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Theory of total-internal-reflection tomography

P. Scott Carney

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61821

John C. Schotland*

Department of Electrical Engineering, Washington University, St. Louis, Missouri 63130

Received June 20, 2002; revised manuscript received October 30, 2002; accepted November 19, 2002

A method is presented to reconstruct three-dimensional tomographic images of weakly scattering objects with
subwavelength resolution. The method may be applied to data available in phase-sensitive, total-internal-
reflection microscopy. The results follow from an analysis of the near-field inverse scattering problem with
evanescent waves. © 2003 Optical Society of America

OCIS codes: 290.3200, 180.6900, 100.6950.
1. INTRODUCTION
Total-internal-reflection microscopy (TIRM) brings to con-
ventional microscopy the added functionality of illumina-
tion by evanescent waves. Incorporation of evanescent
waves in the illuminating field is an important develop-
ment for several reasons. First, the exponential decay of
such waves along one direction allows for the control of
the depth of penetration of the illuminating field. Sec-
ond, evanescent waves may be used to resonantly excite
surface plasmon modes of the sample. Finally, and per-
haps most important, evanescent waves may be employed
to supersede the Rayleigh diffraction limit of order half
the wavelength, l/2.

TIRM has been in practical use for decades. It has
been employed primarily as a surface inspection
technique,1,2 though the sensitivity of the field to distance
along the decay axis has been used to advantage in appli-
cations such as the measurement of distance between two
surfaces.3 Until recently the opportunities for transverse
superresolution made possible by the high spatial-
frequency content of the probe field have been largely
overlooked. However, advances in the realization of su-
perresolved imaging using TIRM have been reported re-
cently in the literature. A direct imaging approach re-
sulting from the marriage of standing-wave illumination
techniques and TIRM has been described4 that achieves
transverse resolution of l/7. An additional approach has
been brought forward in which structural information de-
rived from a scattering object is extracted from the scat-
tered field and a three-dimensional reconstruction of the
object is made.5 This requires an understanding of the
information content of the TIRM experiment, which was
recently obtained for the case of weakly scattered fields.6,7

The reconstruction is accomplished by making use of an
analytic solution to the inverse scattering problem with
evanescent waves.5 This method is called total-internal-
reflection tomography (TIRT).

TIRT offers several advantages over existing modali-
ties for three-dimensional microscopy. First, the evanes-
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cent waves used for illumination encode the subwave-
length structure of the scattering object on the scattered
field. It is thus possible to obtain subwavelength-
resolved images of the sample as is done in other near-
field techniques, such as near-field scanning optical mi-
croscopy (NSOM),8–12 without the technical difficulties
encountered with probe–sample interactions. Second
the results of the reconstruction are unambiguous in the
sense that the relation between the scattered field and
the three-dimensional structure of the sample, as de-
scribed by the spatial dependence of the susceptibility, is
made manifest. This is somewhat analogous to the tran-
sition from projection radiography to computed tomogra-
phy.

In this paper the results presented in Ref. 5 are ex-
panded to include effects significant for experimental re-
alization. In Section 2 the forward problem of scattering
of evanescent scalar and vector wave fields from a sample
characterized by the dielectric susceptibility is formu-
lated. The illuminating evanescent waves are assumed
to be generated at the interface of two half-spaces of dif-
ferent indices of refraction. For this reason boundary
conditions on the scattered field are taken into account.
In Section 3 these results are used to obtain the solution
to the corresponding inverse scattering problems. The
results are discussed in Section 4.

2. FORWARD PROBLEM
In this section the scattering of evanescent waves from
weakly scattering dielectric media is considered. Scalar
waves are treated first. The scalar field is of independent
importance as it bears on problems in acoustics and quan-
tum mechanics. To treat problems in optical microscopy,
it is necessary to consider the electromagnetic (vector)
theory of scattering to account for the effects of polariza-
tion. Note that the vector theory is essential since the
scalar approximation to the scattering of electromagnetic
waves is invalid when the dielectric susceptibility varies
on subwavelength scales.
2003 Optical Society of America
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A. Scalar Case
Consider an experiment in which a monochromatic scalar
field is incident on a dielectric medium with susceptibility
h(r). The field incident on the sample will be taken to be
an evanescent wave which is generated by total internal
reflection at the interface of two half-spaces. One half-
space, taken to be z > 0, will have the vacuum index of
refraction 1 while the z , 0 half-space will have an index
of refraction n. The situation is illustrated in Fig. 1.
The scalar field U(r) obeys the reduced wave equation

¹2U~r! 1 k0
2n2~z !U~r! 5 24pk0

2h~r!U~r!, (1)

where k0 is the free-space wave number, n(z) is the
z-dependent index of refraction as described above, and
the support of h(r) is contained in the z > 0 half-space.
The total field may be written as the sum

U 5 Ui 1 Us , (2)

where Ui and Us represent the incident and scattered
fields, respectively. The incident field obeys the homoge-
neous equation

¹2Ui~r! 1 k0
2n2~z !Ui~r! 5 0. (3)

The scattered field obeys the equation

¹2Us~r! 1 k0
2n2~z !Us~r! 5 24pk0

2h~r!U~r!. (4)

Equation (4) may be recast as the integral equation

Us~r! 5 k0
2E d3r8G~r, r8!U~r8!h~r8!, (5)

where G(r, r8) is the Green’s function.
The Green’s function G(r, r8) satisfies the equation

¹2G~r, r8! 1 n2~z !k0
2G~r, r8! 5 24pd ~r 2 r8!, (6)

and, because the field and its normal derivative must be
continuous, obeys the boundary conditions

G~r, r8!uz501 5 G~r, r8!uz502; (7)

ẑ • ¹G~r, r8!uz501 5 ẑ • ¹G~r, r8!uz502. (8)

It may be seen that G(r, r8) admits the plane-wave de-
composition

G~r, r8! 5
i

2p
E d2q

kz~q!
$1 1 R~q!exp@2ikz~q!z8#%

3 exp@ik~q! • ~r 2 r8!#, (9)

where R(q) is the reflection coefficient given by

Fig. 1. Illustration of the measurement scenario: Evanescent
waves are generated at the prism face by total internal reflection
(TIR); the TIR is then partly frustrated by the presence of the
scatterer, which scatters evanescent modes to homogeneous
modes that propagate to the far zone.
R~q! 5
kz~q! 2 kz8~q!

kz~q! 1 kz8~q!
, (10)

with

kz~q! 5 ~k0
2 2 q2!1/2, (11)

kz8~q! 5 ~n2k0
2 2 q2!1/2, (12)

and k(q) 5 @q, kz(q)#. The plane-wave modes appear-
ing in Eq. (7) are labeled by the transverse part of the
wave vector q. The modes for which uqu < k0 correspond
to propagating waves while the modes with uqu . k0 cor-
respond to evanescent waves. In the limit that n(z)
5 1, the reflection coefficient R vanishes and Eq. (9)

yields the usual free-space Green’s function.
The incident field is taken to be an evanescent plane

wave of the form

Ui~r! 5 exp@ik~q! • r#, (13)

where q labels the transverse part of the incident wave
vector. If the evanescent wave is generated by a prism
with index of refraction n, then k0 < uqu < nk0 . Thus kz
is imaginary with the choice of sign dictated by the physi-
cal requirement that the field decay exponentially with
increasing values of z. Within the accuracy of the first
Born approximation, the total field may be replaced by
the incident field in the right-hand side of Eq. (4) and the
expression for the scattered field is obtained as

Us~r! 5 k0
2E d3r8G~r, r8!Ui~r8!h~r8!. (14)

In the far zone of the scatterer, the leading term in the
asymptotic expansion of the Green’s function is given by
the expression

G~r, r8! ; $1 1 R~q!exp@2ikz~q!z8#%

3
exp~ik0r !

r
exp@2ik~q! • r8#, (15)

where k(q) is parallel to r and uqu < k0 . Using this re-
sult and expression (14) it is found that the scattered field
behaves as an outgoing homogeneous wave of the form

Us~r! ;
exp~ik0r !

r
A~q1 , q2!, (16)

where q1 and q2 are the transverse parts of the incident
and outgoing wave vectors, respectively. Here
A(q1 , q2)—which is the scattering amplitude associated
with the scattering of evanescent plane waves with trans-
verse wave vector q1 into homogeneous plane waves with
transverse wavevector q2—is related to the susceptibility
of the scattering object by the expression
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A~q1 , q2! 5 k0
2E d3r$1 1 R~q2!exp@2ikz~q2!z#%

3 exp$i@k~q1! 2 k~q2!# • r%h~r!. (17)

This is the observable quantity of interest. The inversion
of this integral equation to obtain h(r) will be addressed
in Subsection 3.A.

B. Vector Case
In order to treat properly the scattering of optical fields, it
is necessary to consider the vector theory of electromag-
netic scattering. As illustrated in Fig. 1, an evanescent
wave is incident on a dielectric medium with susceptibil-
ity h(r), and it is assumed that the evanescent wave is
produced at the interface of two half-spaces. Only non-
magnetic materials are considered. Accordingly, the
magnetic field need not be taken into account and only
the electric field will be needed. The electric field E sat-
isfies the reduced wave equation

¹ 3 ¹ 3 E~r! 2 k0
2n2~z !E~r! 5 4pk0

2h~r!E~r!,
(18)

where k0 is the free-space wave number and n(z) is the
background index of refraction as described in Subsection
2.A. The field is decomposed into the sum of two parts

E 5 Ei 1 Es. (19)

The incident field Ei obeys the homogeneous equation

¹ 3 ¹ 3 Ei~r! 2 k0
2n2~z !Ei~r! 5 0. (20)

The scattered field Es obeys the equation

¹ 3 ¹ 3 Es~r! 2 k0
2n2~z !Es~r! 5 4pk0

2h~r!E~r!.
(21)

Equation (21) may be reformulated as the integral equa-
tion

Ea
s ~r! 5 k0

2E d3r8Gab~r, r8!Eb~r8!h~r8!, (22)

where Gab(r, r8) is the Green’s tensor for the half-space
and the summation convention over repeated indices ap-
plies and will apply throughout.

The Green’s tensor Gab(r, r8) satisfies the equation

¹ 3 ¹ 3 G~r, r8! 2 k0
2n2~z !G~r, r8! 5 4pd ~r 2 r8!I,

(23)

where I is the unit tensor. The Green’s tensor must also
satisfy the boundary conditions

ẑ 3 G~r, r8!uz501 5 ẑ 3 G~r, r8!uz502, (24)

ẑ 3 ¹ 3 G~r, r8!uz501 5 ẑ 3 ¹ 3 G~r, r8!uz502. (25)

Making use of a plane-wave decomposition, it may be
found that13,14

Gab~r, r8! 5
i

2p
E d2q

kz~q!
gab~q, z !exp@ik~q! • ~r 2 r8!#.

(26)

where it is assumed that z . z8 . 0. The explicit form
of g is given in Appendix A.
The incident field is an evanescent plane wave with po-
larization E(0)

Ea
i ~r! 5 Ea

~0 ! exp@ik~q! • r#, (27)

where k(q) is the incident wave vector and k0 < uqu
< nk0 . Within the accuracy of the first Born approxi-
mation, the scattered field is given by the expression

Ea
s ~r! 5 k0

2E d3r8Gab~r, r8!Eb
~0 ! exp@ik~q! • r8#h~r8!.

(28)

In the far zone of the scatterer the Green’s tensor as-
sumes the asymptotic form

Gab~r, r8! ; gab~q, z !
exp~ik0r !

r
exp@2ik~q! • r8#,

(29)

where k(q) lies in the direction of r. Thus the scattered
field becomes

Ea
s ~r! ; Aab~q1 , q2!Eb

~0 !
exp~ik0r !

r
, (30)

where q1 and q2 are the transverse parts of the of inci-
dent and outgoing wave vectors, respectively.
Aab(q1 , q2) denotes the tensor scattering amplitude
which is related to the susceptibility by the expression

Aab~q1 , q2! 5 E d3rwab~q2 , z !

3 exp$i@k~q1! 2 k~q2!# • r%h~r!,

(31)

where

wab~q, z ! 5 k0
2gab~q, z !. (32)

Inversion of the above integral equation to obtain h(r)
will be discussed in Subsection 3.B.

3. INVERSE PROBLEM
The inverse problem consists of reconstructing the sus-
ceptibility from measurements of the scattering ampli-
tude. To this end it is desirable to construct the pseudo-
inverse solution of the integral Eqs. (17) and (31). The
method of singular value decomposition (SVD) provides a
means to obtain the pseudoinverse and simultaneously
obtain insight into the behavior of the scattering operator.
A brief review of the SVD of linear operators on Hilbert
spaces15 is given here.

Let A denote a linear operator with kernel A(x, y)
which maps the Hilbert space H1 into the Hilbert space
H2 . The SVD of A is a representation of the form

A~x, y ! 5 (
n

sn gn~x !f n* ~ y !, (33)

where sn is the singular value associated with the singu-
lar functions fn and gn . The $ fn% and $ gn% are orthonor-
mal bases of H1 and H2 , respectively, and are eigenfunc-
tions with eigenvalues sn

2 of the positive self-adjoint
operators A* A and AA* :
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A* Afn 5 sn
2fn , (34)

AA* gn 5 sn
2gn . (35)

In addition the fn and gn are related by

Afn 5 sngn , (36)

A* gn 5 snfn . (37)

The pseudoinverse solution to the equation Af 5 g is
defined to be the minimizer of iAf 2 gi with smallest
norm. This well-defined element f 1 P N(A)' is unique
and may be shown15 to be of the form f 1 5 A1g, where
the pseudoinverse operator A1 is given by A1

5 A* (AA* )21 and N(A)' is the orthogonal complement
of the null space of A. The SVD of A may be used to ex-
press A1 as

A1~x, y ! 5 (
n

1

sn
fn~x !gn* ~ y !. (38)

The SVD approach is next applied to the inverse problem
for scalar waves.

A. Scalar Case
The integral Eq. (17) may be rewritten in the form

A~q1 , q2! 5 E d3rK~q1 , q2 ; r!h~r!, (39)

where the scattering operator K(q1 , q2 ; r) is given by

K~q1 , q2 ; r! 5 exp@i~q1 2 q2! • r#k~q1 , q2 ; z !,
(40)

with

k~q1 , q2 ; z ! 5 k0
2$1 1 R1~q2!exp@2ikz~q2!z#%

3 exp$i@kz~q1! 2 kz~q2!#z%. (41)

If the transverse range of h(r) is contained in the re-
gion @2L, L# 3 @2L, L#, then h(r) may be expressed as
the Fourier series

h~r, z ! 5 (
qPL

cq~z !exp~iq • r!, (42)

where cq(z) are appropriate coefficients and L 5 $(nxp/
L,nyp/L):nx ,ny 5 0, 6 1, . . . %. It will prove convenient
to allow the transverse wavevectors q1 , q2 to take values
in the discrete set L, simplifying the ensuing analysis.

Evidently A(q1 , q2) will not be known for all q1 , q2
P L. For example the index of refraction n limits q1 , q2
to the regions k0 < uq1u < nk0 and uq2u < k0 , respec-
tively. Furthermore, not all q1 , q2 may be experimen-
tally accessible. It is thus useful to introduce a function
x(q1 , q2) which is defined to be unity for the q1 , q2 at
which A is measured and zero otherwise. The func-
tions k(q1 , q2 ; z) and A(q1 , q2) are then modified ac-
cording to k(q1 , q2 ; z) → k(q1 , q2 ; z)x(q1 , q2) and
A(q1 , q2) → A(q1 , q2)x(q1 , q2).

To obtain the SVD of K(q1 , q2 ; r) it will prove useful
to introduce the identity
K~q1 , q2 ; r! 5 (
QPL

exp~iQ • r!d ~Q 1 q2 2 q1!

3 k~Q 1 q2 , q2 ; z !, (43)

where d denotes the Kronecker delta. With this result
the matrix elements of the operator KK* are found to be
given by

KK* ~q1 , q2 ; q18, q28 ! 5 (
QPL

M~q2 , q28; Q!d ~Q

1 q2 2 q1!d ~Q 1 q28 2 q18 !,

(44)
where

M~q2 , q28; Q! 5 E
0

L

dzk~Q 1 q2 , q2 ; z !

3 k* ~Q 1 q28, q28; z !, (45)

L being the range of h(r) in the ẑ direction. To find the
singular vectors gQQ8 of K which satisfy

KK* gQQ8 5 sQQ8
2gQQ8 , (46)

it will be useful to make the ansatz

gQQ8~q1 , q2! 5 CQ8~q2 ; Q!d ~Q 1 q2 2 q1!, (47)

where Q, Q8 P L. Equation (44) now implies that

(
q8PL

M~q, q8; Q!CQ8~q8; Q! 5 sQQ8
2CQ8~q; Q!.

(48)

Thus CQ8(q2 ; Q) is an eigenvector of M(Q) labeled by Q8
with eigenvalue sQQ8

2. Since M(Q) is self-adjoint, the
CQ8(q2 ; Q) may be taken to be orthonormal. Next the
fQQ8 may be found from K* gQQ9 5 sQQ8fQQ8 , and are
given by

fQQ8~r! 5
1

sQQ8
(
qPL

exp~2iQ • r!k* ~Q

1 q, q; z !CQ8
* ~q; Q!. (49)

It follows that the SVD of K(q1 , q2 ; r) is given by the
expression

K~q1 , q2 ; r! 5 (
Q,Q8

sQQ8fQQ8
* ~r!gQQ8~q1 , q2!. (50)

The SVD of expression (50) may now be used to obtain
the pseudoinverse solution to the integral equation (39)
as

h1~r! 5 (
q1 ,q2

K1~r; q1 , q2!A~q1 , q2!, (51)

where K1(r; q1 , q2) is the pseudoinverse of
K(q1 , q2 ; r). With the result of Eq. (38), the pseudoin-
verse K1 may be seen to be given by

K1~r; q1 , q2! 5 (
Q,Q8

1

sQQ8

fQQ8~r!gQQ8
* ~q1 , q2!. (52)
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Substituting Eqs. (47) and (49) into Eq. (52) and using the
spectral decomposition

(
Q8

1

sQQ8
2 CQ8~q; Q!CQ8

* ~q8; Q! 5 M21~q, q8; Q!,

(53)

where M21(q, q8; Q) is the qq8 matrix element of
M21(Q), one obtains

h1~r! 5 (
q1 ,q2 ,q28

(
Q

exp~2iQ • r!

3 d ~Q 1 q2 2 q1!M21~q2 , q28; Q!

3 k* ~Q 1 q28, q28; z !A~q1 , q2!, (54)

which is the inversion formula for scalar TIRT.

B. Vector Case
The integral Eq. (31) may be rewritten in the form

Aab~q1 , q2! 5 E d3rKab~q1 , q2 ; r!h~r!, (55)

where the scattering operator Kab(q1 , q2 ; r) is given by

Kab~q1 , q2 ; r! 5 exp@i~q1 2 q2! • r#kab~q1 , q2 ; z !,
(56)

kab~q1 , q2 ; z ! 5 wab~q2 , z !exp$i@kz~q1! 2 kz~q2!#z%

3 x~q1 , q2!. (57)

As in the scalar case it is assumed that A(q1 , q2) is mea-
sured for a particular set of q1 , q2 , with the appropriate
blocking function x(q1 , q2). The vector integral [Eq.
(55)] differs from its scalar counterpart Eq. (39) only by a
factor associated with the polarization. Evidently, when
measuring only a fixed component of the scattered field
for a particular incident direction, the scalar inversion
formula of Eq. (54) may be used to reconstruct h(r).

The SVD for the general vector case is next obtained.
Following the previous development it may be found that
the SVD of Kab(q1 , q2 ; r) is of the form

Kab~q1 , q2 ; r! 5 (
Q,Q8

sQQ8fQQ8
* ~r!gQQ8

ab
~q1 , q2!. (58)

Here the singular functions are given by

gQQ8
ab

~q1 , q2! 5 CQ8
ab

~q2 ; Q!d ~Q 1 q2 2 q1!, (59)

fQQ8~r! 5
1

sQQ8
(
qPL

exp~2iQ • r!

3 k* ~Q 1 q, q; z !CQ8
* ~q; Q!. (60)

The CQ8
ab(q2 ; Q) are eigenfunctions of Mab

a8b8(q2 , q28; Q)
with eigenvalues sQQ8

2

(
q8PL

Mab
a8b8~q, q8; Q!CQ8

a8b8~q8; Q! 5 sQQ8
2 CQ8

ab
~q; Q!,

(61)

where
Mab
a8b8~q2 , q28; Q! 5 E

0

L

dzkab~Q 1 q2 , q2 ; z !

3 ka8b8
* ~Q 1 q28, q28; z !. (62)

The pseudoinverse solution to the integral Eq. (55) is
given by

h1~r! 5 (
q1 ,q2

Kab
1 ~r; q1 , q2!Aab~q1 , q2!, (63)

where

Kab
1 ~r; q1 , q2! 5 (

Q,Q8

1

sQQ8

fQQ8~r!gQQ8
ab * ~q1 , q2!.

(64)

More explicitly,

h1~r! 5 (
q1 ,q2 ,q28

(
Q

exp~2iQ • r!d ~Q 1 q2 2 q1!

3 @M21~Q!#ab
a8b8~q2 , q28 !ka8b8

* ~Q

1 q28, q28; z !Aab~q1 , q2!, (65)

which is the inversion formula for vector TIRT.

C. Regularization
To avoid numerical instability and to set the resolution of
the reconstructed image to be commensurate with the
available data, the SVD inversion formulas must be
regularized.15 The effect of regularization is to limit the
contribution of the small singular values to the recon-
struction. For example, one effective means of regular-
ization is spectral filtering. That is, 1/s 2 may be re-
placed in the inversion formulas of Eqs. (53) and (61) by
R( s) where R is a suitable filter or regularizer. A rea-
sonable choice for R is the cutoff of all s below some sc .
That is R( s) 5 s 22u( s 2 sc), u denoting the usual
Heaviside step function. Alternatively a smooth filter,
such as that derived by the Tikhonov method, where
R( s) 5 1/ ( s2 1 sc

2), may be employed.

4. DISCUSSION
The scattering of evanescent waves into propagating
modes by an object of finite extent has been analyzed. It
has been demonstrated that in the weak scattering limit
where the forward scattering problem may be linearized,
an analytic solution of the inverse problem may be ob-
tained. Because the illuminating field is superoscilla-
tory, the object may be reconstructed on subwavelength
scales even when the scattered field is measured only in
the far zone. The data required to implement this
method may be obtained in a TIRM experiment with
phase-sensitive measurements of the field. This work
thus extends the functionality of TIRM.

Several directions for further research in this area are
apparent at this time. First, the sampling scheme de-
scribed here is general in the sense that any set of points
in the data space may be included; however, this method
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may not always be computationally efficient. That is, the
set of available q1 , q2 may be much smaller than L.
Specialized sampling schemes with correspondingly recal-
culated SVDs may be needed. Second, the analysis pre-
sented here depends on the prior constraint that the ob-
ject is of finite extent. There are a number of other prior
constraints which may provide some advantage in solving
the inverse problem. For instance, the susceptibility
may be constrained to be nonnegative, or it may be known
that the sample consists only of some particular species or
exhibits some known order. Third for some samples the
model of single scattering may be inappropriate. For
such cases a solution to the nonlinear inverse problem
may be required. Finally efforts to implement TIRT ex-
perimentally are currently being made.

APPENDIX A
The elements of the tensor g(q, z) are given by

g~q, z ! 5 S21~q!g̃~q, z !S~q!, (A1)

where the matrix S(q) rotates k(q) into the xz plane,
S(q)k(q) 5 @ uqu, 0, kz(q)#, or, more explicitly,

S~q! 5 uqu21F qx qy 0

2qy qx 0

0 0 uqu
G . (A2)

The elements of g̃ are then

g̃xx 5 S kz~q!

k0
D 2

$1 1 R8~q!exp@2ikz~q!z8#%, (A3)

g̃yy 5 1 1 R~q!exp@2ikz~q!z8#, (A4)

g̃zz 5 S uqu

k0
D 2

$1 2 R8~q!exp@2ikz~q!z8#%, (A5)

g̃zx 5
2uqukz~q!

k0
2 $1 1 R8~q!exp@2ikz~q!z8#%, (A6)

g̃xz 5
2uqukz~q!

k0
2 $1 2 R8~q!exp@2ikz~q!z8#%, (A7)

all other elements of g̃ being zero; R(q) is defined in Eq.
(10), and R8(q) is given by

R8~q! 5
kz8~q! 2 nkz~q!

kz8~q! 1 nkz~q!
. (A8)
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