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A theoretical and numerical analysis of spectral self-interference microscopy (SSM) is presented with the goal
of expanding the realm of SSM applications. In particular, this work is intended to enable SSM imaging in
low-signal applications such as single-molecule studies. A comprehensive electromagnetic model for SSM is
presented, allowing arbitrary forms of the excitation field, detection optics, and tensor sample response. An
evanescently excited SSM system, analogous to total internal reflection microscopy, is proposed and investi-
gated through Monte Carlo simulations. Nanometer-scale axial localization for single-emitter objects is dem-
onstrated, even in low-signal environments. The capabilities of SSM in imaging more general objects are also
considered—specifically, imaging arbitrary fluorophore distributions and two-emitter objects. A data-
processing method is presented that makes SSM robust to noise and uncertainties in the detected spectral
envelope. © 2007 Optical Society of America
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. INTRODUCTION
luorescence microscopy is an important tool in biological
nd biomedical research because it provides in vivo imag-
ng, and a large range of fluorescent dyes are available for
se as high-specificity molecular markers. Structures can
e imaged using three-dimensional techniques such as
econvolution microscopy [1] or confocal microscopy [2];
owever the resolution of fluorescence microscopes is lim-

ted by diffraction and constraints on the wavelengths us-
ble for nondestructive imaging. At length scales below
he diffraction limit, nonlinear techniques such as stimu-
ated emission depletion microscopy have made impres-
ive strides in biological imaging (e.g., [3]); however, they
ave yet to become standard laboratory tools.
Less complicated instruments are routinely used to col-

ect subdiffraction-limit fluorescence information but re-
uire specific imaging scenarios. For example, total inter-
al reflection microscopy (TIRM) [4] uses an evanescent
eld to excite fluorophores in a thin volume along the
oundary of the sample. Since the resolution in the lat-
ral dimensions (parallel to the sample boundary) is still
iffraction limited, the main advantage of TIRM is the
limination of stray signals from outside the excitation
olume. Alternatively, single-molecule microscopy [5,6]
chieves subdiffraction localization of single fluorophores
1084-7529/07/113587-13/$15.00 © 2
hen it is known that only one molecule is present in the
iffraction-limited focal volume (see [7] for an important
xample). The distinction between localization and reso-
ution is important—given that a single fluorophore is
resent, it can be localized with a precision that is limited
nly by the signal-to-noise ratio (SNR) [8]. Resolution re-
ers to the minimum feature size that can be imaged in an
rbitrary object.
Spectral self-interference microscopy (SSM) [9] is a

uorescence technique that allows the inference of axial
ample structure. The instrumentation required to real-
ze this technique is relatively uncomplicated, and SSM
as been shown to be useful in biological imaging appli-
ations [10]. In SSM, a mirror is placed behind the
ample, and the spectrum of the total signal, that is, the
ignal from the directly propagated and reflected fields to-
ether, is collected. The distance from the mirror to the
ample is chosen so that the sample-to-mirror optical
ath, measured with respect to the wavelength of the
mission, varies by several multiples of 2� across the
pectrum of the fluorophore. The light emitted from the
uorophore traverses two paths to the detector, producing

nterference on arrival. Since the optical path length,
easured in units of wavelength, varies significantly

cross the fluorophore emission band, the interference
007 Optical Society of America
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ycles through constructive and destructive cases, produc-
ng oscillations in the spectrum. These oscillations encode
he fluorophore-to-mirror distance and can be used to es-
imate the position of the fluorophore. The initial excita-
ion of the fluorophore may be accomplished in a number
f ways, including excitation by evanescent fields as
hown in Fig. 1, a case considered in this paper. The SSM
ocalization precision, when estimating the axial position
f a single fluorescent layer, has been shown to be on the
cale of a nanometer [9]. This level of precision is compa-
able with the lateral precision achieved by single-
olecule imaging. The three-dimensional (i.e., both lat-

ral and axial) localization of single fluorophores can also
rovide important biological information (e.g., [11]).
This work describes a number of advances intended to

acilitate the use of SSM in a broader class of applica-
ions, including single-molecule studies, where SSM pro-
ides a means of inferring otherwise unobserved axial
tructure. An electromagnetic model of SSM is presented
hat encompasses a wide variety of instrument realiza-
ions and objects and generalizes previous SSM charac-
erizations [12]. The electromagnetic nature of the model
llows vectorial effects such as polarization dependence
nd molecule orientation to be taken into account. An eva-
escently excited SSM system, analogous to TIRM, is pro-
osed. Evanescent excitation can be important in low-
ignal applications, where the limited excitation volume
esults in greatly reduced contributions from background
uorescence and hence an increase in the SNR. Numeri-
al simulations are used to investigate the performance of
SM in low-signal applications. Algorithms are developed
o allow the SSM imaging of objects with multiple emit-
ers and to account for uncertainties in the spectral emis-
ion profile of the object. These algorithms are also inves-
igated numerically.

The work is organized as follows. In Subsection 2.A a
eneral model is developed relating an anisotropic fluo-
escent object to measured data for arbitrary systems of

ig. 1. (Color online) Evanescently excited spectral self-
nterference imaging system. Light is launched into the guiding
ubstrate and results in an evanescent field in the sample.
ample fluorophores are excited in the same manner as in total

nternal reflectance microscopy, but the resulting emissions can
ravel two paths to the spectrometer. This leads to self-
nterference at the detector, which varies with wavelength.
llumination and detection. In Subsection 2.B it is shown
hat a scalar model emerges under certain conditions, in
ubsection 2.C an example is considered, and in Subsec-
ion 2.D the model is discretized. In Subsection 3.A recon-
truction of arbitrary, continuous distributions of fluoro-
hores is considered. In Subsection 3.B a prior
ssumption on the number of emitting fluorophores is
sed to condition the inverse problem. A dramatic im-
rovement is observed, suggesting that SSM is well
uited to dilute or single-molecule imaging. In Subsection
.C evanescently excited SSM is compared with TIRM,
nd it is demonstrated that the additional reflection
resent in SSM makes a significant difference in the in-
ormation available in the experiment. In Subsection 3.D
ncertainty in the fluorophore spectrum is addressed, and
SM image reconstruction is shown to be robust with re-
pect to variations in the spectral envelope. Finally, the
esults are summarized and placed in context in Section
.

. SSM FORWARD MODEL
n accurate forward model of the SSM system must be
onstructed to allow physically meaningful reconstruc-
ions of the object to be obtained. The model is related to
he evanescently excited SSM system seen in Fig. 1; how-
ver, the framework encompasses a more general instru-
ent. The tensor operators representing the excitation

nd detection optics can be chosen to represent a variety
f other instrument geometries. The general mathemati-
al framework is developed before special cases are con-
idered.

. General Model
he object to be imaged is illuminated through a linear
ptical system, characterized by a tensor fuv�r�, so that il-
umination by a plane wave Eu

i normally incident to the
ntrance plane of the system produces a field distribution
vu�r�Eu

i in the region of the fluorophore. Here the sub-
cripted symbols index the spatial dimensions, and the
instein summation convention is used. The illumination
eld is assumed to be quasi-monochromatic with wave-
umber ki. This general representation of the illumina-
ion optics can include focusing by a lens (as in previous
mplementations of SSM), evanescent excitation from a
aveguide (as shown in Fig. 1), or other more sophisti-

ated techniques such as the use of laterally structured
vanescent fields [13].

The fluorophore, or collection of fluorophores, is de-
cribed by a spatially varying polarizability �wv�r ,k�. The
ependence of �wv on ki is not explicitly noted, since ki is
ssumed to be fixed. The resulting source Sw�r ,k� is a
unction of position and frequency �=ck (k being gener-
lly different from ki) and is given by the expression

Sw�r,k� = �ki�2�wv�r,k�fvu�r�Eu
i . �1�

his source produces a field that may be computed by the
ethod of Green’s functions. The radiated field is given by

he expression
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Er�r,k� =� d3r�Ḡ�r,r�,k�S�r�,k�, �2�

here Ḡ is the dyadic Green’s function satisfying the ap-
ropriate boundary conditions at the planar interface of
he sample and substrate. Throughout this work bold
ype is used to denote a vector, bold type with an overbar
s used to denote a tensor (with two or more indices), and
ndividual components of vectors or tensors are given us-
ng subscripts and without bold type [as seen in Eq. (1)].
he Green’s function used in Eq. (2) may be expressed in
plane-wave decomposition [14],

Ḡ�r,r�� =
i

2�
� d2k� eik·�r−r��

1

kz
�D̄�k� + e2ikz�z�−zm�R̄�k��,

�3�

here it is assumed that the z axis is normal to the
ubstrate–sample boundary, that z=zm is the mirror
lane, and that z�z� (i.e., the observation point is above
he fluorescent object). The vector k=k�+kzẑ (where a hat
is used to indicate a unit vector) and

kz =� �k2 − k�
2 k � k�

i�k�
2 − k2 k � k�

	 . �4�

he dyads D̄ and R̄ enforce the transversality (with re-
pect to k) of the plane waves directly propagated to the
etector and of those reflected from the substrate. The
yad D̄ is simply the identity on vectors transverse to k
nd the dyad R̄ contains the Fresnel coefficients. The
hase acquired by the reflected wave on propagation to
he mirror and back to the source plane is made explicit
n the factor e2ikz�z�−zm� multiplying R̄. The dyads could,
or instance, be written in terms of the transverse electric
TE) and transverse magnetic (TM) basis vectors, ûte/tm,
elative to k and the normal to the interface n. These unit
ectors may be constructed,

ûte�k� =
k � n


k � n

, �5�

ûtm�k� =
k � ûte


k � ûte

, �6�

nd it may be noted that k̂= ûte� ûtm=k /k so that k̂, ûte,
ˆ tm form an ordered orthonormal triple, with ûte always
arallel to the interface. Then

D̄�k� = ûte�k��ûte�k��† + ûtm�k��ûtm�k��†, �7�

R̄�k� = ûte�k�rte�ûte�k̃��† + ûtm�k�rtm�ûtm�k̃��†, �8�

here † denotes the Hermitian conjugate, rte and rtm are
he Fresnel reflection coefficients, and the vector k̃ is the
eflection of k through the z=0 plane, i.e., k̃z=−kz.

It may be seen that for large values of kr, the Green’s
unction takes the asymptotic form
Ḡ�r�̂,r�� �
eikr

r
e−ik�̂·r��D̄�k�̂� + e2ik�̂z�z�−zm�R̄�k�̂�� �9�

n directions specified by the unit vector �̂. This spherical
ave propagates to an optical system that focuses the

ight to a detector. The optical system is formally charac-
erized by the dyad L̄��̂�. The propagated field is consid-
red on a reference hemisphere of constant r=r0 with z
0, and L̄��̂� maps the field at position �̂r0 to the result-

ng field at the detector. For the case that the imaging sys-
em is a lens, L̄ is nonzero on the region of the reference
phere falling within the lens aperture and may be com-
uted by standard means [15]. Any polarization prefer-
nce or efficiency factor for the detector may also be in-
luded in L̄. It is useful to then define a new dyadic
unction ḡ that takes into account the free-space propaga-
ion and the effects of the detection system, including the
ummation over the reference sphere, namely,

ḡ�r�,k� =�
�̂x

2+�̂y
2	1

d�̂xd�̂yL̄��̂�Ḡ�r0�̂,r��,

=eikr0�
�̂x

2+�̂y
2	1

d�̂xd�̂y

L̄��̂�

r0

�e−ik�̂·r��D̄�k�̂� + e2ik�̂z�z�−zm�R̄�k�̂��,

=ḡDirect�r�,k� + ḡReflected�r�,k�. �10�

he field at the detector can then be found by propagating
he source S [see Eq. (1)] to the detector:

Ed�k� =� d3r�ḡ�r�,k�S�r�,k�. �11�

The detector is assumed to perform a time average of
he intensity. All stochastic processes are assumed to be
tationary and ergodic in the wide sense, so that the time-
veraged spectrometer measurements and ensemble av-
rages (denoted by angle brakets �·
) in the frequency do-
ain are interchangeable. The detector measurement,

�k�, may then be written as

d�k� = Tr��Ed�k��Ed�k��†
�,

=Tr�� d3r� d3r�

�ḡ�r,k��S�r,k�S†�r�,k�
ḡ†�r�,k�	 , �12�

here Tr{·} is the trace. The coherence matrix of the inci-
ent field may be expressed as

�Eu
i �Eu�

i �*
 = Ai
uu�, �13�

here Ai is given by the expression Ai=Tr��Ei�Ei�†
�. If
he field is unpolarized, 
ij=�ij /2, where � is the Kro-
ecker tensor. If the field is fully polarized, 
ij= ûiûj

*,
here û is a unit vector describing the polarized illumi-
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ation field in a plane parallel to the entrance plane of the
ystem.

The emissions of individual fluorophores are uncorre-
ated, and so

��wv�r,k��w�v�
* �r�,k�
 = �wvw�v��r,k���r − r��, �14�

here �̄ is a tensor mapping the polarization state of the
xcitation field to the resulting emitted-field polarization
tate. Additionally, the incident field and the polarizabil-
ty are assumed to be incoherent because the fluouresence
s spontaneous. As a result, the source density correlation
unction then takes the form

�Sw�r,k�Sw�
* �r�,k�
 = �ki�4Aifvu�r�
uu�fv�u�

* �r��

��wvw�v��r,k���r − r��, �15�

o that the detector measurement is

d�k� = �ki�4� d3r glw�r,k�Aifvu�r�
uu�fv�u�
* �r�

��wvw�v��r,k�glw�
* �r,k�. �16�

n many cases of interest the spectral dependence of the
uorophore is separable from the spatial and polarization
ependences. In those cases, it is convenient to write

Ai�wvw�v��r,k� = A�k��wvw�v��r�. �17�

he detector measurement is then

d�k� = �ki�4A�k� � d3r glw�r,k�fvu�r�
uu�fv�u�
* �r�

��wvw�v��r�glw�
* �r,k�. �18�

rom this general model it may be seen that the SSM
ata depend on the illumination polarization through
uu�, the illumination optics through fvu�r�, the object

hrough �wvw�v��r�, and the detection optics through
lw�r ,k�. The retention of a full electromagnetic descrip-
ion allows the modeling of effects such as orientation-
ependent emission from a fluorescent molecule (see [16]
or a discussion of measurement schemes). Indeed, the
odel of Eq. (18) can be used to describe methods such as

ipole-orientation imaging [17] or chirality imaging (e.g.,
18]). Techniques such as these rely on polarization effects
o obtain information about the nonscalar object. How-
ver, in many situations it is desirable to be able to define
simplified scalar model, as is discussed in the next sub-

ection.

. Scalar Model
t is often possible to simplify the analysis of optical sys-
ems by the use of a scalar model. The full vector model of
q. (18) can be reduced in this manner for systems in
hich the excitation and detectable fields exhibit spa-

ially invariant polarization. That is, the dyads describing
he excitation and detection have the following separable
orms:
f̄�r� = f�r��̄, �19�

ḡ�r,k� = g�r,k��̄. �20�

or example, such a situation arises for plane-wave illu-
ination or detection; is approximately valid for focused

etection with low numerical aperture (NA), where there
s not a significant variation in polarization state; and is
nvalid for high-NA focusing where the polarization state
aries significantly within the focal region.

Assuming that the forms of Eqs. (19) and (20) are jus-
ified, a scalar object s�r� can be defined as

s�r� = 
l,w�vu
uu��v�u�
*

�wvw�v��r�
lw�
* . �21�

ere the illumination polarization state and the micro-
cope optics combine to operate on the second-order cor-
elations of the polarizability. This determines which com-
onents of �̄ are visible in the data. If the entire problem
s treated within a scalar approximation, that is, if Eq. (1)
ecomes S=�f�r�Ei and all propagation is treated within
he context of a scalar (Helmholtz) wave equation, then it
ay be seen that s�r� is the square magnitude of the po-

arizability ��r�, all other factors being associated with
olarization effects.
The relationship in Eq. (21) can be used to rewrite Eq.

18) as a scalar model,

d�k� = �ki�4A�k� � d3r
g�r,k�
2
f�r�
2s�r�. �22�

ere the scalar object s�r� is illuminated by light with an
ntensity pattern of 
f�r�
2. The detection optics result in
n intensity sensitivity pattern 
g�r ,k�
2, and the spectral
esponse of the fluorophore is described by A�k�. Such a
reatment is often used in the modeling of microscopy sys-
ems [19].

. Example System
n this section an example system is described to illus-
rate the application of the theory developed. The result-
ng model is used in subsequent numerical simulations.
s shown in Fig. 1, an evanescent excitation field is con-
idered. A low-NA objective lens is used, and so a scalar
odel can be employed. The detection system does not
ave a preferred polarization orientation. For simplicity,
he substrate below the sample is modeled as a perfect
irror at the plane z=zm, where z=0 is taken to be the

ubstrate–sample boundary.
The illumination is assumed to be a TE polarized field,

vanescent in the sample region. Thus the illumination
ptics are described by the expression

f̄�r� = �ûte�ki��ûte�ki��† + ûtm�ki��ûtm�ki��†�eiki·r, �23�

nd the illumination polarization is given by

û = ûte�ki�, �24�

here ki= �kx
i ,ky

i , i
kz
i 
�T is the wave vector for the evanes-

ent field (with T representing the transpose operator). It
an be seen that f̄ is of the form given in Eq. (19).

The optical axis of the lens coincides with the z axis, so
he low-NA approximation means that only fields in the
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–y plane are detected. Assuming that the detection op-
ics do not change the x–y polarization on the way to the
etector,

ḡ�r,k� = g�r,k��x̂x̂† + ŷŷ†�, �25�

here g�r ,k� is the scalar lens response (including reflec-
ions from the mirror).

In many cases of interest, the fluorophore is part of a
ong, oriented molecule and so there is a strong preference
o accept and radiate only one polarization state. Then, �̄
ay be expressed as the dyadic product of a vector and its

onjugate, �wv=pwpv
*, so that

�wvw�v� = pwpv
*pw�

* pv�. �26�

he scalar object may be evaluated to obtain

s�r� = 
�ûte�ki��†p
2
p � ẑ
2. �27�

he factor 
�ûte�ki��†p
2 accounts for the portion of the di-
ole parallel to the excitation field, while the factor 
p
ẑ
2 accounts for the portion of the dipole that is visible

o the detection optics. Susbstituting the excitation model
nto Eq. (22), the scalar observation model is then

d�k� = �ki�4A�k� � d3r
g�r,k�
2e−2
kz
i 
zs�r�. �28�

he detection pattern g�r ,k� can be further specified by
icking a focal point for the focused detection. Since a per-
ect mirror is assumed, the reflected detection pattern is
he negative of the direct detection pattern reflected
hrough z=zm, i.e.,

gReflected�x,y,z,k� = − gDirect�x,y,− �z − 2zm�,k�. �29�

or the particular case that the focal plane and mirror
lane coincide, the detection pattern may be expressed in
symmetric form. Let l�r ,k� be the scalar field resulting

rom a lens focused to the origin without a mirror present.
he detection pattern can then be written as a function of
his field,

g�r,k� = gDirect�r,k� + gReflected�r,k�,

=l�x,y,z − zm,k� − l�x,y,− �z − zm�,k�. �30�

t is worth reiterating that l�r ,k� may be computed by
tandard methods; e.g., the focused field may be modeled
s a Gaussian beam [20]. The approach taken in this
ork is to first use a full vectorial focusing model [15]
ith the scalar l�r ,k� taken to be the component in the

ame polarization direction as the illuminating field Ei

with a small NA the other focused-field components are
egligible.) It may be seen on calculation that

l�x ,y ,z ,k�
= 
l�x ,y ,−z ,k�
, so that the two terms compos-
ng g�r ,k� are of equal magnitude and differ only by a
hase that varies with position and wavelength. Thus the
nterference is strongly visible, and the spectrum is

odulated as discussed in the introduction.

. Discrete Forward Model and Multiple Illuminations
or many computational approaches, it is necessary to
ave a discrete forward model. The system from Subsec-
ion 2.C can be sampled at discrete k and r values at rates
ne enough to give negligible departure from the continu-
us model. A precise treatment of this sort of approxima-
ion can be found in [21].

As shown in Subsection 2.B, a scalar model can be used
n certain circumstances. A scalar model will be used to
emonstrate image reconstruction, allowing the dis-
retized model to be written as a simple matrix equation.
et s be the discrete scalar object arranged into a one-
imensional vector. Similarly, let d be the data arranged
n a vector. A matrix C relates the two,

d = Cs. �31�

he nth column of C represents the data produced by a
nit-amplitude entry in the nth position of the object vec-
or s. The data that are actually observed are similar to d
ut corrupted by some amount of noise.
A multiexcitation system can also be modeled. Several

ets of data can be taken from the same object by exciting
t with a number of different fields. This allows the possi-
ility of gathering more information and improving the
econstructed image. In each case the illumination 
f�r�
2

s different, which results in a different C matrix and a
ifferent set of data. These multiple models can be com-
ined into a single augmented model by vertically concat-
nating the d vectors and the C matrices. This results in
model of the same form as Eq. (31) but describing the
ultiexcitation observation.
For evanescent excitation, as considered in Subsection

.C, the differing illumination profiles are chosen to have
ifferent decay rates (given by kz

i ) while retaining the
ame TE direction. This ensures that the augmented
odel can be represented in a scalar framework. If TM il-

umination is used and the magnitude ki maintained, the
M direction necessarily changes with kz

i , a situation not
ompatible with an augmented scalar model.

. IMAGE RECONSTRUCTION
he forward model for the imaging system can be in-
erted by various procedures. That is, knowledge of how
he object relates to the data can be used to infer proper-
ies of the object from measured data. In the following
ubsections, the inverse problem is investigated with
arious algorithms and various constraints on the object.

. Reconstructions of Arbitrary Distributions

. Maximum Likelihood Estimation
n the context developed here, image reconstruction is the
rocess of using the measured data to find a vector š that
s close to the unknown object s. This is done by ensuring
hat Cš, the data expected from the reconstructed image,
s close (in terms of some criterion or norm) to the mea-
ured data. There are various ways of measuring this
loseness, but one of the most popular estimation rules is
aximum likelihood (ML). The conditional probability

ensity function of observing the data d given the object s
s P�d 
s�, and the ML estimator is defined as
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š = argmax
s

P�d
s�. �32�

n ML estimator is optimal with respect to the Cramér–
ao bound [22].
It is assumed that the data collected by the SSM sys-

em are consistent with photon counting and therefore
bey Poisson statistics. This means that d in Eq. (31)
ives the expected value of the data. It is also assumed
hat measurements at any two distinct k values are sta-
istically independent. An example of the data produced
y such a model can be seen in Fig. 2. By using the Pois-
on model and Eq. (32), the following condition on the ML
stimate š can be found [23]:

CT�−1�š�Cš = CT�−1�š�d, �33�

here ��š� is a matrix that is zero except on the main di-
gonal, where it has the elements of the vector Cš,

��š� = diag�Cš�. �34�

he Poisson statistical model gives a noise variance that
s proportional to the expected signal at each wavelength

easured. The matrix �−1�š� in Eq. (33) can be inter-
reted as a fit-to-data weighting that reflects the Poisson
oise model—the fit at lower-noise regions of the signal is
eighted more heavily.
In general, the ML condition of Eq. (33) is insufficient

o uniquely define an image š. Should C have a nonempty
ullspace, then any component of š lying within this
ullspace would not affect Eq. (33) and would therefore be
nconstrained. Even if the nullspace of C were empty, the
L problem is strongly ill conditioned below some finite

patial scale. This results in instability in the presence of
ven a small amount of noise. These issues are well un-

ig. 2. (Color online) Example data from an evanescently ex-
ited fluorophore positioned at z=20 nm. The deterministic
xpected-value of the signal [calculated by using Eqs. (28) and
30)] is shown along with an example realization of the Poisson
oise. The signal level is set so that the data have a total ex-
ected count of 1000 (corresponding to a SNR of 10 dB). The fluo-
ophore is excited at a free-space wavelength of 488 nm, and the
mission is measured in increments of 0.5 nm between 500 and
90 nm. A Gaussian form for the spectral envelope A�k� is as-
umed. The fluorophore is employed to lie in water, and a perfect
irror is placed at a position zm that corresponds to an optical

ath length of 8 
m in water. The resulting reflected path can be
een to produce interferometric oscillations in the spectrum. The
xcitation is modeled as the evanescent field resulting from a TE
olarized plane wave striking a water–silicon nitride boundary
t an angle of 45° (the critical angle is 40.7°). A lens of numerical
perture 0.1 is used to collect the emissions, and the fluorophore
s assumed to lie on the optic axis of this lens.
erstood in image reconstruction and have resulted in the
evelopment of regularization techniques for inverse
roblems [24].

. Richardson–Lucy Reconstruction
he Richardson–Lucy (RL) algorithm [25,26] can be used

o iteratively find a solution to Eq. (33). The RL algorithm
s generally terminated before convergence in order to at-
ain the predictable behavior associated with a well-
egularized inverse method. Additionally, the RL algo-
ithm is known to preferentially reconstruct pointlike
bjects [27], such as spatially distinct fluorescing mol-
cules. The behavior of the RL algorithm in an SSM en-
ironment will be investigated through numerical simu-
ation. A test object is shown in Fig. 3. This object has a
ariety of spacings between fluorescing molecules. The
evel of detail resolved determines the performance of the
maging system.

Two different excitation fields are considered in the
imulations—the first is modeled by the evanescent field
roduced as described in Fig. 2, i.e., that resulting from a
lane wave incident at 45° on a water–silicon nitride
oundary. The second excitation field is produced by in-
reasing the angle of incidence of the illuminating plane
ave to 55°. The axial intensity profiles of these two ex-

itations are shown in Fig. 4. A single-excitation system
onsisting of only the 45° excitation is considered, along
ith a two-excitation system that measures both the 45°
nd 55° cases. The other system parameters are the same
s those described in Fig. 2.
The evolution of a RL reconstruction with iteration

umber is shown in Fig. 5. It can be seen that the RL es-
imate is smooth to start with and becomes progressively

ig. 3. Test object considered for RL reconstruction. Five fluo-
ophores lie at varying positions along the optical axis of the de-
ection lens. The axial position is sampled at 2 nm intervals.

ig. 4. (Color online) Axial intensity profiles corresponding to
he two excitation regimes considered. The excitation is modeled
s the evanescent field produced at a water–silicon nitride
oundary when a plane wave is incident, from the silicon nitride
ubstrate, at an angle greater than the critical angle. Incident
ngles of 45° and 55° are considered.
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ore peaked with successive iterations. While the recon-
truction does become more pointlike, it does not neces-
arily match the object well at these fine spatial scales.

The RL algorithm’s behavior at different noise levels
nd with different excitation schemes is shown in Fig. 6.

ig. 5. (Color online) RL reconstructions at various iteration
umbers for data from the test object of Fig. 3. Two excitation
atterns were used, and the total expected count is 50�103 (for a
NR of approximately 23 dB).

ig. 6. (Color online) RL reconstructions for total expected
ounts of 5�103, 50�103, and 500�103 in the data. (a) A single-
xcitation and (b) a two-excitation case are considered. The cor-
esponding SNRs are approximately 16, 26, and 36 dB for the
ingle-excitation case and 13, 23, and 33 dB for the two-
xcitation case. In the single-excitation case the iteration num-
ers of the reconstructions are 1�105, 2�106, and 20�106 for
he data of count 5�103, 50�103, and 500�103, respectively.
he corresponding iteration numbers for the two-excitation case
re 2�105, 5�106, and 50�106.
representative iteration number has been chosen for
ach case. The algorithm converges faster for more noisy
ata, so this number typically increases with the photon
ount. The iteration number was chosen by picking a
oint at which the estimate was well localized. Since the
L algorithm preserves the integral of the estimate be-

ween iterations and because the magnitude of the recon-
truction at a point cannot increase once it reaches zero,
t is believed that the estimates will not change signifi-
antly beyond the iteration number shown.

Some general trends can be observed in Fig. 6—the
wo-excitation reconstructions are generally of a higher
uality than the single-excitation reconstructions. The
igher-signal reconstructions also tend to be better than
heir counterparts from noisy data. The erroneously high
eaks toward the right of the plots can be explained by
oting that at z=200 nm the excitation intensity is re-
uced by approximately 2 orders of magnitude compared
ith the value at z=0. Object features at higher z values

herefore contribute minimally to the measured data, and
he algorithm can place high-density features in that re-
ion without affecting the fidelity of the estimate to the
easured data.
For the 500�103 count data and two excitations, the

L algorithm reasonably reconstructs the object: the first
wo peaks (starting from the left) are distinguished and
ell localized; the second two peaks are not resolved, but
single peak is reconstructed in the correct vicinity;

hile the final peak is not placed correctly. The poor re-
onstruction of the final peak is to be expected, as it is
eakly illuminated and thus does not contribute strongly

o the data. Unfortunately, the 500�103 count signal
evel is unrealistic for a five-fluorophore observation, and
he estimate does not behave predictably as the signal is
owered. For example, for the 500�103 count data a peak
s reconstructed at approximately 80 nm. When the signal
s lowered to 50�103, the peak shifts but then returns at
he 5000 count level. Behavior such as this leads to the
onclusion that the RL algorithm cannot be used to reli-
bly reconstruct SSM images on a tens-of-nanometers
patial scale.

ig. 7. (Color online) Truncated-singular-value-decomposition
econstructions of the object from two-excitation data with a total
xpected count of 50�103 (a SNR of approximately 23 dB). The
ingular value threshold is shown as a percentage of the maxi-
um singular value.
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. Truncated Singular Value Decomposition
econstruction
ther methods of reconstructing the object can be used,
ut there is no reason to expect they will achieve better
erformance than the RL algorithm. For example, Fig. 7
ontains reconstructions found by using the truncated
ingular-value-decomposition approach [28]. This algo-
ithm works by using the singular value decomposition to
onstruct an approximate inverse to the operator C. In or-
er to achieve regularization, singular components
assed with a strength below a user-defined threshold are
ot reconstructed. As this threshold is decreased, Fig. 7
hows that the solution moves from stable and smooth to
scillatory. This simple approach is not well matched to
he problem here, as negative density estimates are given
nd peaked objects are not preferred. As a result, the re-
onstructions found are not particularly impressive. The
runcated singular-value-decomposition approach does
rovide a linear noniterative reconstruction method and
s given here as a point of comparison to the RL algo-
ithm.

The mediocre performance of SSM for imaging an arbi-
rary object stands in contrast to its demonstrated
anometer-scale precision when localizing fluorophores
nown to reside in a single axial plane [10,12]. This dif-
erence, between the localization of a single molecule and
he resolution when imaging a general distribution, has
een thoroughly explored [8]. It has been shown that
anometer-scale localization precision can be expected
rom instruments that have standard resolution limita-
ions when imaging an arbitrary object. High-precision lo-
alization has recently been experimentally demonstrated
n a novel SSM instrument [29] that was also proved to be
ubject to standard resolution criteria.

When considering multiple molecules, the ability to dis-
inguish two closely spaced fluorophores (when it is
nown that only two are present) is dependent only on the
easurement noise rather than on standard criteria such

s the Rayleigh resolution [30]. With this idea in mind,
he ability of SSM to determine the axial positions and
elative strengths of a strictly limited number of fluoro-
hores will now be investigated.

. N-Emitter Object

. Theory
nder the correct circumstances it may be known a priori

hat not more than N fluorophores are present in the re-
ion from which emissions are collected. In this case the
bject has no more than N nonzero points. The object is
herefore defined by 2N parameters—the N positions of
he emitters and N fluorophore densities (one for each
mitter). This complicates the inverse problem, as these
N parameters are related to the object in a nonlinear
anner.
To solve the inverse problem an exhaustive approach is

aken. If the discretized object is defined on a spatial grid
f M points, then there are M! / �N!�M−N�!� possible sets
f positions for the object. Given a set of N positions, the
ata are linearly related to the object densities. These N
bject densities can then be estimated by using standard
ethods for linear observations. For example, the RL al-
orithm can be applied as in the previous section. How-
ver, since the densities must be estimated for each pos-
ible set of positions, it is desirable to have a single-step,
losed-form procedure to speed up the computation. This
an be achieved by making an approximation to the Pois-
on noise model.

For reasonable photon counts the Poisson noise can be
pproximated with a Gaussian model. If the Gaussian
odel for the data noise has a covariance matrix of �̃,

hen the maximum likelihood condition reduces to mini-
izing the exponent in the Gaussian density,

š = argmin
s

�d − Cs�T�̃−1�d − Cs�. �35�

he function to be minimized represents a weighted-
quares cost function. The inverse weighting matrix �̃ is
he covariance of the data. This matrix is nonzero only on
he main diagonal (since the noise in distinct pairs of data
oints is assumed independent) and, according to the
oisson model, equal to the expected data on the main di-
gonal. The expected data values are not known precisely,
ut, as can be seen from Fig. 2, the general shape is evi-
ent in the measured data. With this idea in mind, the
ain diagonal of �̃ is defined by applying a low-pass filter

o the measured data. Any values below a certain thresh-
ld may be set to that threshold to ensure that the
eighting (which is determined by the inverse of �̃) does
ot become overly large or negative.
The N-dimensional position space is scanned exhaus-

ively (i.e., every possible combination of position values
s investigated), and at each point Eq. (35) is solved. The
oissonian ML condition of Eq. (33) becomes the following
ithin the accuracy of the Gaussian approximation:

CT�̃−1Cš = CT�̃−1d. �36�

or the N-emitter problem, at a given set of positions, C
as only N columns. Provided that N is relatively small,
he minimization problem is overdetermined, and regu-
arization need not be applied. This results in the follow-
ng form for š:

š = �CT�̃−1C�−1CT�̃−1d. �37�

hus for a given set of positions, the densities can be
ound by using the equation above. A cost [seen in Eq.
35)] can also be associated with this estimate. Comparing
his cost across all sets of positions allows a minimum
ost to be found. The positions and densities associated
ith this cost constitute the estimate of the object.
The N-emitter reconstruction algorithm described is

uaranteed to find the ML estimate under the Gaussian
oise approximation, since the entire allowable position-
ensity space is searched in finding š. The position vari-
bles are exhaustively searched, which can become com-
utationally expensive for large M and/or a value of N
reater than a few. However, the goal is to reconstruct the
bject only within the evanescent excitation volume. This
imits the axial range considered and hence bounds M.
he value of N used will depend on the application. It
hould be noted that N is actually an upper limit on the
umber of emitters, as samples containing fewer than N
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mitters can be represented in this framework by having
ne or more of the object densities equal to zero. It may
lso be possible to improve the efficiency of the N-emitter
econstruction by using cost minimization algorithms
hat are more sophisticated than a simple exhaustive
earch [31].

. Single Emitter
stimating the axial position of a single fluorescent layer
as the original application of SSM [9]. This section in-
estigates the performance of N=1 estimation for a vari-
ty of noise levels. The position space is discretized into
.5 nm steps, and for each position the optimal fluoro-
hore density is calculated according to the method out-
ined in Subsection 3.B.1. The position and density corre-
ponding to the least weighted-squares cost gives the
uorophore position and density estimate. This process
as repeated for many realizations of the Poisson noise

andom variable, and the results are shown in Fig. 8. The
esults of Fig. 8 verify that nanometer-scale localization
recision can be expected at both high and low signal lev-
ls. The fluorophore density is also estimated to within
bout 1%. It should also be noted that the signal levels in-
estigated are consistent with single-molecule experi-
ents. For example, a single Rhodamine 6G fluorescent
olecule can be expected to emit of the order of 105 pho-

ons before photobleaching, when optimally excited [32].
f the total detection efficiency of the SSM instrumenta-
ion is 1%, then the resulting signal level is consistent
ith the 1000-count plots shown in Fig. 8. The signal

evel can be expected to be significantly higher for more
hotostable dyes or quantum dots.

. Two Emitters
he next step is to evaluate the performance for two emit-
ers. In this case the reconstruction process estimates
our parameters—two positions and two fluorophore den-
ities. The reconstructed positions will be investigated
rst. Estimated position pairs for the single- and two-

ig. 8. (Color online) Histogram showing position estimates for
single fluorophore. Data with total expected counts of 1�103,

0�103, and 100�103 (SNRs of 10, 20, and 30 dB) are consid-
red. In each case 5000 simulations were run, each with a differ-
nt realization of the noise random variable. The true position of
he emitter is at z=20 nm. The fluorophore was excited with one
vanescent field only.
xcitation systems are shown in Fig. 9. Two positions are
stimated in the reconstruction (one for each emitter),
nd this pair of numbers can represent a point on a two-
imensional plane. In Fig. 9 the intensity of a given point
n the plane represents the number of times that pair of
ositions is estimated. As such, a well-localized plot rep-
esents a precise reconstruction, while a broadly scattered
lot represents significant variability of the reconstructed
mitter positions.

Several conclusions can be drawn from the results seen
n Fig. 9. The first is that the two-excitation case (i.e., us-
ng illumination plane waves at both 45° and 55°) per-
orms much better than the single-excitation case. For
his reason, only the two-excitation case will be consid-
red for the remainder of this work. It can also be seen
hat the error in the position estimates is highly corre-
ated. If one estimate is too high, then the other is also too
igh (this is evidenced by the fact that all estimated
oints are either on the upper right or lower left of the
rue point). Additionally, the estimated positions are
ever both on the same side of the midpoint—the lower
stimate (i.e., the smaller of the two z estimates) never
xceeds z=50 nm, and the upper estimate never falls be-
ow this point. Most important, it can be seen that for the
wo-excitation case, at this noise level, the reconstruction
rocess accurately estimates the positions of the fluoro-
hores.
Results for different noise levels and different emitter

pacings are shown in Fig. 10. Similar forms of the posi-
ion estimates can be seen. For poorly reconstructed posi-
ions, the estimate pairs are distributed along a narrow
urve. This curve indicates that one estimate point is al-
ays above the midpoint and one below. The upper-left-
and plot appears dim, as most of the estimates are at ex-
reme pixel points with either a lower estimate of 0 or an
pper estimate of 200. For the noise levels considered, it
an be seen that points separated by 80 nm are reliably
stimated, while points separated by 10 nm are not well
maged. Estimates of emitter positions with spacings be-
ween these two extremes are dependent on noise level.
o quantify this performance, the probability of the recon-

ig. 9. Two-dimensional histograms showing the estimated po-
ition pairs from data corresponding to equal strength emitters
t z=30 nm and z=70 nm. The pixel intensity at a given point
epresents the number of times that position pair was estimated.
he ideal position pair estimate is marked with a circle. (a)
ingle-excitation and (b) two-excitation cases are considered, and
he total expected count is 200�103 (giving SNRs of approxi-
ately 33 dB in the single-excitation data and 30 dB in the two-

xcitation data). For each case 5000 simulations were run, each
ith a different realization of the Poisson noise random variable.
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tructions meeting some quality criterion can be esti-
ated by dividing the number of successful reconstruc-

ions by the total number of trials. In Fig. 11 the criterion
sed is that both position estimates are within ±2 nm of
he true positions. This plot confirms that the reconstruc-
ion quality improves with signal level and increasing
pacing between the emitters.

The plots of Figs. 9 and 10 display only the estimated
ositions, two of the four estimated parameters. The den-
ities of the emitters are also estimated. The density es-
imates are reliable in the sense that any outlying points

ig. 10. Two-dimensional histograms of estimated pairs of posi
pacings (constant across a row) and signal levels (constant down
j) shows reconstruction statistics from data with a total expected
ount of 20�103; and (c), (f), (i), and (l) are from data with a tot
pacing of 10 nm; (d), (e), and (f) have a spacing of 20 nm; (g), (h
0 nm. Because of the changes in the expected data, the SNR var
0, 20, and 30 dB for the data sets with count 2�103, 20�103, a

ig. 11. (Color online) Estimated probabilities of both recon-
tructed positions being within ±2 nm of the true values, as a
unction of the spacing between emitters, and for various total
xpected counts.
re estimated to have a low density. This phenomenon
an be seen in Fig. 12. This figure considers emitters
paced 10 nm apart and with a total expected count of
0�103 (i.e., the conditions of the second plot in the first
ow of Fig. 10). The estimates in this scenario contain
any cases where one position is estimated to be between

he fluorophores and one a large distance from them. It
an be seen from Fig. 12 that the outlying estimate has a
ow density, while the density estimate corresponding to
he position estimate between the true positions is ap-
roximately 2 (accounting for two emitters of density 1).
t the correct estimates of 40 and 50 nm, the density is
stimated as approximately 1 for both points. This is in
act a general property of the estimate—the sum of the
ensities for the 5000 trials has a mean of 1.999 and a
tandard deviation of 0.021. This shows that the total
ensity is estimated with high accuracy and precision re-

where a circle marks the true position pair. Various fluorophore
mn) are considered. The column containing plots (a), (d), (g), and
of 2�103; (b), (e), (h), and (k) are from data with a total expected
cted count of 200�103. Plots (a), (b), and (c) have a fluorophore
i) have a spacing of 40 nm; and (j), (k), and (l) have a spacing of
htly with emitter spacing. However the SNRs are approximately
0�103, respectively.

ig. 12. (Color online) Mean fluorophore density estimate plot-
ed as a function of the corresponding estimated position. The er-
or bars show the standard deviation. The data are from an ob-
ect with emitters at z=40 nm and z=50 nm, and the total
xpected count is 20�103 (a SNR of 20 dB).
tions,
a colu
count
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ardless of where and how it is distributed. In short, Fig.
2, combined with the previous results, indicates that the
mitters are either estimated correctly or are mistaken
or a strong intermediate emitter with a weak outlier.

. SSM and TIRM
s can be seen from Fig. 1, evanescently excited SSM is
imilar to a TIRM system. However, the introduction of
he mirror and spectral detection has a dramatic effect on
he collection of axial information from the sample. In
IRM, the amplitude of the collected signal is all that
hanges for different axial positions. In evanescently ex-
ited SSM, the mirror, the spectral detection, and the re-
ulting spectral oscillations (see Fig. 2) give a much stron-
er axial-position dependence to the data. To illustrate
he difference between SSM and TIRM, consider the one-
imensional SSM system used in the previous simula-
ions and a similar system but without the underlying
irror. The second system is TIRM with spectral detec-

ion. The data from the TIRM system are given by an ex-
ression similar to the SSM system but absent the reflec-
ion term. Explicitly,

ḡ�r�,k� = ḡDirect�r�,k�, �38�

s opposed to Eq. (10) for an SSM system. The informa-
ion content of the two systems can be compared by ana-
yzing the effective number of degrees of freedom, as mea-
ured by the number of singular values of the forward
odel that are above the noise floor. The singular values

f these two systems are plotted in Fig. 13. It can be seen
hat the SSM system has larger singular values with a
ore gradual roll-off. These results indicate that more in-

ormation is passed with SSM.

ig. 13. (Color online) First 15 singular values for a two-
xcitation SSM operator and a two-excitation spectral TIRM op-
rator plotted on a logarithmic scale. Both systems are defined
n a spatial axis ranging from z=0 to z=200 nm, with a sam-
ling period of 2 nm. Both plots are normalized to have a maxi-
um singular value of 1.

ig. 14. Histogram of the position reconstructions for a two-em
ounts of (a) 2�103, (b) 20�103, and (c) 200�103 are considered.
stimated as part of the reconstruction procedure. This figure is
ation included.
. Estimation of the Spectral Envelope
he estimation procedures described in the previous sec-

ion require the predicted data to be fitted to the mea-
ured data with great accuracy. For this reason, the esti-
ation procedure may be expected to be sensitive to any

naccuracies in the model. In this section it is shown that
simple algorithm modification can compensate for un-

ertain model parameters without significant loss of im-
ge quality.
The fluorophore spectral envelope A�k� may not be pre-

isely known. Other measurement errors can also cause
n effective change in A�k�, e.g., a nonuniform spectrom-
ter gain. In addition, for multiple excitations, there may
e a scaling difference in A�k� across measurements if the
llumination amplitude cannot be precisely controlled.
or these reasons the spectral envelope is assumed to be
nknown but is assumed to vary smoothly and relatively
lowly with k.

This slow variation means that the spectral envelope
an be written as a weighted sum of some relatively small
umber of smooth basis functions. If these basis functions
re placed in the columns of a matrix B and the weighting
oefficients placed in a vector �, then the discrete-k spec-
ral envelope A can be written as

A = B�. �39�

n this work an eight-member cubic-B-spline basis [33]
orms the columns of B.

A new model matrix C� can be calculated by leaving the
ffects of the spectral envelope out of the model. This re-
ults in the following observation equation:

d = diag�A�C�s = diag�B��C�s. �40�

n this model both the envelope coefficients � and the ob-
ect vector s are unknown. The inverse problem is solved
y iterating between estimating s with � fixed and esti-
ating � with s fixed. This is a coordinate descent proce-

ure [31].
Estimating the object with the envelope fixed can be

one using the procedures mentioned earlier in this pa-
er. The envelope coefficients can be estimated easily with
he object held fixed. The problem is linear in � and well
onditioned due to the limited number of coefficients that
eed to be estimated. A weighted-least-squares approach
of the same form as Eq. (37)] can be employed. The itera-
ive procedure is initialized by assuming a uniform enve-
ope (i.e., every element of A is set to 1.)

This procedure was tested on data similar to that used
arlier—the two-emitter object with fluorophores at z

bject with a 40 nm spacing between the objects. Total expected
velope was not known a priori for these reconstructions but was

alent to the third row of plots in Fig. 10 but with envelope esti-
itter o
The en
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30 nm and z=70 nm, and with a number of signal levels.
n attenuation of 2/3 was applied to the first measure-
ent to model unequal illumination strengths between

he two excitations. The resulting position estimates are
isplayed in Fig. 14. Comparing Fig. 14 with the corre-
ponding results in Fig. 10 (where the envelope was
nown a priori), it can be seen that there is little degra-
ation caused by having estimated the envelope. It also
hows that the unequal illumination did not cause a prob-
em.

Some typical examples of the estimated envelopes are
hown in Fig. 15. Here it can be seen that the envelopes
re well estimated at the higher signal levels. For the
owest-count data there are some clear inaccuracies in the
nvelope estimate. This is consistent with Fig. 14, where
he most visible degradation from Fig. 10 can be seen in
he 2000-count data. It can be seen that the reconstruc-
ion procedure has estimated the unequal illumination
trengths, as the two envelopes estimated have different
cales. Again note that it was assumed only that the en-
elope was relatively smooth and could be represented by
fairly coarse spline basis.

. CONCLUSIONS
his work presents a comprehensive model for spectral
elf-interference microscopy (SSM) that includes general
xpressions for the excitation and detection fields and the
bject to be imaged. This electromagnetic model includes
he effects of anisotropic object response, the polarization
tate of the fields used, and an accurate representation of
he detection optics. A method of reducing the model to a
calar representation is given. The model is used to char-

ig. 15. (Color online) Five estimated envelopes (solid curves)
nd the true envelope (dashed curve) for each of the measure-
ents in example two-excitation data sets. The first and second

nvelopes for data with a total expected count of 2�103 (SNR of
0 dB) are shown in (a) and (b) respectively; (c) and (d) are for a
otal expected count of 20�103 (SNR of 20 dB); and (e) and (f) are
or a total expected count of 200�103 (SNR of 30 dB).
cterize an evanescently excited SSM system and to per-
orm image reconstruction from the resultant observa-
ions. The application of evanescent excitation to SSM
llows the realization of the background suppression seen
n TIRM, and the corresponding SNR gains.

The model was used to generate synthetic data, which
ere then employed in Monte Carlo simulations investi-
ating the imaging capabilities of the system. The nanom-
ter scale localization precision previously demonstrated
ith SSM was shown to be achievable at low signal levels

onsistent with single-molecule imaging. Investigations of
general object (i.e., with no restrictions on the number

f fluorophores) showed that SSM could not provide reli-
ble imaging on the nanoscale in this case. However, the
apacity of two-excitation SSM to resolve two closely
paced emitters was demonstrated by using the prior
nowledge that only two features were present. Finally, it
as shown that when the emitted spectrum is not known
priori, it can be robustly estimated in conjunction with

he object.
The results presented here verify that SSM is quite ro-

ust to variations in the fluorophore spectrum, and under
he correct circumstances SSM can be expected to give
ood results in low-signal environments. Furthermore,
he analysis of evanescent wave illumination suggests
hat a marriage of SSM and TIRM offers advantages over
oth existing modalities. Finally, the improved perfor-
ance of the reconstruction algorithms when it is known
priori that only N emitters are present suggests that

SM is particularly well suited to dilute or single-
olecule imaging, a previously unexplored application.
The image reconstruction methods and simulations

resented were one dimensional and scalar. The one-
imensional treatment implicitly assumes that the axial
nd lateral spatial dimensions are separable, while the
ssumptions necessary for a scalar model were given in
ubsection 2.B. While such simplifications are suitable

or plane-wave illumination and low-NA detection, more
omplex systems can be analyzed by using the model pre-
ented in Subsection 2.A. For example, two counterpropa-
ating evanescent waves could be used to create a lateral
tanding wave in the excitation pattern [13]. Such tech-
iques have been shown to allow improved lateral resolu-
ion [34]. As discussed in Subsection 2.A, the model is also
pplicable to modalities that image a nonscalar object,
ut appropriate image reconstruction algorithms are
eeded for data interpretation. Topics such as structured

llumination and nonscalar measurements in SSM are
ossible future directions for this technology.
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