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Abstract

We present an analytic solution to the problem of determining
three-dimensional object structure, described by the spatial dependence of
the susceptibility, from data accessible through photon scanning tunnelling
microscopy (PSTM) experiments. An analysis is presented of the scattering

of evanescent waves with detection of the scattered field by a probe in the
near zone of the scatterer. The results provide tomographic imaging

capability in PSTM.

Keywords: Tomography, microscopy, near-field optics, tunnelling, inverse

scattering

1. Introduction

Inverse scattering, tomography and structure determination
have, over the years, attracted a great deal of interest in
the electromagnetic and optics research communities. The
reasons for this interest are largely practical and driven
by the need to gain a deeper understanding of scattering,
transmission and absorption experiments. For instance, von
Laue’s insights into the scattering of x-rays by crystals made
possible the determination of crystal structure, and hence
modern crystallography a reality [1]. The early measurements
of x-ray absorption in the human body had obvious promise
for imaging, but it was not until the work of Hounsfeld and
Cormack brought medical imaging out of the era of projection
radiography and into the era of computed tomography (CT)
that the promise was fully realized and the measurements
understood [2]. Likewise, in fewer dimensions, the analysis
and design of power transmission lines was greatly improved
by the development of transmission line tomography whereby
transmitted signals may be used to reconstruct the structure of
the line [3].

Near-field optical microscopy has developed dramatically
in recent years [4-6]. The first proposal of a method
to circumvent the Rayleigh—Abbe resolution limit was put
forward by Synge [8] in 1928. Synge proposed that a thin
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sample be illuminated through a subwavelength aperture.
By recording the transmitted light as a function of aperture
position, a subwavelength resolved image of the sample may
be acquired. Today this method is known as near-field scanning
optical microscopy (NSOM) [9-13] or scanning near-field
optical microscopy (SNOM); itis practised in many variations,
including the reciprocal arrangement in which the sample is
illuminated by a source in the far zone of the sample and light
is collected through a small aperture. The role of the small
aperture is now played by a tapered optical fibre, a technique
not known to Synge.

Essential to the NSOM modality is the presence of
inhomogeneous, or evanescent, modes of the illumination
field.  Specifically, the illuminating field consists of a
superposition of plane waves including the high spatial-
frequency evanescent plane waves. These waves are
super-oscillatory parallel to some reference plane and are
exponentially decaying away from the plane. The super-
resolving capabilities of NSOM may be attributed to the
high spatial-frequency of the evanescent waves. Instead of
generating these modes at the small aperture in NSOM, they
may be generated at the interface of two media by total internal
reflection, as is done in total internal reflection microscopy
(TIRM). Because the evanescent waves are exponentially
decaying, TIRM is used to limit the depth of penetration
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of the illuminating field. However, the great potential of
super-resolved imaging made possible by the high spatial-
frequencies in the probe field has remained untapped in
TIRM [14].

At the intersection of NSOM and TIRM modalities are
the so-called photon scanning tunnelling microscopy (PSTM)
methods. In these techniques the object is illuminated by an
evanescent wave generated at the face of a prism or slide (as
in TIRM), and the scattered field is detected via a tapered fibre
probe in the near zone of the sample (as in NSOM). Also
practised is the reciprocal arrangement in which the source
and detector are interchanged.

In all of the above mentioned modalities, the connection
between the measured field or signal and the sample properties
has proven to be problematic. To clarify the meaning of the
measurements and to provide a three-dimensional imaging
capability, it is desirable to find a solution to the inverse
scattering problem (ISP). Results in this direction have been
reported for the case of surface profile reconstruction in
homogeneous media [15-18]. There has also been recent
progress for the case of three-dimensional inhomogeneous
media for the TIRM and NSOM modalities [14, 19]. In
those works, an analytic solution to the ISP was presented for
each modality and the results were illustrated by numerical
simulations. It is thus natural to consider the analogous
question for PSTM, which is the subject of this paper.

The remainder of this paper is organized as follows. In
section 2 we present an analysis of the forward problem. That
is, we obtain an expression for the electric field scattered
from an unknown sample in a PSTM experiment. We include
the effects of the air—dielectric boundary at the face of the
prism as well as all relevant polarization effects by making
use of the appropriate Green’s tensor for electromagnetic
scattering in a half-space. In section 3 we derive a solution
to the inverse scattering problem whereby we determine the
spatial dependence of the susceptibility of the sample from
measurements of the scattered field. We account for sampling
of the scattered field as well as finite and discrete sets of
illuminating fields. Finally, we discuss regularization schemes
for the inversion formula thus obtained.

2. Forward problem

We begin by considering an experiment in which a
monochromatic field is incident on a dielectric medium with
susceptibility n(r). The field incident on the sample will
be taken to be a plane wave which may be evanescent or
homogeneous. One half-space, taken to be z > 0, will have
the vacuum index of refraction while the z < 0 half-space will
have an index of refraction n (see figure 1). We will consider
nonmagnetic materials and so will limit our attention to the
electric field E. The field satisfies the equation

V x V x E(r) —n*(Qk}E(r) = dxkin()E() (1)

where ky is the free space wavenumber and n(z) is the z-
dependent background index of refraction as described above.
We will consider the field to consist of two parts:

E=FE +E'. )

¢0)
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Figure 1. Illustrating the measurement scenario. Evanescent waves
are generated at the prism face by total internal reflection (TIR). The
TIR is then partly frustrated by the presence of the scatterer and
collected by a probe in the near zone.

The incident field E' obeys the free space wave equation
V x V x E'(r) —n*(2)k}E'(r) = 0. A3)
The scattered field E* obeys
V x V x ES(r) — n* (DK E* (r) = 4nkin(r)E(r). (4)

Equation (4) may be recast as the integral equation
E(r) = kg / &r' Gog(r, ¥V Eg(r)n(r) &)

where the summation convention over repeated indices applies
and will throughout. The Green’s tensor Gog(r, ') satisfies
the equation

V x V x G(r,7) —n*(QkiG(r,r') = 4xd(r —r)I (6)

where I is the unit tensor. The Green’s tensor must also satisfy
the boundary conditions

2 X G )eor = 2 x G(r, 1) mor (7)

EXVXGr,)mp =2xV X G, )|.—0-. (8)

Making use of a plane wave decomposition, it may be found
that [6, 20]

/ i dzq —1 /
Gup(r, 1) = E/%Say(q)gyﬁ(sz)Séﬂ(q)

x explik(q) - (r — )] &)

where k(q) = (q. k.(q)), and k.(q) = /k% — ¢2. The plane
wave modes appearing in equation (9) are labelled by the
transverse part of the wavevector, g. The modes for which
lg| < ko are homogeneous, or propagating. When |g| > ko
the plane wave is evanescent, decaying exponentially with
increasing values of z. These waves are super-oscillatory in
the transverse plane and thus provide a means to probe the high
spatial-frequency structure of the sample. Expressions for the
matrices S(q) and g(g, z) are given in the appendix.

We take the incident field to be an evanescent plane wave
with polarization e:

EL(r) = e, explik(q) - r]. (10)

Note that if the evanescent wave is generated by a prism with
index of refraction n then ky < |q| < nko. Within the accuracy
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of the first Born approximation, we find that the scattered field
is given by the expression

ES(r) = ki / &1 Gop(r, 7)eg explik(q) - 7' In(). (11)

We will consider the inversion of this integral equation to obtain
n in section 3.

3. Inverse problem

In this section we consider the inverse scattering problem
(ISP) of reconstructing the susceptibility function 7(r) from
measurements of the scattered field. We assume that the
sample is illuminated by an incident evanescent wave, although
incident homogeneous waves may also be employed. The
scattered field is detected in the near zone by means of an
idealized point detector. Note that the PSTM measurement
is intrinsically holographic, allowing the extraction of the
complex amplitude of the scattered field from the measured
signal [6, 7]. The detected field on the plane z = z, is assumed
to be sampled on a square lattice with lattice spacing a.

It will prove useful to define a data function ®,(q;, q;) as
the two-dimensional Fourier transform of the scattered field at
the point » = (p, z4). Explicitly,

Dolqr, ) = Y P EL(p, 245 q1) (12)
P

where the dependence on the transverse part g; of the incident
wave has been indicated, the sum over p is carried out over all
lattice vectors and g, belongs to the first Brillouin zone (FBZ)
of the lattice. Making use of equations (9) and (11) and the
identity

13)

. 27\
E eXP[IQ‘P]=<—> E 3(q — p)
a
0 p
we find that

Do (g1, q2) = /d3r2wa(p—qz,z)ew{i(q1 +@—p)p
p

+ilk(q1) — k:(p — @)1z}n(r). (14)
Here
2mklelk @
Wa(q, 2) = ———5—5,, (@ 8ys(q, 2)Ssp(@lep  (15)

k, (Q)02

and p denotes a reciprocal lattice vector.

We assume that ®,(q1, q») is known for (qi, ¢») in the
data set Q and introduce a function x(q;, g>) which is unity
if (q1, @2) € Q and is zero otherwise. Then we define a new
function

Vu(q,Q) =2.(Q—q,.9)x(Q —q.,q) (16)

where g, Q range over all space. Making use of these
definitions we arrive at the system of equations

L
@@= [ &Y Ke-a5@iQ-p ()
p
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where

Ku(q,7; Q) = wo(p — q, 2) explilk.(Q + g — p)
—k:(p—lz}x(Q+q—p,q

Q.2 = / d2p@Pn(r)

and L denotes the range of 7 (r) in the z direction. For fixed
Q, equation (17) defines a one-dimensional integral equation
for 7(Q, z). Following the general method of [21] we find that
the pseudoinverse solution of (17) is given by

(18)

1(Q—p.2)= / d’qd*¢' Ki(p—q,2;Q)
x My, (q.4': Q¥s(d, Q)

where M ;/31 (g, ¢'; Q) is obtained from the overlap integral

(19)

L
Mos(a.q: Q) = /0 dz Y Ko(p—q.2: QK;(p—q.2: Q).
’ 20)

Equation (19) specifies all possible transverse frequency
components of 1(r). Thus we may apply the inverse Fourier
transform to obtain

n(r) = / / dqd’q' Yy eI PIKIp—q,2:Q)
p

x Myl (q.q: Q®p(Q —q'. q)
which is the required inversion formula for the ISP.

Several comments on the inversion formula (21) are
necessary. First, we restrict the integrations over q, ¢’ to the
FBZ. Second, if () is transversely band limited, then the sum
over p may be truncated. Third, if the transverse coordinate p
is taken to be a lattice vector, then the term exp(ip - p) in the
summation and in (18) is equal to unity. Finally, the solution
we have constructed to the ISP is the unique minimum Z? norm
solution of (14) [2].

In order to avoid numerical instability and set the
resolution of the reconstructed image to be commensurate
with the available data, M;/gl (g, ¢'; Q) must be regularized.
In particular, we set

d’Q
(2m)?

e2y)

Mo (g q5 Q) = / 0’ R(ogq) fa (@ @) fL(d: Q)

(22)

where f5,(q; Q) and oéq, are the eigenfunctions and

eigenvalues of M and R is a suitable regularizer. Many

of the commonly used regularization schemes result in a

simple filtering of the eigenvalues of M. The effect of such

regularization is to limit the contribution of the small singular

values to the reconstruction. One way to do this is to simply

cut off all o below some cutoff o,.. That is, we set

1

R(o) = pe(o ) (23)

with 6 denoting the usual Heaviside step function.
Alternatively, the Tikhonov method may be employed.

In figure 2 we demonstrate an application of the method
described above. We consider two point scatterers on the prism
face separated by 0.3A. We simulate the scattered field and
compute the intensity in the measurement plane for three scan
heights, z4, of the probe. We make use of a limited data set.
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Figure 2. Demonstrating the observable intensities and reconstructed images for two point scatterers separated by 0.31 with the
measurement plane at various distances from the prism face. The left column contains simulated intensity in the measurement plane z = z,4
for an illuminating field with transverse wavevector g, set to the maximum value attainable in a prism with index n = 2.5. The middle
column shows the simulated intensity with the illuminating wave incident normal to the plane of observation. The right column displays the
image reconstructed from multiple views obtained with different illuminating fields. Note that the images of the intensity are shown with a
2) x 2 field of view while the reconstructed image is shown with a A /2 x 1 /2 field of view.

We use only the TE polarization, i.e. the polarization vector
parallel to the prism face. The scattered field is computed
on a 41 x 41 window and sampled on a cartesian grid at a
spacing of A/10 with a total of 41 illuminating plane waves,
all with g, = 0 and ¢, on equally spaced points in the range
[—2.5ko, 2.5kg], corresponding to a range attainable with a
prism of index n = 2.5. We place on the object a band limit
commensurate with the sampling of the field, that is we retain
only the p = 0 term of the sum in equation (21). The computed
fields are shown in figure 2 in a 2). x 22 field of view while the
reconstructed scatterer is shown in a /2 x /2 field of view.

The measurement may be seen to be intrinsically
holographic, containing all the necessary phase information.
That is, the incident field and the scattered field in combination
produce an interference pattern in the measurement plane from
which the necessary phase information may be observed. The
scan made furthest from the prism face with an illuminating
evanescent wave may be seen to be completely dominated
by the scattered wave due to the exponential decay of the
illuminating field. Thus when the illuminating field is highly
evanescent and the measurements are made far from the prism
face it may be necessary to also make use of a separate reference
wave to measure the scattered field. It may be observed that
the object structure, which has become unclear in the direct
measurements made further from the sample, is still clearly
evident in the reconstructions. The increased spread of the
points may be attributed to the loss of high spatial frequency
components of the scattered field to exponential decay away
from the scatterers. It is in principle possible to reconstruct
the scatterers with the same resolution at any distance from
the measurement plane. However, any regularization imposed
on the algorithm will produce a depth-dependent resolution
limit due to the exponential decay of the high spatial-frequency

components of the scattered field. With the measurement plane
very close to the prism face the resolution becomes comparable
to (nkog/2m +1/A)~! where A is the spatial sampling interval.
With the measurement plane far from the prism, the experiment
becomes that described in [14] and the resolution approaches
[(1 +n)ko/2m]7".

4. Conclusions

We have examined the forward and inverse scattering problems
relevant to PSTM. These results enable determination of the
three-dimensional structure of the sample under investigation.
Crucial to implementation, we have included the effects of
polarization, an interface in the near zone of the sample, and
have allowed for reconstruction from a sampled or incomplete
data set. Future research will focus on nonlinear corrections
to the inverse problem and more realistic detector tip models.

Appendix

The Green’s tensor in the half-space geometry is given by the
expression

/ 1 d2q —1
Gup(r,r') = o / @Say (@gys(@)Ssp(q)

x explik(q) - (r — 7")] (24)

where k(q) = (q.k(q) and k(@) = /kj—q>
Additionally, S(q) is the matrix which rotates k(q) into the

xz plane, or more explicitly

Y 0
S@=lql" | =9y g O
0 0 |Iql

(25)
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and 5
(k@ o
e = (52) 01+ R@eplit @) (6)
g3 = 1+ R1(q) exp[2ik. ()] @7)
2

&z(%)u—&@mwmhwﬂ} (28)

—\|qglk.
= %{1 + Ro(@ expl2ik(@2]) (29)

0

—\|qglk.
= %{1 ~ Ro@ expl2ik. (@)} (30)

0

all other elements of g being zero. Here R;(q) and R,(q) are
the reflection coefficients given by

k(@) — k.(q)

R = 31
D= k@ Gb
and K.(q) — nk.(q)
\q) —nk;(q
R == 32
29D =% @ k(@) (32)
with k. (q) = \/n?k§ — ¢>.
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