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A large-aperture, electromagnetic model for coherent microscopy is presented and the inverse scattering prob-
lem is solved. Approximations to the model are developed for near-focus and far-from-focus operations. These
approximations result in an image-reconstruction algorithm consistent with interferometric synthetic aperture
microscopy (ISAM): this validates ISAM processing of optical-coherence-tomography and optical-coherence-
microscopy data in a vectorial setting. Numerical simulations confirm that diffraction-limited resolution can be
achieved outside the focal plane and that depth of focus is limited only by measurement noise and/or detector
dynamic range. Furthermore, the model presented is suitable for the quantitative study of polarimetric coher-
ent microscopy systems operating within the first Born approximation. © 2007 Optical Society of America
OCIS codes: 100.3190, 100.6890, 170.1650, 170.4500, 110.6880, 180.3170.
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. INTRODUCTION
raditionally in optical microscopy there has been a per-
eived trade-off between depth of focus and resolution;
.e., one cannot be improved without adversely affecting
he other. Hence, techniques that use high-numerical-
perture (NA) focusing, such as confocal microscopy [1],
ptical coherence microscopy (OCM) [2], and multiphoton
icroscopy [3], are restricted to generating en face images
nless the sample is translated axially or optical mecha-
isms are used to scan the focus. Techniques that produce
ross-sectional images without axial translation of the fo-
us, such as optical coherence tomography (OCT) [4], use
ow-NA focusing so that a pencil beam approximation can
e used. Nevertheless, transverse resolution degrades
way from the focus in these techniques.
It has been shown in a recent series of papers [5–9]

hat this spatially varying resolution can be corrected in
nterferometric optical microscopy, overcoming the trade-
ff between depth of focus and resolution, by using a com-
utational technique known as interferometric synthetic
perture microscopy (ISAM). The coherent nature of the
SAM imaging modality permits the solution of an in-
erse problem in order to provide a volumetric reconstruc-
ion of the object based only on a planar scanning geom-
try. ISAM uses a quantitative scattering model and a
imple inversion technique to reconstruct the object with
patially invariant resolution. The superior imaging per-
ormance of ISAM is realized through an improved under-
tanding of the physical relationship connecting the de-
ected signal and the object imaged, a relationship not
ully exploited in classical OCT.

Interferometric microscopies collect data that are de-
endent on both the phase and amplitude of the field scat-
ered from the object of interest. This represents a major
1084-7529/07/092527-16/$15.00 © 2
dvantage over incoherent techniques, such as wide-field
r confocal microscopy, where the phase of the field is lost.
oherent detection allows the complex amplitude of the
eld, rather than just intensity, to be measured or in-
erred. In broadband interferometric instruments such as
CT and ISAM, data are collected over a range of wave-

engths, in addition to two spatial dimensions, to obtain a
hree-dimensional volume of data. This in turn allows the
nference of three-dimensional object structure. In OCT
mage reconstruction, it is implicitly assumed that at
ach planar scan position a simple Fourier-transform re-
ation exists between the frequency dependence of the

easured field and the depth dependence of the imaged
bject. In constrast, ISAM reconstruction takes into ac-
ount the multiplex relation between the data and the ob-
ect structure. Inverting this relation allows a spatially
nvariant diffraction-limited image resolution to be
chieved, in contrast to OCT where this resolution is
chieved only at the focal plane. The spatially invariant
SAM resolution should be expected, as the only differ-
nce in the field (as opposed to the intensity) scattered
rom different en face planes can be understood as a
hange in the complex weighting of the plane-wave com-
onents of the angular spectrum of the field. The ability
o computationally manipulate these weightings, as al-
owed by interferometric measurement, means that any
n face plane can be brought into focus computationally
fter data are collected. The computational focusing
mplemented in ISAM is analogous to that used in syn-
hetic aperture radar [10] (SAR), which is also a broad-
and, coherent technique.
Previous developments of ISAM were based on a scalar
odel of Gaussian-beam focusing and scattering. This is a

implification, as light is a vector wave and Gaussian op-
007 Optical Society of America
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ics satisfy Maxwell’s equations only when the paraxial
pproximation is invoked. A full vectorial model is devel-
ped to describe the effects of polarization on scattering
nd propagation and also to account for high-angle fields.
n addition, no particular beam apodization is required by
he new model, meaning that various imaging modalities
hat may not use a Gaussian beam can also be accommo-
ated in this new framework. Resulting analysis and nu-
erical experiments provide a verification of the approxi-
ate scalar model previously used to justify ISAM

rocessing. The ISAM method is shown to also be appli-
able in the case of a tightly focused (high-NA) beam. Fur-
hermore, a means to reconcile paraxial (low-NA) [5] and
igh-NA [6] limits is presented. Thus the new model adds
igor to the theoretical framework of ISAM and also ex-
ends its realm of applicability.

The vector-based forward model is constructed using
he standard model for high-NA, vectorial focusing [11] of
he illumination field. Scattering from the object is then
odeled using the first Born approximation, and the re-

ulting field is propagated back through a lens to the de-
ector. It is shown that this model can be approximated in
manner consistent with previous ISAM results. Simula-

ions confirm that the ISAM Fourier-resampling proce-
ure can still be expected to give excellent results in a
ectorial and/or high-angle framework. High-angle lenses
re shown to give the expected increase in resolution but
ithout any loss of depth of focus or signal level away

rom the focal plane.

. FORWARD MODEL
n this section the physics of the imaging system are mod-
led. A general coherent microscope is considered, but one
articular configuration can be seen in Fig. 1. In this sec-
ion, interferometric microscopy is briefly discussed be-
ore the model is constructed. The construction proceeds
y first considering a focused illumination field, then the
esponse of the sample, followed by focused detection of
he scattered light. The consequences of using the same
ens for illumination and detection are also considered.

. Interferometric Microscopy
CT, which is a form of interferometric microscopy, mea-

ures the three-dimensional structure of a sample by scat-
ering broadband radiation from it. As shown in Fig. 1 a
ocused beam of broadband light is scanned through a
ample, and the interferometric cross correlation between
he scattered signal and a reference signal is recorded at

photodetector. By sampling the interferometric cross
orrelation at many wavenumbers k, and by translating
he focus of the beam to many positions r�o� within the
ample, the three-dimensional structure of the sample
an be estimated.

For spectral-domain OCT [12,13], the detected inten-
ity I�r�o� ;k� for focal point r�o� and wavenumber k is

I�r�o�;k� = �E�r��k� + E�s��r�o�;k��2 = �E�r��k��2 + �E�s��r�o�;k��2

+ 2 Re��E�r��k��HE�s��r�o�;k��, �1�

here E�r��k� is the reference field, E�s��r�o� ;k� is the scat-
ered field at the detector, and superscript H indicates the
ermitian conjugation operator. A term can be identified
ith the interferometric cross correlation, which is de-
oted by

S�r�o�;k� = �E�r��k��HE�s��r�o�;k�. �2�

ssuming the autocorrelation term �E�s��r�o� ;k��2 is negli-
ible, measurements of I�r�o� ;k� for one or more known
eference fields E�r��k� allow the cross-correlation S�r�o� ;k�
o be inferred. The effects of nonnegligible autocorrelation
erms in ISAM imagery have been investigated in a sepa-
ate publication [14]. Because a single measurement of
�r�o� ;k� can determine only Re�S�r�o� ;k��, the phase of the
eference may be varied by � /2 to also measure
m�S�r�o� ;k�� using phase-shifting interferometry [15,16].

The cross-correlation signal S�r�o� ;k� can be related to
he signal measured using time-domain OCT. Given that
��� is the dispersion relation of the sample medium, re-
ating temporal frequency � to spatial frequency k, the
emporal cross-correlation signal as a function of delay �
s

ST�r�o�;�� =
1

2�
�

−�

�

S�r�o�;k����ei��d�. �3�

y utilizing a procedure to correct the material dispersion
17], the signal S�r�o� ;k� can be estimated from ST�r�o� ;��,
ith a resampling coordinate change from � to k. In prac-

ice, however, typically only Re�ST�r�o� ;��� is measured us-
ng time-domain OCT. The effect of this is that only the

ig. 1. Basic illustration of a coherent microscope. A source
eeds an interferometer where one arm produces a reference field
nd the other consists of illumination and detection from the
ample to be imaged. The reference arm may contain an adjust-
ble delay element (represented here by movable mirrors). In
ractical implementations, the Mach–Zehnder layout shown
ere is often replaced by a Michelson interferometer using a
ingle objective lens. The sample is scanned mechanically or op-
ically in two or three dimensions.
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eal part of the sample susceptibility can be recon-
tructed.

Likewise, in the practice of spectral-domain OCT, it is
ften inconvenient to perform phase shifting to recover
he imaginary part of S�r�o� ,k� so that only Re�S�r�o� ,k�� is
easured. If the signal S�r�o� ,k� corresponds to a time-

omain signal ST�r�o� ,�� such that ST�r�o� ;��=0 for ��0,
hen the real part and the imaginary part of S�r�o� ,k� are
elated through a Hilbert transform over k [18]. This con-
ition can be ensured by combining the reference and
ample signals such that the reference signal completely
recedes the sample signal in time. The Hilbert transfor-
ation can be implemented in practice using the Fourier

ransform, followed by nulling of all negative frequency
omponents. Such a procedure provides a method of mea-
uring the full complex S�r�o� ,k� without using multiple
easurements.

. Focused Illumination
n objective lens is assumed to be illuminated by plane
aves of amplitude E�i�P�k� traveling parallel to the optic
xis (the case of non-plane-wave illumination is easily
odeled by including the illumination pattern in the lens
odel, as demonstrated in Subsection 3.E). Here E�i� is a

nit vector and P�k� is proportional to the temporal Fou-
ier transform of the illumination field, or in the case of
ncoherent illumination, the square root of the power
pectral density. It is also assumed that the objective lens
s infinity corrected—i.e., it is designed to focus an incom-
ng plane wave to the focal point. This geometry is most
onveniently analyzed by considering the illuminating
eld on a planar surface across the instrument side of the
bjective lens, while the field immediately after the lens
ill be represented on a spherical reference surface cen-

ered on the focal point. Thus the instrument-side pupil is
lanar, while the object-side pupil is spherical and cen-
ered around the focal point. The field produced on the ob-
ect side of the lens may be described by a spectrum of
lane waves [11], E�l���x ,�y�, which is given by the expres-
ion

E�l���x,�y� = Ā��x,�y�E�i�P�k�. �4�

ere �x and �y define the propagation direction of a mem-
er of the plane-wave spectrum. Specifically, they are the
ines of the angles between the propagation direction and
he optic axis of the lens. The action of the lens on the in-
ut plane wave is given by the dyad Ā��x ,�y�, and since
his expression does not depend on the wavenumber k,
he lens is implicitly assumed to be achromatic. Chro-
atic aberrations could be included by taking a

-dependent dyad. Note that Ā��x ,�y� has been defined as
function of the angle to focus, rather than the lateral po-

ition on the object-side pupil, but the mapping between
he two is straightforward: �x=−�x−x�o�� /�, �y=−�y
y�o�� /�, where � is the focal length and the three-tuple
�o�= �x�o� ,y�o� ,z�o�� gives the location of the geometric fo-
us. The elements �x ,�y define a unit vector �
�� , � , � �� ,� ��, where
x y z x y
�z��x,�y� = + 	1 − �x
2 − �y

2. �5�

his vector points from each location on the object-side
upil to the focus. Positive z points from the lens toward
he focal region.

Expressions describing the lens Ā��x ,�y� are well
nown; e.g., for an aplanatic lens Ā��x ,�y� may be ob-
ained by simple rotations of the expression given by Eq.
2.23) in [11]. Modifications can be made to model pupil-
lane filters, aberrations, or more complicated effects
uch as the spatially varying polarization used in radially
olarized beams. The field on the object-side pupil [given
n Eq. (4)] determines the field in the vicinity of the focal
oint [19]. The field produced by a unit-amplitude inci-
ent wave will be denoted by g�r−r�o� ;k� with its focus at
�o�:

g�r − r�o�;k� = −
ik

2�
�

�

Ā��x,�y�E�i�

�z��x,�y�
eik�·�r−r�o��d�xd�y.

�6�

ere evanescent waves do not contribute to the focused
eld, so � is the region in ��x ,�y� space for which
z��x ,�y� is real—i.e., the unit disk, �= ��x ,�y :�x

2+�y
2

1�. The effective region of integration will actually be
maller than � due to the limited angular extent of the
perture; however, this effect will be modeled by setting

¯ ��x ,�y� to zero outside the aperture.
The object describes all inhomogeneities except, per-

aps, a single planar boundary between free space and a
igh-index background. To account for the background,
he illumination amplitude described in Eq. (6) (and the
ntire model developed in this paper) can be adjusted by
escaling the spatial axes. The effects of the boundary be-
ween free space and the imbedding medium can be cap-
ured by defining a virtual lens in the style of [20]. Using
his method, the effects of the boundary will be included
n the lens models.

. Scattering from the Object
he field P�k�g�r−r�o�� interacts with the object and, un-
er the first Born approximation, produces a secondary
ource of density −k2P�k��̄�r�g�r−r�o� ;k�, where �̄�r� is
he susceptibility of the object. The field produced by scat-
ering from the object is treated perturbatively within the
ccuracy of the first Born approximation. It is important
o recognize that higher-order terms in the Born series for
he scattered field will introduce signal originating from
pparently greater depth and will effectively be noise in
he signal. This is also the case in standard OCT, where
ultiple scattering will produce artifacts and limit the

verall depth of penetration for which the method is effec-
ive.

The tensor susceptibility �̄�r� may be anisotropic but is
ssumed to be constant with k. The secondary source can
ow be propagated through space using the Green’s ten-
or Ḡ�r� ,r ;k�. This tensor takes a source at r to a field at
�. For an illumination focal point of r�o�, the unfocused
cattered field at a position r can be calculated as
�
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E�u��r�,r�o�;k� = − k2P�k� � Ḡ�r�,r;k��̄�r�g�r − r�o�;k�d3r.

�7�

The Green’s tensor can also be expressed in an angular
pectrum using the vectorial Weyl’s identity [21,22]. The
pectrum will be limited to propagating waves, as evanes-
ent waves will not contribute at the observation position,
o that

Ḡ�r�,r;k� =
ik

2�
�

�

D̄��x,�y�

�z��x,�y�
e±ik�·�r�−r�d�xd�y, z� 	 z.

�8�

Here D̄��x ,�y� is a dyad that ensures only valid polar-
zation states, i.e., those that are transverse to the direc-
ion of propagation, are included. It will be assumed that
he observation point is on the lens side of the source so
hat z��z. The above spectral representation can now be
sed in Eq. (7):

�u��r�,r�o�;k�

= − k2P�k� � ik

2�
�

�

D̄��x,�y�

�z��x,�y�


eik�·�r−r��d�xd�y�̄�r�g�r − r�o�;k�d3r

= − k2P�k� � ik

2�
�

�

D̄��x,�y�

�z��x,�y�


eik�·�r−r�o��e−ik�·�r�−r�o��d�xd�y�̄�r�g�r − r�o�;k�d3r.

�9�

he factor of e−ik�·r�o�
eik�·r�o�

=1 has been inserted so that
he field can be represented as an integral of a spectrum
f plane waves of the form e−ik�·�r�−r�o��. Each such plane
ave is traveling back toward the lens in the −� direction
nd has accumulated a phase corresponding to its dis-
ance from the focal point. Such a representation is con-
enient when considering detection optics focused to r�o�.

. Focused Detection
he signal acquired results from collecting the scattered

ight with a lens. This collection operation is modeled us-
ng the backward-propagating angular spectrum of Eq.
9). It is assumed that the detection lens is also focused to
�o�. The tensor B̄��x ,�y� defines the detection lens by
apping an object-side plane wave traveling in the −� di-

ection to the resulting plane-wave component that trav-
ls parallel to the optic axis on the instrument side of the
ens. An integration is performed over the scattered plane
aves, and the result is projected onto the reference field
�r��k� as in Eq. (2). The analysis presented here may en-

ompass any reference field E�r��k� but, as indicated in
ig. 1, the reference field will generally have the same
pectral content as the field illuminating the sample. As
uch, it will be represented by �r

*P�k�E�d�, where �r con-
rols the ratio of the reference- and illumination-field am-
litudes, and E�d� is the detected polarization (like E�i�,
�d� is a unit vector). Again, a limited aperture can be
odeled by having B̄��x ,�y� fall to zero outside the aper-

ure. The collected signal is therefore expressed as fol-
ows:

S�r�o�,k� = − k2�r�P�k��2�E�d��H� �
�

B̄��x,�y�
ik

2�

D̄��x,�y�

�z��x,�y�


eik�·�r−r�o��d�xd�y�̄�r�g�r − r�o�;k�d3r. �10�

omparing this expression with Eq. (2), it can be seen
hat the reference field E�r��k� accounts for a factor of
rP*�k��E�d��H and that the remainder of Eq. (10) de-
cribes the scattered field E�s��r�o� ;k�.

Equation (10) can be simplified by noting that D̄��x ,�y�
s the identity operator for fields perpendicular to the di-
ection of propagation and the null operator for fields par-
llel to it. Since the lens accepts only fields perpendicular
o the incident ray path,

B̄��x,�y�D̄��x,�y� = B̄��x,�y�. �11�

his allows D̄��x ,�y� to be removed from Eq. (10).
Analogously to the illumination pattern of Eq. (6), a de-

ection pattern can be defined as

f�r − r�o�;k� = −
ik

2�
�

�

B̄T��x,�y��E�d��*

�z��x,�y�
eik�·�r−r�o��d�xd�y,

�12�

here superscript � represents conjugation and super-
cript T the transpose operation. This can be used to give
simple form to Eq. (10):

S�r�o�,k� = k2�r�P�k��2� fT�r − r�o�;k��̄�r�g�r − r�o�;k�d3r

= k2�r�P�k��2� f��r − r�o�;k�g
�r − r�o�;k���
�r�d3r

=� h�
�r�o� − r;k���
�r�d3r. �13�

he last two lines employ Einstein summation notation
nd show how each component of the susceptibility affects
he collected data. The function h�
�r� is a point-spread
unction and is defined as

h�
�r;k� = �rk
2�P�k��2f��− r;k�g
�− r;k�. �14�

hese equations represent the most general form of the
orward model. In the following subsection, the case
here the same lens is used for illumination and detec-

ion is explored. Note that the results given in this section
an be generalized to cover partially polarized detection
rovided that the correlation between each component of
�d� and E�i� is known. For the sake of brevity, such an
nalysis will not be presented here. The model can also be
sed in an analysis of polarization-sensitive imaging by
aking measurements with differing E�i� and/or E�d�. How-
ver, it should be noted that anisotropies in the back-
round medium are not accounted for in the model pre-
ented here.



E
M
t
s
t

T
p

t
p
l

(
m
−
f

T
r
s

F
m
g
v
t
w
n

s
c
w

F
T
S
f
t
o
s
t
e

t
t
b
t
c
r
l

T

T
s
F
h

T
i
e
b
v
h̃
[
t
w
c
a

3
A
p
O
t
d
p
F
r

F
t
q
t
b
t

Davis et al. Vol. 24, No. 9 /September 2007 /J. Opt. Soc. Am. A 2531
. Single-Lens Systems
ost practical systems will include only a single lens, and

his will be used for both illumination and detection. This
ystem is illustrated in Fig. 2. For a single-lens system
he following relation applies:

B̄T��x,�y� = Ā��x,�y�. �15�

his result stems from a simple application of optical reci-
rocity [23].
If the detection polarization is chosen to be the same as

he illumination polarization, but propagating in the op-
osite direction, i.e., back out of the object, then the fol-
owing relation must hold [23]:

E�d� = �E�i��*. �16�

If the conditions of Eqs. (15) and (16) are met, then Eq.
12) becomes the same as Eq. (6), indicating that the illu-
ination and detection patterns are the same—f�r
r�o� ;k�=g�r−r�o� ;k�. This results in the following model

or the OCT system:

S�r�o�,k� = k2�r�P�k��2� gT�r − r�o�;k��̄�r�g�r − r�o�;k�d3r.

�17�

his equation is analogous to Eq. (3.18) in [5] but is de-
ived in a more general setting. Additionally, it can be
een that the detection operation is of the form

S�r�o�,k� = k2�r�P�k��2� gT�r − r�o�;k��·�d3r. �18�

or a fixed-energy secondary source, the detected signal is
aximized when the secondary source is proportional to

*�r−r�o� ;k�. This corresponds to a counterpropagating
ersion of the illumination field. As this field would be
raveling back through the same lens that produced it, it
ould indeed be expected to maximize the expected sig-
al. Conversely, if �̄�r� is uniform, then the secondary

ig. 2. Diagram illustrating a single-lens OCT system. Some of
he expressions derived in Section 2 are shown with the physical
uantities they represent. Following standard practice, a ray op-
ics description characterizes the lens. This description can then
e interpreted as an angular spectrum and be used to calculate
he fields in the vicinity of the focal spot.
ource field in Eq. (17) would be g�r−r�o� ;k� (i.e., without
onjugation), and it can be shown that the detected signal
ould, as expected, be zero for this no-scatterer case.

. Data Collection
he imaging system will produce a data set by obtaining
�r�o� ,k� at many values of r�o�. If this scanning is per-

ormed in all three dimensions, then Eq. (13) is a sum of
he three-dimensional convolutions over the components
f the tensor susceptibility. The inverse problem (recon-
truction of the susceptibility from the data) could then be
ackled in the Fourier domain, where the convolution op-
ration becomes a simple multiplication.

However, it is desirable to have a fast imaging system
hat scans only in the two dimensions perpendicular to
he optic axis (x and y)—the remaining dimension �z� can
e reconstructed if spectral information is gathered. In
he convention adopted here, the x and y directions will be
alled the lateral dimensions, and z points in the axial di-
ection. The scanning offset r�o� will be split into axial and
ateral components

r�o� = �x�o�,y�o�,z�o�� = �r

�o�,z�o��. �19�

he forward model given in Eq. (13) can be written as

S�r

�o�,k� =�� h�
�r


�o� − r
,z�o� − z;k���
�r
,z�d2r
dz.

�20�

he inner integral in Eq. (20) is a convolution. Letting the
ymbols S̃�·�, h̃�
�·� and �̃�
�·� denote the two-dimensional
ourier transforms over the lateral dimensions of S�·�,
�
�·�, and ��
�·�, respectively, gives

S̃�Q
,k� =� h̃�
�Q
,z�o� − z;k��̃�
�Q
,z�dz. �21�

his is a sum (over � and 
) of one-dimensional Fredholm
ntegral equations of the first kind (FIEFK) at each lat-
ral Fourier point. If each term in the sum of Eq. (21) can
e isolated or the anisotropy of the object is known, in-
erting the FIEFK is a standard problem [24]. The kernel

�
�Q
 ,z�o�−z ;k� can be calculated from known theory
11], and this one-dimensional case should be computa-
ionally tractable. However, inverting the entire data set
ill require many such operations and so may be time-

onsuming. For this reason, a computationally efficient,
pproximate inversion process will be explored.

. APPROXIMATE MODELS
mathematical model for a coherent microscope with a

lanar scanning geometry and spectral detection, i.e., an
CT system, was described in the previous section. Al-

hough this model is complete, it may be possible to intro-
uce simplifying approximations [5,6]. The goal is to sim-
lify the form of the model—specifically, to take the
IEFK relation of Eq. (21) and reduce it to a simple
esampling operation.
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. Alternate Representation of the Point-Spread
unction
he point-spread function given by Eq. (14) is determined
y the product f��r ;k�g
�r ;k�. These functions are natu-
ally expressed in the Fourier domain; Eqs. (6) and (12)
ill be rewritten as

f��r;k� = −
ik

2�
�

�

F���x,�y�

�z��x,�y�
eik�·rd�xd�y, �22�

g
�r;k� = −
ik

2�
�

�

G
��x,�y�

�z��x,�y�
eik�·rd�xd�y, �23�

here

F���x,�y� = �B̄T��x,�y��E�d��*��, �24�

G
��x,�y� = �Ā��x,�y�E�i��
. �25�

he limits of integration of Eqs. (22) and (23) can be ex-
ended to infinity as the aperture pattern is zero outside
. Since these equations are then in the form of inverse
ourier transforms, it can be seen that

f̃��Q
,z;k� = − 2�i

F��Q


k �
kz�Q
�

eikz�Q
�z, �26�

g̃
�Q
,z;k� = − 2�i

G
�Q


k �
kz�Q
�

eikz�Q
�z, �27�

here Q
=k�
 and kz�Q
�=k�z�Q
 /k�. Strictly speaking Q


nd kz�Q
� are functions of k, but this will not be noted
xplicitly.

To calculate h�
�r ;k� the product f��r ;k�g
�r ;k� is rel-
vant, as shown by Eq. (14):

h̃�
�− Q
,− z;k� = k2�r�P�k��2�f̃��Q
,z;k��
g̃
�Q
,z;k��.

�28�

his lateral convolution (denoted by �
) can be written ex-
licitly as

h̃�
�− Q
,− z;k� = − 4�2k2�r�P�k��2


�
F��q


k �
kz�q
�

G
�Q
 − q


k �
kz�Q
 − q
�


ei�kz�q
�+kz�Q
−q
��zd2q
. �29�

he Fourier-domain representation of h̃�
�−Q
 ,−z ;k�
iven in Eq. (29) will form the basis for approximation of
he forward model. Two separate approximations will be
erived—one for scatterers near focus and one for scatter-
rs far from focus. It will be seen that the form of the re-
ultant expression for the data is the same in both cases.

. Approximation for Far-from-Focus Scatterers
ince F��q
 /k� and G
�q
 /k� have a fixed scale and the
ate of complex oscillation in Eq. (29) increases with �kz�,
here will be some distance from the focus at which the
wo-dimensional method of stationary phase [22] can be
pplied. The method of stationary phase can be applied to
ntegrals whose integrand contains a rapidly oscillating
omplex exponential. The value of such integrals are de-
ermined by the value of the integrand at the stationary
oints of the argument of the exponential—that is, points
here the argument of the exponential has zero gradient.

n this problem that occurs at the point

q

�stat.� = Q
/2. �30�

he method of stationary phase then gives

h̃�
�− Q
,− z;k� 

i4�3k

z
�r�P�k��2ei2kz�Q
/2�z


F��Q
/2

k �G
�Q
/2

k � . �31�

he accuracy of this approximation improves as the oscil-
ations in the integrand become more rapid and as the do-

ain of integration increases. These two conditions are
uantified by �kz� and NA2, respectively. The parameter
A2�kz� will be chosen to determine the applicability of

he approximation based on these quantities and on the
act that this parameter is proportional to the distance
rom the focus, in units of the Rayleigh range. The ex-
mple analytical and numerical results given in Subsec-
ions 3.E and 5.C support the use of NA2�kz� in determin-
ng where the stationary phase approximation is
pplicable. It should be noted that the stationary phase
pproximation also relies on the aperture profiles
��q
 /k�, G
�q
 /k� being smooth within the domain of in-

egration. In the next section, the near-focus approxima-
ion will be seen to take a form similar to Eq. (31).

As shown in Eq. (31), for far-from-focus scatterers the
Q
 component of the lateral-Fourier-domain data is de-
endent only on a single point Q
 / �2k� in the apertures.
his point can be associated with a ray path from the ap-
rtures to the focal point and shows that the far-from-
ocus interactions can be interpreted in a geometrical op-
ics framework. The derivation presented in this
ubsection is analogous to standard derivations of geo-
etrical optics from Maxwell’s equations, as in [25],
hapter 3.
In the case that Q
 / �2k� falls outside one or both of the

pertures, there is no stationary point within the limits of
he integral in Eq. (29). This is because the limits of the
ntegral are determined by the regions of nonzero overlap
etween F��q
 /k� and G
��Q
−q
� /k�. In such a case, the
ext order in the asymptotic series for h̃�·� is proportional
o �kz�−3/2 (the lowest-order term being proportional to
kz�−1) and is associated with the point of stationary phase
onstrained to the boundary of the overlap of the aper-
ures [22]. That contribution is usually called the bound-
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ry ray and becomes the dominant term in the shadow of
ne aperture or the other [26].

. Approximation for Near-Focus Scatterers
or small values of �kz�, i.e., when a scatterer is near the

ocal plane, the oscillations of the complex exponential in
q. (29) will be slow. Therefore, for sufficiently small �kz�,

he functions F��q
 /k� and G
�q
 /k� will be narrowly
eaked with respect to the remainder of the integrand in
q. (29). This peakedness allows the integral to be ap-
roximated.
Before proceeding with the approximation, it will be

onvenient to assume the standard case of aplanatic ob-
ective lenses. This means the pupil functions can be writ-
en as

F���x,�y� = F̌���x,�y�	�z��x,�y�, �32�

G
��x,�y� = Ǧ
��x,�y�	�z��x,�y�. �33�

he square-root factor comes about from taking the am-
litude over the flat instrument pupil to the curved object
upil in a way that conserves energy [11]. The checked
actors are additional transfer patterns on the lens or,
quivalently, account for a non-plane-wave distribution
cross the entrance pupil. This notation is simply for con-
enience and does not limit the following results to
planatic lenses. Using these forms, Eq. (29) becomes

h̃�
�− Q
,− z;k� = − 4�2k�r�P�k��2�
F̌��q


k �
	kz�q
�

Ǧ
�Q
 − q


k �
	kz�Q
 − q
�


ei�kz�q
�+kz�Q
−q
��zd2q
. �34�

Assume F̌��q
 /k�Ǧ
��Q
−q
� /k� is peaked at about q

�p�.

hen it is sensible that the integrand modulo of this fac-
or be written as a Taylor series about this point:

ei�kz�q
�+kz�Q
−q
��z

	kz�q
�kz�Q
 − q
�
= �

l=0

�

�
m=0

�

��l,m,q

�p�;k��qx − qx

�p��l


�qy − qy
�p��m, �35�

here

��l,m,q

�p�;k� = � ��l+m�

�lqx�
mqy

ei�kz�q
�+kz�Q
−q
��z

	kz�q
�kz�Q
 − q
�
�

q
=q


�p�

.

�36�

his gives an expansion of Eq. (34) in terms of the mo-
ents of F̌��q
 /k�Ǧ
��Q
−q
� /k� as

h̃�
�− Q
,− z;k� = − 4�2k�r�P�k��2�
l=0

�

�
m=0

�

��l,m,q

�p�;k�


� F̌��q


k �Ǧ
�Q
 − q


k �

�qx − qx

�p��l�qy − qy
�p��md2q
. �37�

s seen in Eq. (36), the derivatives of the exponential de-
ermine ��l ,m ,q

�p� ;k�, and so this coefficient decreases

ore rapidly, with l and m, for low �kz�. Similarly, the mo-
ents of the aperture functions decay more rapidly for
ore peaked profiles, i.e., for small NA2. As a result, the

eries given in Eq. (37) decays more rapidly for small val-
es of NA2�kz�. Assuming sufficiently small NA2�kz�, the
rst term in the series dominates:

h̃�
�− Q
,− z;k� 
 − 4�2k�r�P�k��2
ei�kz�q


�p��+kz�Q
−q

�p���z

	kz�q

�p��kz�Q
 − q


�p��


� F̌��q


k �Ǧ
�Q
 − q


k �d2q
. �38�

he condition of small NA2�kz� required here, in the near-
ocus case, is in direct opposition to the far-from-focus
ase where NA2�kz� must be large.

In many cases of interest, F̌��q
 /k� and Ǧ
�q
 /k� are cir-
ularly symmetric and equal. Then it is most sensible to
ake the expansion about the point q


�p�=Q
 /2 as was
one in [6]. This particular point also results in
�1,0,Q
 /2 ;k�=��0,1,Q
 /2 ;k�=��1,1,Q
 /2 ;k�=0, so that
he approximation is accurate up to second-order terms.
his expansion point will be chosen for the remainder of

his work, resulting in the near-focus model

h̃�
�− Q
,− z;k� 
 − 4�2k�r�P�k��2
K�
�Q
;k�

kz�Q
/2�
ei2kz�Q
/2�z,

�39�

here

K�
�Q
;k� =� F̌��q


k �Ǧ
�Q
 − q


k �d2q
. �40�

n example of the evaluation of K�
�Q
 ;k� is given in Sub-
ection 3.E. In contrast to the far-from-focus approxima-
ion, the near-focus result cannot be cast in a geometrical
ptics framework, as the fields in the focal region are de-
endent upon the entire aperture. The diffraction effects
n the focal region cannot be modeled using ray optics.

While the expansion around q

�p�=Q
 /2 is applicable in

any cases, it is easy to envision a scenario where it is
ot. Consider an example where F̌��q
 /k� is a radially
ymmetric Gaussian with variance �1

2 and Ǧ
�q
 /k� is a
adially symmetric Gaussian with variance �2

2. In this
ase F̌��q
 /k�Ǧ
��Q
−q
� /k� can be shown to be centered
round q


�p�=Q
�1
2 / ��1

2+�2
2�.

. Unified Approximated Model
he near-focus and far-from-focus approximations of Eqs.

31) and (39) can both be written in the form

h̃�
�− Q
,− z;k� 
 H�
�Q
;k���z�ei2kz�Q
/2�z, �41�

here
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H�
�Q
;k� = �H�

�N��Q
;k� = − 4�2k�r�P�k��2

K�
�Q
;k�

kz�Q
/2�
�z� �

1

kNA2

H�

�F��Q
;k� = i4�3kz�Q
/2��r�P�k��2F̌��Q
/2

k �Ǧ
�Q
/2

k � �z� �
1

kNA2
� , �42�
E
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m
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f

��z� = ���N��z� = 1 �z� �
1

kNA2

��F��z� =
1

z
�z� �

1

kNA2
� . �43�

ote that the far-from-focus approximation in Eq. (42)
as been rewritten in terms of the aplanatic-lens profiles
iven in Eqs. (32) and (33). It can also be seen that as z
oves from a large negative value to zero to a large posi-

ive value, the phase of H�
�Q
 ;k� changes from 3� /2 to �
o � /2—this behavior is analogous to the well-known
hase anomaly, or Gouy phase shift, observed in a focused
eam (see [25], Chapter 8.8.4).
The conditions on z in Eqs. (42) and (43) make it clear

hat Eq. (41) is valid only in the near-focus and far-from-
ocus regions, not necessarily in the intermediate zone.
lso note that the intermediate zone’s location is a func-

ion of k and thus varies within a single data set. How-
ver, the image-reconstruction procedure developed in
ection 3 will assume a model of the form given in Eq.

41) over all space. Although this approximation is not
igorously justified, numerical simulations will show that
t allows excellent image reconstruction using a very
imple algorithm.

This form for the model makes evident the effects of co-
erent imaging as three separate phenomena. The beam
rofiles, polarization behavior, aberrations, and other
uch lens-determined or user-defined effects are ex-
ressed in H�
�Q
 ;k�, while the decay in signal away from
he focus is expressed by ��z�. The broadening effect of de-
ocusing is represented in the complex exponential factor,
hich can be seen by noting that the only other z depen-
ence present is in ��z�, and this is just a loss in signal
trength. So the fact that the shape of the point-spread
unction varies with z is due solely to the complex expo-
ential. Restated, it is known that h�
�r
 ,z� becomes
roader, due to defocus, as z moves away from the z=0 fo-
al plane. This effect is due solely to the exponential fac-
or in Eq. (41). This exponential factor is identical in both
he near-focus and far-from-focus approximations.

This unified form for the approximation shows how de-
ocusing effects can be decoupled from the wide range of
ther factors that influence the performance of a coherent
maging system. Near-focus and far-from-focus scatterers
re both shown to be subject to the same phase-shifting
ffect. The border between the near-focus and the far-
rom-focus regions will be explored further in subsequent
ections. In the next section the scalar Gaussian case is
onsidered, and it is shown that the exact analytic expres-
ion for this case has a clear relation to the two approxi-
ations developed in this section.
. Scalar Gaussian Case
or systems of low NA, the fields g�r−r�o� ;k� and f�r
r�o� ;k� will be dominated by one polarization state. For
xample, if in the incident field E�i� is x polarized and the
ens is of low NA and made of an isotropic material, the
eld g�r−r�o� ;k� will be predominantly x polarized. This is
ecause each nonzero component of its plane-wave spec-
rum is traveling at a small angle to the optic axis. The
onsequence of this uniform polarization is that only one
� ,
� pair in Eq. (14) will produce a significant point-
pread function. Thus the sum of Eq. (13) reduces to a
ingle term, and scalar optics can be applied. This low-
A/scalar treatment of the focused field is consistent with

he paraxial treatment of the Helmholtz equation. Gauss-
an beams are a solution to this equation and are widely
sed to model focused light. In the remainder of this sec-
ion, the techniques developed here are compared with
tandard scalar, Gaussian analysis.

Consider the scalar case where the field incident on the
ens is

e−�2�x2+y2�/�2�2�, �44�

here the width of this function is determined by � and �
s the lens focal length. The distribution on the object-side
upil can then be given by the expression

Ǧ��x,�y� = e−�2��x
2+�y

2�/2. �45�

his form assumes an aplanatic lens as each ray emerges
rom its input height. The factor 	�z��x ,�y� is required to
onserve energy and is implied in Eq. (33). The NA of the
ens can then be defined in terms of � as

� = 	2/NA. �46�

he NA for the Gaussian beam is the sine of the angle at
hich the distribution at the object-side pupil drops to 1/e
f its maximum.

Since a single objective lens is being used, Eq. (15) is
atisfied, and since a scalar case is being considered,
atching the polarizations, as in Eq. (16), is not an issue.
his gives

F̌��x,�y� = e−�2��x
2+�y

2�/2. �47�

The far-from-focus approximation of Eq. (31) can now
e evaluated. The near-focus approximation can also be
ound by first calculating K�Q ;k� using Eq. (40):
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K�Q
;k� =� e−�2�qx
2+qy

2�/�2k2�e−�2��Qx − qx�2+�Qy − qy�2�/�2k2�dq


=� e−�2�Qx
2+Qy

2�/�4k2�e−�2��qx − Qx/2�2+�qy − Qy/2�2�/k2
dq


= �e−�2��Qx/�2k��2 + �Qy/�2k��2�2/2�2
�k2

�2

=
�k2

�2 F̌�Q
/2

k �Ǧ�Q
/2

k � . �48�

The model is now defined by Eqs. (41)–(43) with the fol-
owing definitions:

H�N��Q
;k� = − 4�3k3�r�P�k��2
1

�2kz�Q
/2�
F̌�Q
/2

k �Ǧ�Q
/2

k � ,

�49�

H�F��Q
;k� = i4�3kz�Q
/2��r�P�k��2F̌�Q
/2

k �Ǧ�Q
/2

k � . �50�

This scalar Gaussian case has been examined in the lit-
rature. The unapproximated outcome shown in [5] in Eq.
3.23) can be restated in a form relevant to the results de-
ived here:

h̃�− Q
,− z;k� = � 1

H�N��Q
;k���N��z�

+
1

H�F��Q
;k���F��z��−1

ei2kz�Q
/2�z. �51�

he equation above comes from [5] after accounting for
araxial approximations, differing representations of the
ngular spectra, and correcting a factor of k that is incor-
ectly dropped between Eqs. (3.18) and (3.23).

A method of transitioning between the near-focus and
he far-from-focus approximations is given in Eq. (51). It
an be seen that at large z the far-from-focus result domi-
ates and that at low z the near-focus result dominates
ue to the form of ��z� [Eq. (43)]. From Eq. (51) it can be
een that the approximation to the exact model derived in
his work is clearly related to an exact result for one par-
icular approximated (i.e., scalar and Gaussian) system.

The transition point between the near-focus and the
ar-from-focus regimes can also be evaluated in Eq. (51).
he point at which both the terms contribute equally is

�z� =
�2kz

2�Q
/2�

k3 

�2

k
=

2

kNA2 =
�

�NA2 . �52�

his transition point is where �z� is one Rayleigh range
NA2�kz�=2�. Physically, this indicates that the near-focus
pproximation is valid when the field is well collimated,
hile the far-from-focus approximation is valid when the
eld is behaving as a spherical wave.

. IMAGE RECONSTRUCTION
n this section, the problem of constructing an image of
he susceptibility from the data is addressed. It will be
hown that the defocusing portion of the model can be
ast as Fourier-domain resampling. This suggests a
imple reconstruction method.

The approximate kernel of Eq. (41) is substituted into
he observation model of Eq. (21). It is assumed, without
oss of generality, that the origin of the coordinate system
ies in the focal plane so that z�o�=0, then

S̃�Q
,k� = H�
�− Q
;k� � ��z��̃�
�Q
,z�ei2kz�−Q
/2�zdz.

�53�

t is useful to define a modified susceptibility as

�̄��r� = ��z��̄�r�. �54�

sing this susceptibility and the fact that kz�−Q
 /2�
kz�Q
 /2� yields

S̃�Q
,k� = H�
�− Q
;k� � �̃�
� �Q
,z�ei2kz�Q
/2�zdz. �55�

he integral above can be recognized as a Fourier trans-
orm in the z dimension. Let � denote a three-
imensional Fourier transform, so that

S̃�Q
,k� = H�
�− Q
;k��5 �
� �Q
,− 2kz�Q
/2��. �56�

his equation relates the data at lateral spatial frequency

 and wavenumber k to the three-dimensional Fourier

ransform of the susceptibility. This relationship, between
he data collected at �Q
 ,k� and the object’s Fourier rep-
esentation at Q= �Q
 ,Qz�, is illustrated graphically in
ig. 3. The Fourier relation in Eq. (56) is a generalization
f the scalar Gaussian result presented in an earlier pa-
er on high-NA ISAM [6]; however, that result was de-

ig. 3. Illustration of the Fourier-domain relation between the
ollected data and the object. A point �Q
 ,k� in the data corre-
ponds to the point Q= �Q
 ,−2kz�Q
 /2�� in the Fourier-domain
epresentation of the object. Thus the two-dimensional Fourier
ransform of the data at wavenumber k gives the object’s three-
imensional Fourier components at the same lateral frequencies
nd at a distance of 2k from the origin.
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ived based solely on approximations valid in the near-
ocus region. It is a fortunate happenstance that the near-
ocus and far-from-focus cases produce the same Fourier
esampling when equal circularly symmetric lens-
perture functions are used. The Fourier mapping seen in
ig. 3 also arises in SAR, where it is often known as the
tolt mapping [27].
In traditional Fourier-domain OCT, the object is esti-
ated by simply taking the Fourier transform of the data

long the k dimension. This takes the spectral-OCT data
nto the spatial domain. The resulting image is known to
e stretched by a factor of −2 in the axial direction. This
mage-reconstruction technique is equivalent to assuming
he point �Q
 ,k� in the data corresponds to the point Q
�Q
 ,−2k� in the three-dimensional Fourier representa-

ion of the object. It will be seen that correcting �Q
 ,
2k� to �Q
 ,−2kz�Q
 /2�� will provide significant advan-
ages.

The effects of H�
�Q
 ;k� could be mitigated by applying
regularized inverse filter, e.g., a Wiener filter [28]. How-

ver, this portion of the forward model depends on system
arameters such as the beam profile used, the polariza-
ion states chosen, etc. It is also dependent on whether a
catterer is in the near-focus or out-of-focus regime. For
hese reasons, its effects will not be inverted at this point.
s mentioned earlier, the defocusing effect is contained in

he complex exponential factor in Eq. (41) and that is
hat will be inverted here. Since H�
�Q
 ;k� is a smooth

within the passband), real (in the aberration-free case)
ourier-domain weighting, it represents simple linear
hift-invariant filtering that will not introduce major dis-
ortions to the image. However, it should be noted that in
olarization-sensitive imaging techniques, the H�
�Q
 ;k�
actor will be important, since how it changes with � and

determines the polarization response of the system.
In Subsection 2.C it was assumed that the susceptibil-

ty of a scatterer was constant over the wavenumbers ob-
erved. If it is not, the variation with k will have an effect
imilar to that of the factor H�
�Q
 ;k�. In fact, if the k de-
endence is known and spatially uniform across the ob-
ect, as would occur when only one well-characterized
cattering material is present, it can be incorporated into

�
�Q
 ;k� and compensated. In cases where the suscepti-
ility varies as a nonseparable function of space and ob-
erved wavenumber and/or is not known a priori, distor-
ions may occur in the image. The wavenumber variation
esults in a Fourier-domain modulation of the data from
ach scatterer. In cases where the wavenumber variation
s slow, the resulting image distortion can be expected to
e minor. However, if a rapid spectral change in suscepti-
ility amplitude and/or phase is present, the reconstruc-
ion quality may be significantly compromised. Such dis-
ortions would also occur in OCT imaging but can be
xpected to be more detrimental in the phase-sensitive
ut-of-focus reconstructions performed as part of the
SAM method. This issue will be more pressing for large-
andwidth imaging systems.
The factor ��z� in Eq. (41) is a z-dependent scaling, but

or three-dimensional image display, it is useful to have
ome means of inverting its effects. Consistent with Eq.
43), an approximated form will be used to model the axial
ecay of the signal:
��z� = � 1 �z� � z�c�

z�c�/z �z� � z�c�� . �57�

n this approximation z�c� represents the axial plane at
hich the model moves from the near-focus to the out-of-

ocus regimes. The factor of z�c� in the second term is in-
luded to ensure continuity. The image recovered after
ourier resampling will be divided by this function in or-
er to retrieve an estimate of �̄�r� from the estimate of

¯ ��r� given [Eq. (54)]. As mentioned in Subsection 3.D
his procedure is not rigorously justified for the interme-
iate area between near-focus and far-from-focus scatter-
rs; however, in each limit the same resampling proce-
ure is suggested. The numerical simulations in the next
ection also show good performance at all axial positions
hen this inversion method is applied. Additionally, the

orm given in Eq. (57) will be further justified in Subsec-
ion 5.C.

The ISAM image-reconstruction algorithm presented
ere is noniterative and nonadaptive and can be imple-
ented computationally using only the Fourier trans-

orm, interpolation, and multiplication. Fast and efficient
lgorithms exist for all of these operations, resulting in a
econstruction procedure that can be readily implemented
n a modern personal computer.

. NUMERICAL SIMULATIONS
he numerical simulations in this section apply the re-
onstruction approach of Section 4 to data simulated us-
ng the unapproximated forward model of Section 2. The
esults demonstrate the validity of the approximations
erived in Section 3 and the advantages that can be ex-
ected by using ISAM processing.

. Simulation Parameters
his section will present numerical simulations where the
ata are generated using the exact model in the form of
q. (17) and the reconstructions are calculated using the
lgorithm proposed in Section 4. Various NAs are consid-
red, and the lens is assumed to be illuminated by an
-polarized plane wave. The detection polarization E�d� is
lso assumed to be linearly polarized in the x direction.
he illumination amplitude P�k� will be set to 1/ �kNA� to
ompensate for the wavenumber-dependent scattering
trength described in Subsection 2.C and so that the inte-
rated intensity of the sample-arm light over the lens is
reserved with NA. The reference amplitude will be kept
onstant with NA by setting �r=NA. Isotropic scattering
s assumed so that the susceptibility is scalar:

�̄�r� = ��r��
1 0 0

0 1 0

0 0 1
� . �58�

ubstituting this expression for �̄�r� into Eq. (56), it is
ound that

S̃�Q
;k� = ��
�

H���− Q
;k���5 ��Q
,− 2kz�Q
/2��, �59�

here
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���r� = ��z���r�. �60�

Two image-reconstruction techniques will be consid-
red. The first is the traditional approach of taking the
ast Fourier transform (FFT) of spectral-domain data over
he k dimension and correcting for the axial scaling of −2
n the reconstructed image (as mentioned in Section 4).
he second approach will be to use the resampling
ethod described in Section 4 and illustrated in Fig. 3. A

wo-dimensional Fourier transform over r
 will be applied
o the data S�r
 ,k� and the resulting �Q
 ,k� data points
hifted to �Q
 ,−2kz�Q
 /2��. A three-dimensional inverse
FT is then applied to get an estimate of ���r�. For both
ethods the approximated axial response ��z� [Eq. (57)]

s divided out and the magnitude of the result is plotted
s the reconstructed image.

. One-Scatterer Simulations
onsider a unit-amplitude point scatterer located on the z
xis. In Fig. 4, the results of the simulated imaging of
hree such objects are shown. Axial offsets of 1 �m, 2 �m,
nd 5 �m are considered for a system using a lens with a
A of 0.75. This high NA serves to effectively demon-

trate the results of the resampling scheme and also to il-
ustrate that image reconstruction with such high NAs is

ig. 4. Reconstructed images for point scatterers lying on the z
xis. Images (a), (c), and (e) show standard reconstructions, while
b), (d), and (f) show ISAM resampling-based reconstructions.
mages (a) and (b) correspond to a scatterer at �0,0,1� �m, (c)
nd (d) are for a scatterer at �0,0,2� �m, and (e) and (f) are for a
catterer at position �0,0,5� �m. The two-dimensional plots
hown are a lateral-axial slice of the respective three-
imensional reconstructions. The images are plotted in normal-
zed units, where the peak value of (a) is 1. Note the drop in sig-
al as the z position of the scatterer increases.
ossible. Three-dimensional data are collected for 64
venly spaced wavenumbers between 6.28 �m−1

1000 nm wavelength in free space) and 9.52 �m−1

660 nm�. At each wavelength a 256
256 image is col-
ected, where each pixel corresponds to a 200 nm

200 nm area in the object. A traditional reconstruction
s shown for each object along with a reconstruction based
n Fourier resampling (as described above). The axial sig-
al decay is not compensated in these reconstructions.
It can be seen from Fig. 4 that the resampling-based

pproach does an excellent job of restoring the out-of-
ocus scatterers. The reason for this is clear when the re-
onstructions are examined in the Fourier domain. The
ourier transforms of these axially offset scatterers are
omplex exponentials oscillating in the Qz direction. The
requency of oscillation corresponds to the axial offset. As
an be seen from Fig. 5, the observation distorts these
traight oscillations to a curved path. Spatially, the bend-
ng of the phase fronts corresponds to an out-of-focus blur-
ing. When the proposed image-reconstruction algorithm
s applied, the previously curved paths are straightened
ithin what is now a curved passband. The spatial effect

s to bring the previously out-of-focus points into sharp
ontrast. The reconstructions can still be seen to drop in
ntensity with �z�. This is due to the fact that ���r� [Eq.
60)] is being estimated and that its strength is predicted
o drop with �z� as dictated by ��z�.

As can be seen in Fig. 5, the curves are not corrected to
xactly straight lines. This is due to the approximations
sed in Section 3. Additionally, the amplitude of the com-
lex oscillations is not entirely uniform throughout the
assband. This can be attributed to the H���Q
 ;k� factor
f Eq. (59). The phase fronts appear straighter for the

ig. 5. Real part of the Fourier-domain representations of the
econstructions from Fig. 4. The standard OCT reconstructions,
hown on the left, stretch the Fourier representation of the data
y a factor of 2 axially and flip the axial Fourier axis. The ISAM
esampling approach (results shown on the right) can be seen to
orrect the data so as to better match the expected Fourier spec-
ra of the object. In this case the Fourier-domain objects are com-
lex exponentials oscillating in the axial direction—i.e., the oscil-
ation crests should be straight.
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�m scatterer as the stationary-phase approximation be-
omes more accurate as �z� increases. For this system the
ayleigh range [as defined in Eq. (52)] is approximately
.5 �m, so the scatterers of Figs. 4 and 5 are either in the
ransition or out-of-focus regime. The spectral oscillations
f something closer to the focal point would be hard to see
cross the passband and so are not included in these
imple simulations. Later results illustrate the transition
etween near-focus and far-from-focus and also include
econstructions of near-focus points.

. Determining the Near-Focus-to-Out-of-Focus
ransition
rom Eq. (42) it can be seen that the signal level is z de-
endent for out-of-focus scatterers but not for near-focus
catterers. This fact can be used to numerically determine
he boundary between these two regions. The forward
odel can be used to calculate the total intensity incident

n the detector plane for any given scatterer. A number of
catterers at various positions along the optic axis were
onsidered, and the resulting intensities are plotted in
ig. 6.
Using Parseval’s theorem and the expressions in Eq.

42), the expected intensity can be calculated. From such
calculation it can be seen that the intensity should de-

ay as z−2 far from focus. This can be seen in Fig. 6 as a
lope of −2 is observed on the log–log plot. Additionally,
ince P�k� was chosen to be inversely proportional to the
A (giving a sample exposure that is constant with NA)
nd �r is proportional to the NA (to give a NA-constant
eference), the out-of-focus intensity is independent of the
A. This is also observed in Fig. 6. This result has signifi-

ant consequences for imaging, as it means that choosing
higher NA does not compromise the signal strength

way from focus even though the defocus effects are ex-
ected to be severe. That is, not only does ISAM provide a
eans to recover out-of-focus planes in coherent imaging,

ig. 6. (Color online) Integral of the intensity falling on the de-
ector plotted for a single scatterer as a function of its axial po-
ition. Several NAs are considered, and the intensity is calcu-
ated for Rayleigh ranges of 0.001 to 50 with 25 logarithmically
paced points. An
marks the 1 Rayleigh range point for each
lot.
t also removes a constraint on the system design and
uggests that there is no reason not to use the highest-NA
enses available.

The plots of Fig. 6 can also be used to determine the
xial signal model ��z�. Fitting each log–log plot with a
iecewise constant curve constructed from two straight
ines is equivalent to finding a scaled version of ��z�. This
nalysis shows that for these curves the transition point
�c� is approximately 1.5 Rayleigh ranges. This is similar
o the value of 1 Rayleigh range derived for the scalar
aussian case. The transition between these two regimes

s also fairly sharp in Fig. 6. Another way of modeling the
xial decay would be to take the square root of the decay
urves of Fig. 6.

. Multiple-Scatterer and Noisy Simulations
n object consisting of ten point scatterers is considered.
he imaging system uses the same specifications given in
ubsection 5.B. The resulting noise-free reconstructions
re shown in Fig. 7. For the standard OCT reconstruc-
ions it can be seen that an increase in NA provides an
ncrease in lateral resolution but lowers the range of z

ig. 7. Noise-free reconstructions of an object consisting of ten
oint scatterers positioned in the x–z plane at [(5.5,0,0), (0,0,1),
4.5,0,−4.5�, (0,0,5), �−2,0,7�, �2,0,−15�, �−1,0,−15�, �2,0,−16�,
12,0,17), and �−20,0,25�] �m. The x–z plane of the three-
imensional reconstructions are shown. Reconstructions for the
tandard OCT method are shown in (a), (c), and (e), while ISAM
ourier-resampling reconstructions are shown in (b), (d), and (f).
oth methods include the axial gain function to boost out-of-

ocus planes. The NA used is 0.2 in (a) and (b), 0.4 in (c) and (d),
nd 0.75 in (e) and (f). The image scale is normalized to the maxi-
um reconstruction value for the 0.2 NA data.
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hat can be imaged without defocusing. By contrast, the
SAM technique both maintains the lateral resolution
nd compensates for defocusing effects. This is a result
imilar to that shown in [5] except that a more compre-
ensive forward model has been used. Vector-field effects,
igh apertures, and spreading losses are all included in
he new model, but the ISAM procedure still produces ex-
ellent results.

The 0.2-NA data are largely in focus, so the improve-
ent with ISAM is visible only for the scatterers at the

dge of the plot. As the NA is increased, the focal region
ecomes narrower and the scatterers outside the focal re-
ion become invisible in the standard case. ISAM recovers
hese scatterers well, although the scatterer at
−20,0,25� �m does become weaker. This is due to the
act that out-of-focus scatterers will produce a broad spot
n the detector in high-NA systems. For scatterers near
he border of the imaged region, this means that more of
he scattered light will fall outside the detector and that
he reconstruction intensity will drop accordingly. Notice
hat the reconstruction intensity increases with NA. The
econstructions include a gain specified by the reciprocal
f ��z�. This gain maintains the signal in the focus and
mplifies the out-of-focus planes up to a level to match the
n-focus signal.

Noise was included in the simulated measurements.
omplex white Gaussian noise was assumed with vari-

ig. 8. Noisy reconstructions of the same object considered in
ig. 7 using the same instrument parameters. The noise level
onsidered results in a SNR of 0 dB in the 0.2-NA data. OCT re-
onstructions are shown on the left and ISAM reconstructions on
he right.
nce independent of the signal level. This assumption is
onsistent with an OCT system with noise dominated by
hot noise from the reference beam and/or thermal noise
rom the detector [13]. Reconstructions of the ten-
catterer object for two different noise levels are shown in
igs. 8 and 9.
In both Figs. 8 and 9 the data are preprocessed using a

oise-reducing filter. This entails zeroing spatial frequen-
ies outside the system’s passband. This filter ensures a
air comparison of noise levels across NA, i.e., meaning-
ess high-frequency noise is removed from low-NA recon-
tructions. The signal-to-noise-ratio (SNR) measure used
s defined by considering the total intensity expected from
n in-focus, unit-amplitude scatterer and the variance of
he noise at a single pixel before the noise-reduction filter
s applied.

The out-of-focus spatial amplification used, i.e., divid-
ng by ��z�, also has the effect of amplifying the noise
way from the focus, as seen in Figs. 8 and 9. This shows
hat the ISAM depth of focus will be limited by the noise
evel rather than the NA. For a very noisy system, the sig-
al level in focus and the noise may be comparable. In
his case OCT and ISAM would have a similar achievable
epth of focus—in ISAM the computationally focused
catterers away from the focal plane would be over-
helmed by noise. However in less-noisy systems the ad-
antage of ISAM would become clear. The OCT recon-

ig. 9. Noisy reconstructions of the same object considered in
ig. 7, using the same instrument parameters. The noise level
onsidered results in a SNR of 10 dB in the 0.2-NA data. OCT
econstructions are shown on the left and ISAM reconstructions
n the right.
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truction has the traditionally limited depth of field,
hile the ISAM reconstruction has a uniform resolution.
ll scatterers in the object would be visible until the axial
osition at which the 1/ �z� decay in signal strength results
n the scatterer images disappearing under the noise
oor. The point at which this occurs can be found by ex-
mining Fig. 6. The axial position at which a given noise
ower exceeds the signal power will give the achievable

ig. 10. Noise-free reconstructions from a 0.05-NA system im-
ging an object with point scatterers in the x–z plane at posi-
ions of [(22,0,0), (0,0,30), �18,0,−135�, (0,0,150), �−8,0,210�,
8 ,0,−450�, �−4,0,−450�, �8,0,−495�, and (48,0,510)] �m. The
–z plane of the reconstructions is shown in (a) and (b), along
ith the x–z detail in (c) and (d) corresponding to the dashed

quare, and the x–y detail in (e) and (f) from the plane marked
ith a broken line. Images for the standard OCT method are

hown on the left and for the ISAM Fourier-resampling algo-
ithm on the right. Both reconstructions include the axial gain
unction to boost out-of-focus planes. The image scale is normal-
zed to the maximum reconstruction value.
epth of focus (an exception to this may be for very-low-
oise systems, where the signal difference between in-
ocus and out-of-focus regions may give a dynamic-range-
imited depth of focus). For a well-designed OCT/ISAM
ystem and an appropriate sample, it is reasonable to ex-
ect a relatively high SNR, as spectral-domain OCT sys-
ems have reported sensitivities of greater than 80 dB
13]. Demonstrations of ISAM in tissue have also shown
hat the SNR is high enough to achieve a significant ex-
ension of the useable depth of field [9].

It is interesting to note that in ISAM a high-NA lens
oes not reduce the depth of focus: A result with impor-
ant implications for OCM. It can be seen in Fig. 6 that
iven a constant total intensity incident on the object,

ig. 11. Noise-free reconstructions from a 0.1-NA system imag-
ng the object described in Fig. 10. The image scale is normalized
o the maximum reconstruction value for the 0.05-NA data. The
CT reconstruction is shown on the left and the ISAM recon-

truction on the right.
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arying the NA does not affect the far-from-focus signal
trength. This property can also be seen in the reconstruc-
ions of Figs. 8 and 9, where the high-NA cases do not suf-
er from a poorer SNR outside the focal region. Using a
igh-NA lens also gives an improved lateral resolution.
onsequently, OCM need not be limited to en face or axi-
lly scanned focus methodologies.
ISAM can also be applied to systems of low NA with

ignificant advantage. The ISAM correction of defocus for
ow-NA data has been demonstrated experimentally [9]
nd will be examined in simulation here. Consider a sys-
em using NAs of 0.05 or 0.1, collecting 1024 wavenum-
ers evenly spaced between 6.28 �m−1 (1000 nm wave-
ength) and 8.98 �m−1 (660 nm wavelength) and with a
28
128 lateral image collected at each wavelength
1.5 �m
1.5 �m pixels�. Noise-free reconstructions of a
ine-point-scatterer object are shown in Figs. 10 and 11.
The correction of defocus can also be seen in the

ow-NA images of Figs. 10 and 11. The details for the OCT
lots clearly show the blurring associated with defocus
nd interference effects between two scatterers. The in-
erference effects between scatterers, which are exempli-
ed most clearly in Figs. 10(e) and 11(e), are generally re-
arded as “speckle” in conventional OCT imaging. ISAM
uantitatively infers information about the object struc-
ure from the interference effects—this so-called speckle
s a useable signal with ISAM processing. It should be
oted that speckle may also refer to granular structure in
he data resulting from interference effects in multiply
cattered light. Since ISAM is based on the first Born
single-scattering) approximation, multiple-scatter
peckle remains a nuisance term in ISAM. The Fourier-
omain warping used in ISAM does not significantly alter
he effective energy content of the signal, so the multiple-
catter speckle and other nuisance terms will not be un-
uly amplified in the ISAM reconstruction.

. CONCLUSIONS
rigorous vectorial model for coherent microscopy was

erived without the use of low-angle assumptions such as
he paraxial approximation. This model is directly appli-
able to OCT and OCM. Motivated by these applications,
broadband instrument with a planar scanning geometry
as considered, and it was shown that two separate ap-
roximations to the model both result in the ISAM image-
econstruction procedure. The two model approximations
pan the near-focus and far-from-focus regions, but nu-
erical simulations show that ISAM processing produces

xcellent results at all positions within the imaged object.
ISAM processes the raw data using Fourier-domain re-

ampling. This warping in Fourier space produces a
uantitative agreement between the reconstruction and
he object imaged. Traditional OCT imaging neglects to
orrect for Fourier-space distortions introduced by the im-
ging system, and as a result, defocusing effects distort
he image. It was shown that the depth of focusing in pla-
ar scanning broadband coherent microscopes is not lim-

ted by defocus but rather by noise only. Additionally, in-
reasing the NA of the objective lens does not reduce the
epth of focus, it increases only resolution and signal level
n the in-focus region.
The model presented here and the resulting inversion
echniques provide the tools for quantitative analysis of
everal other techniques. Any lens aberrations or chro-
atic behavior can easily be included in the model. The

nversion process can then be modified to take these ef-
ects into account and compensate for them. The vector
nalysis presented encompasses polarization-sensitive co-
erent instruments such as interferometric imaging po-

arimetry [29], polarized optical coherence imaging [30],
nd polarization-sensitive OCT [31], so these can also be
nalyzed using this quantitative model. For example, this
ork provides a framework for reconstructing the tensor

usceptibility for anisotropic scatterers. It is also possible
o perform approximation-free image reconstruction us-
ng a more computationally expensive approach, as dis-
ussed in Subsection 2.F.

CKNOWLEDGMENTS
his research was supported in part by grants from the
ational Science Foundation (CAREER Award 0239265,

o P. Scott Camey, BES 03-47747 to Stephen A. Boppart,
ES 05-19920 to Stephen A. Boppart) and the National

nstitutes of Health (1 R01 EB005221 to Stephen A. Bop-
art). The authors also thank the reviewers for their care-
ul reading of the manuscript and insightful comments.

EFERENCES
1. T. Wilson and C. J. R. Sheppard, Theory and Practice of

Scanning Optical Microscopy (Academic, 1984).
2. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J.

G. Fujimoto, “Optical coherence microscopy in scattering
media,” Opt. Lett. 19, 590–592 (1994).

3. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon
laser scanning fluorescence microscopy,” Science 248,
73–76 (1990).

4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G.
Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A.
Puliafito, and J. G. Fujimoto, “Optical coherence
tomography,” Science 254, 1178–1181 (1991).

5. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart,
“Inverse scattering for optical coherence tomography,” J.
Opt. Soc. Am. A 23, 1027–1037 (2006).

6. T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney,
“Inverse scattering for high-resolution interferometric
microscopy,” Opt. Lett. 24, 3585–3587 (2006).

7. D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart,
“Inverse scattering for rotationally scanned optical
coherence tomography,” J. Opt. Soc. Am. A 23, 2433–2439
(2006).

8. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney,
“Inverse scattering for frequency-scanned full-field optical
coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041
(2007).

9. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart,
“Interferometric synthetic aperture microscopy,” Nat. Phys.
3, 129–134 (2007).

0. J. C. Curlander and R. N. McDonough, Synthetic Aperture
Radar: Systems and Signal Processing (Wiley-Interscience,
1991).

1. B. Richards and E. Wolf, “Electromagnetic diffraction in
optical systems. II. Structure of the image field in an
aplanatic system,” Proc. R. Soc. London, Ser. A 253,
358–379 (1959).

2. M. Choma, M. Sarunic, Y. Changhuei, and J. Izatt,
“Sensitivity advantage of swept source and Fourier domain
optical coherence tomography,” Opt. Express 111,
2183–2189 (2003).



1

1

1

1
1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

2542 J. Opt. Soc. Am. A/Vol. 24, No. 9 /September 2007 Davis et al.
3. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher,
“Performance of Fourier domain vs. time domain optical
coherence tomography,” Opt. Express 11, 889–894 (2003).

4. B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, and
P. S. Carney, “Autocorrelation artifacts in optical coherence
tomography and interferometric synthetic aperture
microscopy,” Opt. Lett. 32, 1441–1443 (2007).

5. Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen,
“Real-time phase-resolved optical coherence tomography
and optical Doppler tomography,” Opt. Express 10,
236–245 (2002).

6. P. Hariharan, Optical Interferometry (Academic, 2003).
7. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A.

Boppart, “A digital algorithm for dispersion correction in
optical coherence tomography,” Appl. Opt. 42, 204–217
(2003).

8. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S.
Nelson, “Phase-resolved optical coherence tomography and
optical Doppler tomography for imaging blood flow in
human skin with fast scanning speed and high velocity
sensitivity,” Opt. Lett. 25, 114–116 (2000).

9. E. Wolf, “Electromagnetic diffraction in optical systems. I.
An integral representation of the image field,” Proc. R. Soc.
London, Ser. A 253, 349–357 (1959).

0. Y. Feng, R. K. Wang, and J. B. Elder, “Theoretical model
of optical coherence tomography for system optimization
and characterization,” J. Opt. Soc. Am. A 20, 1792–1803
(2003).
1. H. Weyl, “Expansion of electro magnetic waves on an even
conductor,” Ann. Phys. 60, 481–500 (1919).

2. L. Mandel and E. Wolf, Optical Coherence and Quantum
Optics (Cambridge U. Press, 1996), Chap. 3, pp. 92–146.

3. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67,
717–754 (2004).

4. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed
Problems (SIAM, 1998).

5. M. Born and E. Wolf, Principles of Optics (Cambridge U.
Press, 1980).

6. H. M. Nussenzveig, Diffraction Effects in Semiclassical
Scattering (Cambridge U. Press, 1992), Chap. 2.2, pp.
17–20.

7. P. T. Gough and D. W. Hawkins, “Unified framework for
modern synthetic aperture imaging algorithms,” Int. J.
Imaging Syst. Technol. 8, 343–358 (1997).

8. N. Wiener, Extrapolation, Interpolation, and Smoothing of
Stationary Time Series (MIT, 1964).

9. M. Mujat, E. Baleine, and A. Dogariu, “Interferometric
imaging polarimeter,” J. Opt. Soc. Am. A 21, 2244–2249
(2004).

0. C. Chou, L. C. Peng, Y. H. Chou, Y. H. Tang, C. Y. Han, and
C. W. Lyu, “Polarized optical coherence imaging in turbid
media by use of a Zeeman laser,” Opt. Lett. 25, 1517–1519
(2000).

1. J. F. de Boer and T. E. Milner, “Review of polarization
sensitive optical coherence tomography and Stokes vector
determination,” J. Biomed. Opt. 7, 359–371 (2002).


