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Inverse scattering for near-field microscopy
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We derive the analytic singular value decomposition of the linearized scattering operator for scalar
waves. This representation leads to a robust inversion formula for the inverse scattering problem in
the near zone. Applications to near-field optics are described20@0 American Institute of
Physics[S0003-695000)00244-9

There has been considerable recent interest in the devel- ) k! , ,
opment of near-field methods for optical microscdpyThis Us(r):f d°r’e™ G(r—r")Vv(r'), (1)

interest is motivated by the remarkable ability of such meth- - . _ .
y y whereG(r)=e'*0'/4zr is the outgoing Green’s function.

ods to image spatial structure with subwavelength )
A . We assume that the scattered wave is measured on the
resolution?™® It is now well recognized, however, that the _ . . . .
lane z=z4 with the scatterer taken to lie entirely in the

analysis and interpretation of near-field images is somewh 1égion O<z<z,.,. We consider either the transmission ge-

problematic. The difficulty can be traced to the fact that theOmetry wherezy=2,.,,, Of the reflection geometry where

connection between the image and the three-dimensiongl — o \we denote the transverse part of the wave vector of
structure of the sgm_ple h_as not been made clear. In particulghe incident field by q so that k=[q,k,(q)], K,(q)
the effects of variations in topography and the optical prop-— ,/k2— 2. we also denote the transverse spatial coordinate
er.tles of the samplg have proyen.to be mcﬁstmgwsh%ﬁm by p, and the scattered field in the plane z4 by U(p). It
this reason there is substantial interest in the near-field inwill prove useful to express the Green’s function in a plane
verse scattering problem. To date, work in this direction hagsvave decomposition:
been limited to the study of surface profile reconstruction for i
homogeneous media’® o G(N=55-3 f d?Q k(Q)~expli Qptik(QlZ}, (2

In this letter we present an analytic solution to the lin- 2(2m)
earized near-field inverse scattering problem for threewherer=(p,z). The waves corresponding @<k3 are the
dimensional inhomogeneous media. This result is particuhomogeneous plane waves and the waves corresponding to
larly timely in view of the recent publication in this journal Q?>kj are the evanescent waves. In the far field, the effect
of a landmark lettd? demonstrating the experimental real- of evanescent waves can be neglected and only the low-
ization of measurements of the optical phase in the nedfequency part of the Green’s function contributedtg(p).
zone. Such measurements provide the necessary input d#i& @ consequence, we recover the well known diffraction-

A . . 14 .
for the near-field inverse scattering problem. Our solution tdimited resolution of\/2.”" In the near field, both low and
this problem has the form of an explicit inversion formula Mgh frequency parts of the scattered wave contribute to

and is obtained from the observation that it is possible tqu(p) Wh'?h leads to |mproved spatial resqlut|on.
In the inverse scattering problem we wish to reconstruct

construct the singular value decompositi®VvD) of the . .
. 9 . POS @vD) . -V(r) from measurements df ,(p). We consider a discrete
scattering operator. This approach provides considerable in- S .
set of incident plane waves labeled by their transverse wave

sight into the mathematical structure of the inverse problerr\1/ectors q. The image reconstruction problem consists of

and provides a natural means of regularization which sets thgolving the system of integral equations
resolution of the reconstructed image to be commensurate
with the available data. 3
U = | dr'Ag(p,rV(r'), 3

We begin by considering an experiment in which a alP) f G @
mo_nochromat|c pIang wave is incident on a rn_ed|um de‘vvhereAq(p,r’) is defined by Eqs(1) and(2) for each wave
scribed by a scattering potentigl(r). For simplicity, we  vector. The solution to Eq3) follows from the SVD of the
ignore the effects of polarization and consider the case of gector valued operator A whose components are the integral
scalar wave. The fieldl(r) satisfies the reduced wave equa- operatorsA,, the SVD being given by
tion, V2U +k3U = —VU whereko=2m/\ is the free-space
wave number. Following standard procedures, we find that A(p’rl):f szE UQ/fl’Q/(P)lﬁé/(r')- (4)
the scattered wave(r) produced on scattering of an inci- 7 '
dent unit amplitude propagating plane wave with wave vecHere the singular functiondo, (p;) andio,(r), and singu-
tor k may be expressed to lowest order in perturbation theoryyr valueso, are defined by

inV as * 2
A*Adg, =05, ¢q,, 6)

dElectronic mail: scott@ee.wustl.edu Aog,=0q,Pq, - (6)
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z = 0.005\ z = 0.205\ SNR=1000 SNR=100
z = 0.405)\ z = 0.605\ SNR=20 SNR=10

= 0.805)\ z = 1.005A

FIG. 2. Tomographs of a scatterer consisting of two point scatterers a dis-
tance 0.51 from the detector with signal to noise rati(BSNR) as indicated.

The SNR is the ratio of magnitude of the signal to the standard deviation of

the noise at each data point.

ieiezalk(a’ +Q)—K; (a+Q)]

Mgq'(Q)=
qq
4k, (9" +Q)k; (q+Q)
1— elZmalek; (a+Q)+K; () —eky(a’ + Q) —ky(q")]
i : X
FIG. 1. Tomographs at distancefrom the measurement plane. The field of * * _ ’ _ N
view in each tomograph is X \. ek; (q+Q)+k7 (q) —ek,(q'+Q)—kx(q’)

(10

wheree=1 for the transmission geometry aseé=—1 for

the reflection geometryz;=0). SinceM (Q) is Hermitian
we can choose the (Q) to be orthonormal. It may now be

Aq(P,f')ZJ d?Q adgd(m & (1), (7)  obtained from Eq.(6) that the ¢q (r) are given by

da/q (P) =c/q,(Q)g%'(p). The solution to Eq(3) may now

In order to solve Eqsi4)—(6) for  and ¢ it will prove
useful to first find the SVD oRy(p,r’). We find that

where be expressed as
1 +
0(p) =5 €@, ® vm:j d2p' A" (r,p)U(p'), (1)
B —iB(2) where
" arogiera
X expli Q-p—ilz- 24K (Q+ )~ izKE (@), N R U X

© is the generalized inverse @&(p,r’). Finally, using Egs.
where B(z) is a function which is unity on the intervad  (11) and(12) we obtain our main result:
€[0,zhax @nd is zero elsewhere. This result can be used to 1
obtain the idgntityAgAqufxqq/(Q)(an)zfg, where the V(r):f dzp'f dZQ/E U—wQ/(r)qbg/q(p’)Uq(p’),
overlap function xqq/(Q) is defined by the expression @R

) 13
(f&,13) = xqq'(Q) 8*(Q’ — Q). An explicit expression for N 13
o may be found but is not needed. or explicitly,
Returning now to the problem of constructing the SVD —j
of A, we make use of Eq(5) and the ansatz thafq,(r) V(r)= WJ’ d?Q 2 - c/q,c/q
(rQ/Eanc/q(Q)fq(r) to find that the vectors of coeffi- aq./ 7Q/

cientsc,(Q) are the eigenvectors with elgenvalueé/ of a « i0-p—ilz—z.lK* (q' +O)—izK* ('
matrix M(Q) given by the expression My (Q) XHiQp=ilz= 24k (4" +Q)~izkz (9]

= Xqq (Q)odad , explicitly xUq(a+Q), (14
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where Uq(Q) is the two dimensional Fourier transform of The Fourier transform of the field ,(Q) was computed for
Uq(p)- vectorsQ on a 41 by 41 grid with a spacing of && The

The above formula gives the minimuinf norm solution  images are displayed on a quadratic gray scale and negative
to the inverse problem given the scattering data. This statesalues of the reconstructed potential have been rejected.
ment follows from the result that the SVD provides the so-  Figure 2 demonstrates the robustness of the inversion
lution to Eq.(3) that belongs to the orthogonal complementprocedure in the presence of noise. We present the recon-
of the null space. It is important to note that the size of thestruction of two point scatterers a distance @.5fom the
null space is expected to decrease as the number of incideffeasurement plane with noise added to the signal at various
wave vectors increases and thus the inversion procedure jgvels as indicated. The noise was taken to be Gaussian and
systematically improvable. Additionally the SVD provides of zero mean, with a variance proportional to the square of
considerable information on the degree of ill posedness ofhe signal at each pixel on the measurement plane.
the problem through the rate of decay of the singular values. |n conclusion, we have described an inverse scattering
It also gives insight into how much information is contained method for near-field scattered waves that provides subwave-
in the data by controlling which features @fcan be recov- |ength resolution. We emphasize that our approach repre-
ered in a stable way, namely those that are close to a singulaents an analytic rather than a numerical solution to the im-
function with correspondingly large singular value. age reconstruction problem. The recent demonstration of

The inversion kernel Eq12) is highly singular, and thus  phase measurements in the optical near fleddiggests that
numerically unstable. As a consequence, it is necessary tpe idea presented here is experimentally feasible. Further-
introduce a cutoff on the small singular values thereby efmore, our results are of general physical interest since they
fecting a regularization of the inverse problem. That is, weare applicable to imaging with any scalar wave with data

setyq, = ¢q,=0 for oq,<omin, Whereo,, must be cho-  obtained in any zone.
sen appropriately for the available data. Note that regulariza-
tion here has a natural physical interpretation—it simply sets ~ The authors wish to thank Dr. Vadim Markel for valu-
the spatial resolution of the reconstruction. able discussions.
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