ergodic in the wide sense, so that the time-
averaged spectrometer measurements and ensemble av-
erages (denoted by angle brakets (-)) in the frequency do-
main are interchangeable. The detector measurement,
d(k), may then be written as

d(k) = Tr{(E*(R)[E*(R)]")},

=Tr{fd3rfd3r’

Xg(r,kKS(r,k)ST(r’,k)>§+(r’,k)} , (12)

where Tr{-} is the trace. The coherence matrix of the inci-
dent field may be expressed as

(ELE )Y = Al (13)

where A’ is given by the expression A’=Tr{(E/(E)"H}. If
the field is unpolarized, w;j=3;/2, where J is the Kr(:-
necker tensor. If the field is fully polarized, w;=%; j‘,
where 1 is a unit vector describing the polarized illumi-
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nation field in a plane parallel to the entrance plane of the
system.

The emissions of individual fluorophores are uncorre-
lated, and so

(k) ey, (X)) = Py (2, R) S~ 1), (14)

where p is a tensor mapping the polarization state of the
excitation field to the resulting emitted-field polarization
state. Additionally, the incident field and the polarizabil-
ity are assumed to be incoherent because the fluouresence
is spontaneous. As a result, the source density correlation
function then takes the form

(S, (1,k)S,, (x' k) = (B Alf,(0) sy for, (€
Xpwvw’v’(rvk)g(r_r’)a (15)

so that the detector measurement is

d(k) = (kl)4f dgrglw(r7k)Aifvu(r)Muu’f:fuf(r)

X povwro (0,R)G7, (). (16)

In many cases of interest the spectral dependence of the
fluorophore is separable from the spatial and polarization
dependences. In those cases, it is convenient to write

Aipwvw’u’(rak) =A(k)pwvw’u’(r)~ (17)

The detector measurement is then

d(k) = (k) *A(k) f A7 @100 (0, ) () i ()

X puovo'v (B)€ 1, (1, R). (18)

From this general model it may be seen that the SSM
data depend on the illumination polarization through
HMuy', the illumination optics through f,,(r), the object
through p,,,./(r), and the detection optics through
Z1u(r, k). The retention of a full electromagnetic descrip-
tion allows the modeling of effects such as orientation-
dependent emission from a fluorescent molecule (see [16]
for a discussion of measurement schemes). Indeed, the
model of Eq. (18) can be used to describe methods such as
dipole-orientation imaging [17] or chirality imaging (e.g.,
[18]). Techniques such as these rely on polarization effects
to obtain information about the nonscalar object. How-
ever, in many situations it is desirable to be able to define
a simplified scalar model, as is discussed in the next sub-
section.

B. Scalar Model

It is often possible to simplify the analysis of optical sys-
tems by the use of a scalar model. The full vector model of
Eq. (18) can be reduced in this manner for systems in
which the excitation and detectable fields exhibit spa-
tially invariant polarization. That is, the dyads describing
the excitation and detection have the following separable
forms:
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f(r) =f(r)v, (19)
g(r,k) =g(r,k)E. (20)

For example, such a situation arises for plane-wave illu-
mination or detection; is approximately valid for focused
detection with low numerical aperture (NA), where there
is not a significant variation in polarization state; and is
invalid for high-NA focusing where the polarization state
varies significantly within the focal region.

Assuming that the forms of Egs. (19) and (20) are jus-
tified, a scalar object s(r) can be defined as

s(r) = gl,wvvu/-"uu’Vv'u’pwvw’v’(r)glwf~ (21

Here the illumination polarization state and the micro-
scope optics combine to operate on the second-order cor-
relations of the polarizability. This determines which com-
ponents of @ are visible in the data. If the entire problem
is treated within a scalar approximation, that is, if Eq. (1)
becomes S=af(r)E! and all propagation is treated within
the context of a scalar (Helmholtz) wave equation, then it
may be seen that s(r) is the square magnitude of the po-
larizability a(r), all other factors being associated with
polarization effects.

The relationship in Eq. (21) can be used to rewrite Eq.
(18) as a scalar model,

d(k) = (k) *A(k) f d’rlg(r,k)|f(r) s (x). (22)

Here the scalar object s(r) is illuminated by light with an
intensity pattern of |[f(r)|2. The detection optics result in
an intensity sensitivity pattern |g(r,%)|?, and the spectral
response of the fluorophore is described by A(k). Such a
treatment is often used in the modeling of microscopy sys-
tems [19].

C. Example System
In this section an example system is described to illus-
trate the application of the theory developed. The result-
ing model is used in subsequent numerical simulations.
As shown in Fig. 1, an evanescent excitation field is con-
sidered. A low-NA objective lens is used, and so a scalar
model can be employed. The detection system does not
have a preferred polarization orientation. For simplicity,
the substrate below the sample is modeled as a perfect
mirror at the plane z=z,,, where z=0 is taken to be the
substrate—sample boundary.

The illumination is assumed to be a TE polarized field,
evanescent in the sample region. Thus the illumination
optics are described by the expression

£(r) = {i, () [, ()] + () [y, () Tl ™, (23)
and the illumination polarization is given by
ﬁ = ﬁte(ki) s (24)

where kiz(ki,kfv,i\kiDT is the wave vector for the evanes-
cent field (with "7 representing the transpose operator). It
can be seen that f is of the form given in Eq. (19).

The optical axis of the lens coincides with the z axis, so
the low-NA approximation means that only fields in the
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x—y plane are detected. Assuming that the detection op-
tics do not change the x—y polarization on the way to the
detector,

g(r,k) =g, k)[R&" + 9§71, (25)

where g(r,k) is the scalar lens response (including reflec-
tions from the mirror).

In many cases of interest, the fluorophore is part of a
long, oriented molecule and so there is a strong preference
to accept and radiate only one polarization state. Then, @
may be expressed as the dyadic product of a vector and its
conjugate, awvzpwpz, so that

Pwow'v’ =pwp;p;'pv’ (26)
The scalar object may be evaluated to obtain
s(r) = [, (k)] 'pl*p x 2. 27)

The factor |[1,,(k")]"p|?> accounts for the portion of the di-
pole parallel to the excitation field, while the factor |p
X 2|? accounts for the portion of the dipole that is visible
to the detection optics. Susbstituting the excitation model
into Eq. (22), the scalar observation model is then

d(k) = (k') *A(k) J drlgr,k)Pe ks r). (28)

The detection pattern g(r,k) can be further specified by
picking a focal point for the focused detection. Since a per-
fect mirror is assumed, the reflected detection pattern is
the negative of the direct detection pattern reflected
through z=z,,, i.e.,

gReﬂeCted(x9y’Z’k) = _gDireCt(x’y’_ (Z - zzm)’k) . (29)

For the particular case that the focal plane and mirror
plane coincide, the detection pattern may be expressed in
a symmetric form. Let [(r,%) be the scalar field resulting
from a lens focused to the origin without a mirror present.
The detection pattern can then be written as a function of
this field,

g(r,k) =gDirect(r,k) +gReﬂected(r’k)’

=l(x’yﬂz_zm7k)_l(x’y7_ (Z_Zm)yk)- (30)

It is worth reiterating that /(r,%) may be computed by
standard methods; e.g., the focused field may be modeled
as a Gaussian beam [20]. The approach taken in this
work is to first use a full vectorial focusing model [15]
with the scalar /(r,%k) taken to be the component in the
same polarization direction as the illuminating field E
(with a small NA the other focused-field components are
negligible.) It may be seen on calculation that
[L(x,y,z,k)|=|l(x,y,~z,k)|, so that the two terms compos-
ing g(r,k) are of equal magnitude and differ only by a
phase that varies with position and wavelength. Thus the
interference is strongly visible, and the spectrum is
modulated as discussed in the introduction.

D. Discrete Forward Model and Multiple Illuminations

For many computational approaches, it is necessary to
have a discrete forward model. The system from Subsec-
tion 2.C can be sampled at discrete £ and r values at rates
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fine enough to give negligible departure from the continu-
ous model. A precise treatment of this sort of approxima-
tion can be found in [21].

As shown in Subsection 2.B, a scalar model can be used
in certain circumstances. A scalar model will be used to
demonstrate image reconstruction, allowing the dis-
cretized model to be written as a simple matrix equation.
Let s be the discrete scalar object arranged into a one-
dimensional vector. Similarly, let d be the data arranged
in a vector. A matrix C relates the two,

d=Cs. (31)

The nth column of C represents the data produced by a
unit-amplitude entry in the nth position of the object vec-
tor s. The data that are actually observed are similar to d
but corrupted by some amount of noise.

A multiexcitation system can also be modeled. Several
sets of data can be taken from the same object by exciting
it with a number of different fields. This allows the possi-
bility of gathering more information and improving the
reconstructed image. In each case the illumination |f(r)|?
is different, which results in a different C matrix and a
different set of data. These multiple models can be com-
bined into a single augmented model by vertically concat-
enating the d vectors and the C matrices. This results in
a model of the same form as Eq. (31) but describing the
multiexcitation observation.

For evanescent excitation, as considered in Subsection
2.C, the differing illumination profiles are chosen to have
different decay rates (given by k.) while retaining the
same TE direction. This ensures that the augmented
model can be represented in a scalar framework. If TM il-
lumination is used and the magnitude %! maintained, the
TM direction necessarily changes with ki, a situation not
compatible with an augmented scalar model.

3. IMAGE RECONSTRUCTION

The forward model for the imaging system can be in-
verted by various procedures. That is, knowledge of how
the object relates to the data can be used to infer proper-
ties of the object from measured data. In the following
subsections, the inverse problem is investigated with
various algorithms and various constraints on the object.

A. Reconstructions of Arbitrary Distributions

1. Maximum Likelihood Estimation

In the context developed here, image reconstruction is the
process of using the measured data to find a vector § that
is close to the unknown object s. This is done by ensuring
that Cs, the data expected from the reconstructed image,
is close (in terms of some criterion or norm) to the mea-
sured data. There are various ways of measuring this
closeness, but one of the most popular estimation rules is
maximum likelihood (ML). The conditional probability
density function of observing the data d given the object s
is P(d|s), and the ML estimator is defined as
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Fig. 2. (Color online) Example data from an evanescently ex-
cited fluorophore positioned at z=20 nm. The deterministic
expected-value of the signal [calculated by using Eqgs. (28) and
(30)] is shown along with an example realization of the Poisson
noise. The signal level is set so that the data have a total ex-
pected count of 1000 (corresponding to a SNR of 10 dB). The fluo-
rophore is excited at a free-space wavelength of 488 nm, and the
emission is measured in increments of 0.5 nm between 500 and
590 nm. A Gaussian form for the spectral envelope A(k) is as-
sumed. The fluorophore is employed to lie in water, and a perfect
mirror is placed at a position z,, that corresponds to an optical
path length of 8 um in water. The resulting reflected path can be
seen to produce interferometric oscillations in the spectrum. The
excitation is modeled as the evanescent field resulting from a TE
polarized plane wave striking a water—silicon nitride boundary
at an angle of 45° (the critical angle is 40.7°). A lens of numerical
aperture 0.1 is used to collect the emissions, and the fluorophore
is assumed to lie on the optic axis of this lens.

§ = argmax P(d|s). (32)

s

An ML estimator is optimal with respect to the Cramér—
Rao bound [22].

It is assumed that the data collected by the SSM sys-
tem are consistent with photon counting and therefore
obey Poisson statistics. This means that d in Eq. (31)
gives the expected value of the data. It is also assumed
that measurements at any two distinct &2 values are sta-
tistically independent. An example of the data produced
by such a model can be seen in Fig. 2. By using the Pois-
son model and Eq. (32), the following condition on the ML
estimate § can be found [23]:

CTA1(8)Cs=CTA 1 (8)d, (33)

where A(S) is a matrix that is zero except on the main di-
agonal, where it has the elements of the vector Cs,

A(8) = diag[Cs]. (34)

The Poisson statistical model gives a noise variance that
is proportional to the expected signal at each wavelength
measured. The matrix A"}(8) in Eq. (33) can be inter-
preted as a fit-to-data weighting that reflects the Poisson
noise model—the fit at lower-noise regions of the signal is
weighted more heavily.

In general, the ML condition of Eq. (33) is insufficient
to uniquely define an image §. Should C have a nonempty
nullspace, then any component of § lying within this
nullspace would not affect Eq. (33) and would therefore be
unconstrained. Even if the nullspace of C were empty, the
ML problem is strongly ill conditioned below some finite
spatial scale. This results in instability in the presence of
even a small amount of noise. These issues are well un-
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Fig. 3. Test object considered for RL reconstruction. Five fluo-
rophores lie at varying positions along the optical axis of the de-
tection lens. The axial position is sampled at 2 nm intervals.

derstood in image reconstruction and have resulted in the
development of regularization techniques for inverse
problems [24].

2. Richardson-Lucy Reconstruction

The Richardson—Lucy (RL) algorithm [25,26] can be used
to iteratively find a solution to Eq. (33). The RL algorithm
is generally terminated before convergence in order to at-
tain the predictable behavior associated with a well-
regularized inverse method. Additionally, the RL algo-
rithm is known to preferentially reconstruct pointlike
objects [27], such as spatially distinct fluorescing mol-
ecules. The behavior of the RL algorithm in an SSM en-
vironment will be investigated through numerical simu-
lation. A test object is shown in Fig. 3. This object has a
variety of spacings between fluorescing molecules. The
level of detail resolved determines the performance of the
imaging system.

Two different excitation fields are considered in the
simulations—the first is modeled by the evanescent field
produced as described in Fig. 2, i.e., that resulting from a
plane wave incident at 45° on a water—silicon nitride
boundary. The second excitation field is produced by in-
creasing the angle of incidence of the illuminating plane
wave to 55°. The axial intensity profiles of these two ex-
citations are shown in Fig. 4. A single-excitation system
consisting of only the 45° excitation is considered, along
with a two-excitation system that measures both the 45°
and 55° cases. The other system parameters are the same
as those described in Fig. 2.

The evolution of a RL reconstruction with iteration
number is shown in Fig. 5. It can be seen that the RL es-
timate is smooth to start with and becomes progressively

— — — 45° lllumination
55° lllumination

Optical Intensity
(arb. units)

0 50 100 150 200
Axial Position (nm)

Fig. 4. (Color online) Axial intensity profiles corresponding to
the two excitation regimes considered. The excitation is modeled
as the evanescent field produced at a water—silicon nitride
boundary when a plane wave is incident, from the silicon nitride
substrate, at an angle greater than the critical angle. Incident
angles of 45° and 55° are considered.
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Fig. 5. (Color online) RL reconstructions at various iteration
numbers for data from the test object of Fig. 3. Two excitation

patterns were used, and the total expected count is 50 X 10 (for a
SNR of approximately 23 dB).

more peaked with successive iterations. While the recon-
struction does become more pointlike, it does not neces-
sarily match the object well at these fine spatial scales.
The RL algorithm’s behavior at different noise levels
and with different excitation schemes is shown in Fig. 6.
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Fig. 6. (Color online) RL reconstructions for total expected
counts of 5x 103, 50 X 103, and 500 X 10° in the data. (a) A single-
excitation and (b) a two-excitation case are considered. The cor-
responding SNRs are approximately 16, 26, and 36 dB for the
single-excitation case and 13, 23, and 33 dB for the two-
excitation case. In the single-excitation case the iteration num-
bers of the reconstructions are 1Xx10%, 2x 108, and 20X 10° for
the data of count 5x 103, 50X 102, and 500 X 103, respectively.
The corresponding iteration numbers for the two-excitation case
are 2 10°, 5x10°, and 50 X 106,
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A representative iteration number has been chosen for
each case. The algorithm converges faster for more noisy
data, so this number typically increases with the photon
count. The iteration number was chosen by picking a
point at which the estimate was well localized. Since the
RL algorithm preserves the integral of the estimate be-
tween iterations and because the magnitude of the recon-
struction at a point cannot increase once it reaches zero,
it is believed that the estimates will not change signifi-
cantly beyond the iteration number shown.

Some general trends can be observed in Fig. 6—the
two-excitation reconstructions are generally of a higher
quality than the single-excitation reconstructions. The
higher-signal reconstructions also tend to be better than
their counterparts from noisy data. The erroneously high
peaks toward the right of the plots can be explained by
noting that at z=200 nm the excitation intensity is re-
duced by approximately 2 orders of magnitude compared
with the value at z=0. Object features at higher z values
therefore contribute minimally to the measured data, and
the algorithm can place high-density features in that re-
gion without affecting the fidelity of the estimate to the
measured data.

For the 500X 103 count data and two excitations, the
RL algorithm reasonably reconstructs the object: the first
two peaks (starting from the left) are distinguished and
well localized; the second two peaks are not resolved, but
a single peak is reconstructed in the correct vicinity;
while the final peak is not placed correctly. The poor re-
construction of the final peak is to be expected, as it is
weakly illuminated and thus does not contribute strongly
to the data. Unfortunately, the 500x 103 count signal
level is unrealistic for a five-fluorophore observation, and
the estimate does not behave predictably as the signal is
lowered. For example, for the 500 X 10® count data a peak
is reconstructed at approximately 80 nm. When the signal
is lowered to 50 X 103, the peak shifts but then returns at
the 5000 count level. Behavior such as this leads to the
conclusion that the RL algorithm cannot be used to reli-
ably reconstruct SSM images on a tens-of-nanometers
spatial scale.
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Fig. 7. (Color online) Truncated-singular-value-decomposition
reconstructions of the object from two-excitation data with a total
expected count of 50 10° (a SNR of approximately 23 dB). The
singular value threshold is shown as a percentage of the maxi-
mum singular value.
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3. Truncated Singular Value Decomposition
Reconstruction

Other methods of reconstructing the object can be used,
but there is no reason to expect they will achieve better
performance than the RL algorithm. For example, Fig. 7
contains reconstructions found by using the truncated
singular-value-decomposition approach [28]. This algo-
rithm works by using the singular value decomposition to
construct an approximate inverse to the operator C. In or-
der to achieve regularization, singular components
passed with a strength below a user-defined threshold are
not reconstructed. As this threshold is decreased, Fig. 7
shows that the solution moves from stable and smooth to
oscillatory. This simple approach is not well matched to
the problem here, as negative density estimates are given
and peaked objects are not preferred. As a result, the re-
constructions found are not particularly impressive. The
truncated singular-value-decomposition approach does
provide a linear noniterative reconstruction method and
is given here as a point of comparison to the RL algo-
rithm.

The mediocre performance of SSM for imaging an arbi-
trary object stands in contrast to its demonstrated
nanometer-scale precision when localizing fluorophores
known to reside in a single axial plane [10,12]. This dif-
ference, between the localization of a single molecule and
the resolution when imaging a general distribution, has
been thoroughly explored [8]. It has been shown that
nanometer-scale localization precision can be expected
from instruments that have standard resolution limita-
tions when imaging an arbitrary object. High-precision lo-
calization has recently been experimentally demonstrated
in a novel SSM instrument [29] that was also proved to be
subject to standard resolution criteria.

When considering multiple molecules, the ability to dis-
tinguish two closely spaced fluorophores (when it is
known that only two are present) is dependent only on the
measurement noise rather than on standard criteria such
as the Rayleigh resolution [30]. With this idea in mind,
the ability of SSM to determine the axial positions and
relative strengths of a strictly limited number of fluoro-
phores will now be investigated.

B. N-Emitter Object

1. Theory

Under the correct circumstances it may be known a priori
that not more than N fluorophores are present in the re-
gion from which emissions are collected. In this case the
object has no more than N nonzero points. The object is
therefore defined by 2N parameters—the N positions of
the emitters and N fluorophore densities (one for each
emitter). This complicates the inverse problem, as these
2N parameters are related to the object in a nonlinear
manner.

To solve the inverse problem an exhaustive approach is
taken. If the discretized object is defined on a spatial grid
of M points, then there are M!/[N!(M-N)!] possible sets
of positions for the object. Given a set of N positions, the
data are linearly related to the object densities. These N
object densities can then be estimated by using standard
methods for linear observations. For example, the RL al-

Davis et al.

gorithm can be applied as in the previous section. How-
ever, since the densities must be estimated for each pos-
sible set of positions, it is desirable to have a single-step,
closed-form procedure to speed up the computation. This
can be achieved by making an approximation to the Pois-
son noise model.

For reasonable photon counts the Poisson noise can be
approximated with a Gaussian model. If the Gaussian

model for the data noise has a covariance matrix of /~\,
then the maximum likelihood condition reduces to mini-
mizing the exponent in the Gaussian density,

§ = argmin[d - Cs]"A"[d - Cs]. (35)

The function to be minimized represents a weighted-

squares cost function. The inverse weighting matrix A is
the covariance of the data. This matrix is nonzero only on
the main diagonal (since the noise in distinct pairs of data
points is assumed independent) and, according to the
Poisson model, equal to the expected data on the main di-
agonal. The expected data values are not known precisely,
but, as can be seen from Fig. 2, the general shape is evi-
dent in the measured data. With this idea in mind, the

main diagonal of A is defined by applying a low-pass filter
to the measured data. Any values below a certain thresh-
old may be set to that threshold to ensure that the

weighting (which is determined by the inverse of A) does
not become overly large or negative.

The N-dimensional position space is scanned exhaus-
tively (i.e., every possible combination of position values
is investigated), and at each point Eq. (35) is solved. The
Poissonian ML condition of Eq. (33) becomes the following
within the accuracy of the Gaussian approximation:

CTA1Cs=CTA 4. (36)

For the N-emitter problem, at a given set of positions, C
has only N columns. Provided that N is relatively small,
the minimization problem is overdetermined, and regu-
larization need not be applied. This results in the follow-
ing form for s:

§=[CTAICTICTA 4. (37)

Thus for a given set of positions, the densities can be
found by using the equation above. A cost [seen in Eq.
(35)] can also be associated with this estimate. Comparing
this cost across all sets of positions allows a minimum
cost to be found. The positions and densities associated
with this cost constitute the estimate of the object.

The N-emitter reconstruction algorithm described is
guaranteed to find the ML estimate under the Gaussian
noise approximation, since the entire allowable position-
density space is searched in finding §. The position vari-
ables are exhaustively searched, which can become com-
putationally expensive for large M and/or a value of N
greater than a few. However, the goal is to reconstruct the
object only within the evanescent excitation volume. This
limits the axial range considered and hence bounds M.
The value of N used will depend on the application. It
should be noted that N is actually an upper limit on the
number of emitters, as samples containing fewer than N



Davis et al.

emitters can be represented in this framework by having
one or more of the object densities equal to zero. It may
also be possible to improve the efficiency of the N-emitter
reconstruction by using cost minimization algorithms
that are more sophisticated than a simple exhaustive
search [31].

2. Single Emitter

Estimating the axial position of a single fluorescent layer
was the original application of SSM [9]. This section in-
vestigates the performance of N=1 estimation for a vari-
ety of noise levels. The position space is discretized into
0.5 nm steps, and for each position the optimal fluoro-
phore density is calculated according to the method out-
lined in Subsection 3.B.1. The position and density corre-
sponding to the least weighted-squares cost gives the
fluorophore position and density estimate. This process
was repeated for many realizations of the Poisson noise
random variable, and the results are shown in Fig. 8. The
results of Fig. 8 verify that nanometer-scale localization
precision can be expected at both high and low signal lev-
els. The fluorophore density is also estimated to within
about 1%. It should also be noted that the signal levels in-
vestigated are consistent with single-molecule experi-
ments. For example, a single Rhodamine 6G fluorescent
molecule can be expected to emit of the order of 10° pho-
tons before photobleaching, when optimally excited [32].
If the total detection efficiency of the SSM instrumenta-
tion is 1%, then the resulting signal level is consistent
with the 1000-count plots shown in Fig. 8. The signal
level can be expected to be significantly higher for more
photostable dyes or quantum dots.

3. Two Emitters

The next step is to evaluate the performance for two emit-
ters. In this case the reconstruction process estimates
four parameters—two positions and two fluorophore den-
sities. The reconstructed positions will be investigated
first. Estimated position pairs for the single- and two-
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Fig. 8. (Color online) Histogram showing position estimates for
a single fluorophore. Data with total expected counts of 1X 103,
10X 103, and 100X 103 (SNRs of 10, 20, and 30 dB) are consid-
ered. In each case 5000 simulations were run, each with a differ-
ent realization of the noise random variable. The true position of
the emitter is at z=20 nm. The fluorophore was excited with one
evanescent field only.
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Fig. 9. Two-dimensional histograms showing the estimated po-
sition pairs from data corresponding to equal strength emitters
at z=30 nm and z=70 nm. The pixel intensity at a given point
represents the number of times that position pair was estimated.
The ideal position pair estimate is marked with a circle. (a)
Single-excitation and (b) two-excitation cases are considered, and
the total expected count is 200X 10® (giving SNRs of approxi-
mately 33 dB in the single-excitation data and 30 dB in the two-
excitation data). For each case 5000 simulations were run, each
with a different realization of the Poisson noise random variable.

excitation systems are shown in Fig. 9. Two positions are
estimated in the reconstruction (one for each emitter),
and this pair of numbers can represent a point on a two-
dimensional plane. In Fig. 9 the intensity of a given point
in the plane represents the number of times that pair of
positions is estimated. As such, a well-localized plot rep-
resents a precise reconstruction, while a broadly scattered
plot represents significant variability of the reconstructed
emitter positions.

Several conclusions can be drawn from the results seen
in Fig. 9. The first is that the two-excitation case (i.e., us-
ing illumination plane waves at both 45° and 55°) per-
forms much better than the single-excitation case. For
this reason, only the two-excitation case will be consid-
ered for the remainder of this work. It can also be seen
that the error in the position estimates is highly corre-
lated. If one estimate is too high, then the other is also too
high (this is evidenced by the fact that all estimated
points are either on the upper right or lower left of the
true point). Additionally, the estimated positions are
never both on the same side of the midpoint—the lower
estimate (i.e., the smaller of the two z estimates) never
exceeds z=50 nm, and the upper estimate never falls be-
low this point. Most important, it can be seen that for the
two-excitation case, at this noise level, the reconstruction
process accurately estimates the positions of the fluoro-
phores.

Results for different noise levels and different emitter
spacings are shown in Fig. 10. Similar forms of the posi-
tion estimates can be seen. For poorly reconstructed posi-
tions, the estimate pairs are distributed along a narrow
curve. This curve indicates that one estimate point is al-
ways above the midpoint and one below. The upper-left-
hand plot appears dim, as most of the estimates are at ex-
treme pixel points with either a lower estimate of 0 or an
upper estimate of 200. For the noise levels considered, it
can be seen that points separated by 80 nm are reliably
estimated, while points separated by 10 nm are not well
imaged. Estimates of emitter positions with spacings be-
tween these two extremes are dependent on noise level.
To quantify this performance, the probability of the recon-
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Fig. 10. Two-dimensional histograms of estimated pairs of positions, where a circle marks the true position pair. Various fluorophore
spacings (constant across a row) and signal levels (constant down a column) are considered. The column containing plots (a), (d), (g), and
(j) shows reconstruction statistics from data with a total expected count of 2 X 10%; (b), (e), (h), and (k) are from data with a total expected
count of 20X 10%; and (c), (f), (i), and (1) are from data with a total expected count of 200 X 103. Plots (a), (b), and (c) have a fluorophore
spacing of 10 nm; (d), (e), and (f) have a spacing of 20 nm; (g), (h), and (i) have a spacing of 40 nm; and (j), (k), and (1) have a spacing of
80 nm. Because of the changes in the expected data, the SNR varies slightly with emitter spacing. However the SNRs are approximately
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10, 20, and 30 dB for the data sets with count 2x 102, 20X 103, and 200 X 103, respectively.

structions meeting some quality criterion can be esti-
mated by dividing the number of successful reconstruc-
tions by the total number of trials. In Fig. 11 the criterion
used is that both position estimates are within +2 nm of
the true positions. This plot confirms that the reconstruc-
tion quality improves with signal level and increasing
spacing between the emitters.

The plots of Figs. 9 and 10 display only the estimated
positions, two of the four estimated parameters. The den-
sities of the emitters are also estimated. The density es-
timates are reliable in the sense that any outlying points
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Fig. 11. (Color online) Estimated probabilities of both recon-

structed positions being within +2 nm of the true values, as a

function of the spacing between emitters, and for various total

expected counts.

are estimated to have a low density. This phenomenon
can be seen in Fig. 12. This figure considers emitters
spaced 10 nm apart and with a total expected count of
20 103 (i.e., the conditions of the second plot in the first
row of Fig. 10). The estimates in this scenario contain
many cases where one position is estimated to be between
the fluorophores and one a large distance from them. It
can be seen from Fig. 12 that the outlying estimate has a
low density, while the density estimate corresponding to
the position estimate between the true positions is ap-
proximately 2 (accounting for two emitters of density 1).
At the correct estimates of 40 and 50 nm, the density is
estimated as approximately 1 for both points. This is in
fact a general property of the estimate—the sum of the
densities for the 5000 trials has a mean of 1.999 and a
standard deviation of 0.021. This shows that the total
density is estimated with high accuracy and precision re-
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Fig. 12. (Color online) Mean fluorophore density estimate plot-

ted as a function of the corresponding estimated position. The er-
ror bars show the standard deviation. The data are from an ob-
ject with emitters at z=40 nm and z=50 nm, and the total
expected count is 20X 102 (a SNR of 20 dB).
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Fig. 13. (Color online) First 15 singular values for a two-

excitation SSM operator and a two-excitation spectral TIRM op-
erator plotted on a logarithmic scale. Both systems are defined
on a spatial axis ranging from z=0 to z=200 nm, with a sam-
pling period of 2 nm. Both plots are normalized to have a maxi-
mum singular value of 1.

gardless of where and how it is distributed. In short, Fig.
12, combined with the previous results, indicates that the
emitters are either estimated correctly or are mistaken
for a strong intermediate emitter with a weak outlier.

C. SSM and TIRM

As can be seen from Fig. 1, evanescently excited SSM is
similar to a TIRM system. However, the introduction of
the mirror and spectral detection has a dramatic effect on
the collection of axial information from the sample. In
TIRM, the amplitude of the collected signal is all that
changes for different axial positions. In evanescently ex-
cited SSM, the mirror, the spectral detection, and the re-
sulting spectral oscillations (see Fig. 2) give a much stron-
ger axial-position dependence to the data. To illustrate
the difference between SSM and TIRM, consider the one-
dimensional SSM system used in the previous simula-
tions and a similar system but without the underlying
mirror. The second system is TIRM with spectral detec-
tion. The data from the TIRM system are given by an ex-
pression similar to the SSM system but absent the reflec-
tion term. Explicitly,

g(r' k) =g’ k), (38)
as opposed to Eq. (10) for an SSM system. The informa-
tion content of the two systems can be compared by ana-
lyzing the effective number of degrees of freedom, as mea-
sured by the number of singular values of the forward
model that are above the noise floor. The singular values
of these two systems are plotted in Fig. 13. It can be seen
that the SSM system has larger singular values with a
more gradual roll-off. These results indicate that more in-
formation is passed with SSM.
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D. Estimation of the Spectral Envelope

The estimation procedures described in the previous sec-
tion require the predicted data to be fitted to the mea-
sured data with great accuracy. For this reason, the esti-
mation procedure may be expected to be sensitive to any
inaccuracies in the model. In this section it is shown that
a simple algorithm modification can compensate for un-
certain model parameters without significant loss of im-
age quality.

The fluorophore spectral envelope A(k) may not be pre-
cisely known. Other measurement errors can also cause
an effective change in A(k), e.g., a nonuniform spectrom-
eter gain. In addition, for multiple excitations, there may
be a scaling difference in A(k) across measurements if the
illumination amplitude cannot be precisely controlled.
For these reasons the spectral envelope is assumed to be
unknown but is assumed to vary smoothly and relatively
slowly with .

This slow variation means that the spectral envelope
can be written as a weighted sum of some relatively small
number of smooth basis functions. If these basis functions
are placed in the columns of a matrix B and the weighting
coefficients placed in a vector k, then the discrete-k spec-
tral envelope A can be written as

A=Bk. (39)

In this work an eight-member cubic-B-spline basis [33]
forms the columns of B.

A new model matrix C’ can be calculated by leaving the
effects of the spectral envelope out of the model. This re-
sults in the following observation equation:

d = diag[A]C’s = diag[Bk]|C's. (40)
In this model both the envelope coefficients x and the ob-
ject vector s are unknown. The inverse problem is solved
by iterating between estimating s with « fixed and esti-
mating « with s fixed. This is a coordinate descent proce-
dure [31].

Estimating the object with the envelope fixed can be
done using the procedures mentioned earlier in this pa-
per. The envelope coefficients can be estimated easily with
the object held fixed. The problem is linear in x and well
conditioned due to the limited number of coefficients that
need to be estimated. A weighted-least-squares approach
[of the same form as Eq. (37)] can be employed. The itera-
tive procedure is initialized by assuming a uniform enve-
lope (i.e., every element of A is set to 1.)

This procedure was tested on data similar to that used
earlier—the two-emitter object with fluorophores at z
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Fig. 14. Histogram of the position reconstructions for a two-emitter object with a 40 nm spacing between the objects. Total expected
counts of (a) 2% 103, (b) 20X 103, and (c) 200 X 10° are considered. The envelope was not known a priori for these reconstructions but was
estimated as part of the reconstruction procedure. This figure is equivalent to the third row of plots in Fig. 10 but with envelope esti-

mation included.



3598 J. Opt. Soc. Am. A/Vol. 24, No. 11/November 2007

—~ 1i(@) (b)
<2
.g g
€g 05
]
0
—~ 11(@) (d)
52
.g g
£ 05
s
0
—~ 11 ()
£ 2
.g %
£go 05
58
0
500 545 590 500 545 590

Wavelength (nm) Wavelength (nm)

Fig. 15. (Color online) Five estimated envelopes (solid curves)
and the true envelope (dashed curve) for each of the measure-
ments in example two-excitation data sets. The first and second
envelopes for data with a total expected count of 2 X 103 (SNR of
10 dB) are shown in (a) and (b) respectively; (c¢) and (d) are for a
total expected count of 20 X 10? (SNR of 20 dB); and (e) and (f) are
for a total expected count of 200 102 (SNR of 30 dB).

=30 nm and z=70 nm, and with a number of signal levels.
An attenuation of 2/3 was applied to the first measure-
ment to model unequal illumination strengths between
the two excitations. The resulting position estimates are
displayed in Fig. 14. Comparing Fig. 14 with the corre-
sponding results in Fig. 10 (where the envelope was
known a priori), it can be seen that there is little degra-
dation caused by having estimated the envelope. It also
shows that the unequal illumination did not cause a prob-
lem.

Some typical examples of the estimated envelopes are
shown in Fig. 15. Here it can be seen that the envelopes
are well estimated at the higher signal levels. For the
lowest-count data there are some clear inaccuracies in the
envelope estimate. This is consistent with Fig. 14, where
the most visible degradation from Fig. 10 can be seen in
the 2000-count data. It can be seen that the reconstruc-
tion procedure has estimated the unequal illumination
strengths, as the two envelopes estimated have different
scales. Again note that it was assumed only that the en-
velope was relatively smooth and could be represented by
a fairly coarse spline basis.

4. CONCLUSIONS

This work presents a comprehensive model for spectral
self-interference microscopy (SSM) that includes general
expressions for the excitation and detection fields and the
object to be imaged. This electromagnetic model includes
the effects of anisotropic object response, the polarization
state of the fields used, and an accurate representation of
the detection optics. A method of reducing the model to a
scalar representation is given. The model is used to char-
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acterize an evanescently excited SSM system and to per-
form image reconstruction from the resultant observa-
tions. The application of evanescent excitation to SSM
allows the realization of the background suppression seen
in TIRM, and the corresponding SNR gains.

The model was used to generate synthetic data, which
were then employed in Monte Carlo simulations investi-
gating the imaging capabilities of the system. The nanom-
eter scale localization precision previously demonstrated
with SSM was shown to be achievable at low signal levels
consistent with single-molecule imaging. Investigations of
a general object (i.e., with no restrictions on the number
of fluorophores) showed that SSM could not provide reli-
able imaging on the nanoscale in this case. However, the
capacity of two-excitation SSM to resolve two closely
spaced emitters was demonstrated by using the prior
knowledge that only two features were present. Finally, it
was shown that when the emitted spectrum is not known
a priort, it can be robustly estimated in conjunction with
the object.

The results presented here verify that SSM is quite ro-
bust to variations in the fluorophore spectrum, and under
the correct circumstances SSM can be expected to give
good results in low-signal environments. Furthermore,
the analysis of evanescent wave illumination suggests
that a marriage of SSM and TIRM offers advantages over
both existing modalities. Finally, the improved perfor-
mance of the reconstruction algorithms when it is known
a priori that only N emitters are present suggests that
SSM is particularly well suited to dilute or single-
molecule imaging, a previously unexplored application.

The image reconstruction methods and simulations
presented were one dimensional and scalar. The one-
dimensional treatment implicitly assumes that the axial
and lateral spatial dimensions are separable, while the
assumptions necessary for a scalar model were given in
Subsection 2.B. While such simplifications are suitable
for plane-wave illumination and low-NA detection, more
complex systems can be analyzed by using the model pre-
sented in Subsection 2.A. For example, two counterpropa-
gating evanescent waves could be used to create a lateral
standing wave in the excitation pattern [13]. Such tech-
niques have been shown to allow improved lateral resolu-
tion [34]. As discussed in Subsection 2.A, the model is also
applicable to modalities that image a nonscalar object,
but appropriate image reconstruction algorithms are
needed for data interpretation. Topics such as structured
illumination and nonscalar measurements in SSM are
possible future directions for this technology.
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