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Power-excitation diffraction tomography with partially
coherent light
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Some consequences of using partially coherent fields in the recently proposed method of power-extinction
diffraction tomography are analyzed. It is found that the method is very tolerant of short spectral coherence
lengths. The spectral coherence length of the field is shown to set the scale of a low-pass filter that acts
on the subject. The implications of these results for implementation of the method are discussed. © 2001
Optical Society of America
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We investigate the effects of using partially coherent
rather than fully coherent radiation in a new method
of diffraction tomography, based on the use of a gen-
eralization of the optical cross-section theorem.1 We
make use of measurements of the power extinguished
on scattering from weakly scattering objects to obtain
three-dimensional reconstructions of the object struc-
ture. This technique may be called power-extinction
diffraction tomography. One of the principal advan-
tages of this technique is that unlike most other inverse
scattering methods (see, for example, Refs. 2–5) it does
not require that the phase of the scattered f ield be mea-
sured. Instead, power-extinction diffraction tomogra-
phy relies on interference within the domain of the
scatterer. As in holographic techniques,5 it is criti-
cal to understand the inf luence of the coherence of the
probe f ield on the reconstructed object.

It was shown in Ref. 1 that a data function, D�s1, s2�,
can be determined from measurements of the extin-
guished power and is related to the scattering ampli-
tude, f �s1, s2�, of the scattering object of the formula

D�s1, s2� � f �s1, s2� 2 f��s2,s1� , (1)

where s1 and s2 denote unit vectors in the direction
of propagation of the incident beams (see Fig. 1).
Let P �e��l� denote the power extinguished from two
coherent plane waves of amplitude A0; l denotes the
path-length difference between the two beams. The
data function D�s1, s2� may be determined from four
measurements of the extinguished power by use of the
formula
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For weakly scattering objects, the solution to the in-
verse problem, i.e., to the problem of determining the
0146-9592/01/221770-03$15.00/0
structure of the scattering object from measurements
of the scattered f ield, is reduced to taking a Fourier
transform of the data function. If a�r� denotes the
imaginary (absorptive) part of the dielectric suscep-
tibility of the object, then, within the accuracy of the
first-order Born approximation, the data function is re-
lated to the Fourier transform of a by the formula

D�s1, s2� � 2ik2
Z

d3ra�r�exp�2ikr ? �s1 2 s2�� , (3)

valid for all real unit vectors s1 and s2. Clearly, a
low-pass version of the absorptive part a�r� may be
reconstructed by inversion of formula (3).

A simple scheme for implementing this technique is
illustrated in Fig. 1. A beam is incident on a beam
splitter (BS), and two identical beams are produced,
propagating in different directions. One beam is
redirected by means of a mirror (M) so that the two
beams are incident on the scatterer in different direc-
tions. The relative phase and propagation angles of
the two beams may be controlled by the position and

Fig. 1. Scheme for generating two mutually coherent
beams needed to determine the data function. Two iden-
tical beams are generated at the beam splitter (BS). The
final direction of propagation of the second beam and
path-length difference between the beams is controlled by
the mirror (M). The beams are finally incident on the
object with directions given by s1 and s2.
© 2001 Optical Society of America
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orientation of mirror M. The two beams differ from
each other only in that one is a rotated version of
the other and may have propagated some additional
distance. Thus, in any particular realization, one
beam can be represented as a rotated and translated
version of the other.

We will investigate the effects of partial coherence
by means of a numerical simulation of the scatter-
ing experiment and reconstruction of a spherical
scatterer. Because of the spherical symmetry, the
scattering amplitude f �s1, s2� depends only on the
angle between the two incident beams, and conse-
quently we may write f �s1, s2� � F �s1 ? s2�. The
beams will be assumed to be of a Gaussian–Schell
model form (Sec. 5.6 of Ref. 6). Each may be de-
scribed by an angular correlation function, A0�s0�, s00��
(Sec. 5.6 of Ref. 6). The two-dimensional vectors, s0�
and s00�, are the vector projections of unit vectors s0
and s00, respectively; the plane of projection is taken
perpendicularly to the axis of the beam. Let us
denote the width of the beam at half-maximum of
the intensity by ss, the spectral correlation length by
sg, and the maximum intensity by A2

0. The angular
correlation function of one of the beams, with its axis
along the z direction, is then given by the expression
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The other beam is associated with a direction of propa-
gation s2 � S s1 � S ẑ, where S is a 3 3 3 rotation
matrix. To separate the effects of a finite spectral co-
herence length from the effects of f inite beam width,
we will consider the limit as ss ! `. The power extin-
guished from the beams on scattering from the object
is given by the formula

P �e��l� � P �e�
1 1 P �e�

2 1 P �e�
12 �l� , (6)

where P �e�
1 is the power extinguished from the original

beam alone, P �e�
2 is the power extinguished from the ro-

tated and translated version of the original beam, and
P �e�
12 represents the contribution arising from interfer-

ence between the beams. In the limit when the beam
is infinitely broad, P �e�

2 � P �e�
1 .

The cross terms can be expressed in the form
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where Im denotes the imaginary part. Under our as-
sumptions that the beams are of the Gaussian–Schell
model type and that the scatterer is spherically sym-
metric, Eq. (7) reduces to
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We next expand the scattering amplitude F �s1 ? s2�
in a power series about s0� � s00� � 0 and find that in
the neighborhood of this point
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where u is the angle of rotation associated with S ,
i.e., the angle between the axes of propagation of the
beams. If the magnitude of the translation vector is
small compared with D so that l ,, D, the integrand of
Eq. (8) is significant only for small values of js0�j and
js00�j, and consequently the z component of the unit vec-
tor can be replaced with the approximate expression
(equivalent to the paraxial approximation)
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The cross term is then given by the expression
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where L � kl, d � kD, and Re denotes the real part.
The data function (2) is then given by the expression
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where j � �1 1 p2�d4�21. Hence for partially co-
herent (PC) beams, a low-pass f iltered version of the
absorptive part of the susceptibility, aPC, can be
reconstructed by use of a Fourier inverse transform.
Explicitly,
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Fig. 2. Demonstrating the effects of partial coherence
on the reconstruction of an absorbing sphere. In all
cases the susceptibility is h � 0.01i�2p. In (a) ka � 3p,
kD � 10p (dashed curve), and kD � 3p (solid curve). In
(b) ka � 10p, kD � 10p (solid curve), and kD � 100p
(dashed curve). In (c) ka � 20p, kD � 10p (solid curve),
and kD � 100p (dashed curve).
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where aLP denotes the low-pass-filtered reconstruction
of a, discussed in Ref. 1. It may be shown that aPC �
aLP when the beams are fully spatially coherent, i.e.,
when sg ! `.

Computational results based on this theory are
displayed in Fig. 2 and demonstrate the effects of
partial coherence of the incident beams on the recon-
struction of homogeneous spheres of various sizes and
susceptibilities. Only the radial dependence of the
imaginary part of the reconstructed susceptibility of
the spheres is shown. It can be seen from the figures
that the reconstruction is satisfactory even when the
spectral coherence length of the field is comparable
to the linear dimensions of the scatterer or even
smaller. This is so because the overlapping beams
remain mutually highly coherent and, when the angle
between the beams is suff iciently small, the beams
are only shifted from each other by a distance of the
order of the wavelength. For larger angles between
the beams, the cross terms in the extinguished power
fall off more rapidly, so the f inite spectral coherence
length of the f ield acts as a low-pass f ilter.

We have examined a main question regarding the
feasibility of power-extinction diffraction tomography.
The advantage of this method over other reconstruc-
tion techniques is that no direct measurement of the
phase of the scattered field is required. We have
demonstrated that this technique could be used even
when the incident beams have relatively short spectral
coherence lengths. We have also shown that the
minimum required coherence length is determined not
by the size of the scatterer but rather by the central
wavelength of the incident beam. This result implies
that it may be possible to perform experiments of this
type with relatively low-quality lasers.
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