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Inverse scattering for near-field microscopy
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We derive the analytic singular value decomposition of the linearized scattering operator for scalar
waves. This representation leads to a robust inversion formula for the inverse scattering problem in
the near zone. Applications to near-field optics are described. ©2000 American Institute of
Physics.@S0003-6951~00!00244-8#
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There has been considerable recent interest in the de
opment of near-field methods for optical microscopy.1,2 This
interest is motivated by the remarkable ability of such me
ods to image spatial structure with subwavelen
resolution.3–8 It is now well recognized, however, that th
analysis and interpretation of near-field images is somew
problematic. The difficulty can be traced to the fact that
connection between the image and the three-dimensi
structure of the sample has not been made clear. In partic
the effects of variations in topography and the optical pr
erties of the sample have proven to be indistinguishable.9 For
this reason there is substantial interest in the near-field
verse scattering problem. To date, work in this direction
been limited to the study of surface profile reconstruction
homogeneous media.9–12

In this letter we present an analytic solution to the l
earized near-field inverse scattering problem for thr
dimensional inhomogeneous media. This result is part
larly timely in view of the recent publication in this journa
of a landmark letter13 demonstrating the experimental rea
ization of measurements of the optical phase in the n
zone. Such measurements provide the necessary input
for the near-field inverse scattering problem. Our solution
this problem has the form of an explicit inversion formu
and is obtained from the observation that it is possible
construct the singular value decomposition~SVD! of the
scattering operator. This approach provides considerable
sight into the mathematical structure of the inverse prob
and provides a natural means of regularization which sets
resolution of the reconstructed image to be commensu
with the available data.

We begin by considering an experiment in which
monochromatic plane wave is incident on a medium
scribed by a scattering potentialV(r ). For simplicity, we
ignore the effects of polarization and consider the case
scalar wave. The fieldU(r ) satisfies the reduced wave equ
tion, ¹2U1k0

2U52VU wherek052p/l is the free-space
wave number. Following standard procedures, we find
the scattered waveUs(r ) produced on scattering of an inc
dent unit amplitude propagating plane wave with wave v
tor k may be expressed to lowest order in perturbation the
in V as

a!Electronic mail: scott@ee.wustl.edu
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Us~r !5E d3r 8eik"r8G~r2r 8!V~r 8!, ~1!

whereG(r )5eik0r /4pr is the outgoing Green’s function.
We assume that the scattered wave is measured on

plane z5zd with the scatterer taken to lie entirely in th
region 0<z<zmax. We consider either the transmission g
ometry wherezd>zmax, or the reflection geometry wher
zd50. We denote the transverse part of the wave vecto
the incident field by q so that k5@q,kz(q)#, kz(q)
5Ak0

22q2. We also denote the transverse spatial coordin
by r, and the scattered field in the planez5zd by Uq(r). It
will prove useful to express the Green’s function in a pla
wave decomposition:

G~r !5
i

2~2p!2 E d2Q kz~Q!21 exp$ iQ"r1 ikz~Q!uzu%, ~2!

wherer5(r,z). The waves corresponding toQ2<k0
2 are the

homogeneous plane waves and the waves correspondin
Q2.k0

2 are the evanescent waves. In the far field, the eff
of evanescent waves can be neglected and only the
frequency part of the Green’s function contributes toUq(r).
As a consequence, we recover the well known diffractio
limited resolution ofl/2.14 In the near field, both low and
high frequency parts of the scattered wave contribute
Uq(r) which leads to improved spatial resolution.

In the inverse scattering problem we wish to reconstr
V(r ) from measurements ofUq(r). We consider a discrete
set of incident plane waves labeled by their transverse w
vectors q. The image reconstruction problem consists
solving the system of integral equations

Uq~r!5E d3r 8Aq~r,r 8!V~r 8!, ~3!

whereAq(r,r 8) is defined by Eqs.~1! and~2! for each wave
vector. The solution to Eq.~3! follows from the SVD of the
vector valued operator A whose components are the inte
operatorsAq , the SVD being given by

A~r,r 8!5E d2Q(
l

sQl fQl ~r!cQl* ~r 8!. ~4!

Here the singular functionsfQl (r1) andcQl (r ), and singu-
lar valuessQl are defined by

A* AcQl 5sQl
2 cQl , ~5!

AcQl 5sQl fQl . ~6!
8 © 2000 American Institute of Physics
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In order to solve Eqs.~4!–~6! for c andf it will prove
useful to first find the SVD ofAq(r,r 8). We find that

Aq~r,r 8!5E d2Q sQ
q gQ

q ~r! f Q
q* ~r 8!, ~7!

where

gQ
q ~r!5

1

2p
ei (Q1q)"r, ~8!

f Q
q ~r !5

2 iB~z!

4psQ
q kz* (Q1q)

3exp$ iQ"r2 i uz2zdukz* ~Q1q!2 izkz* ~q!%,

~9!

where B(z) is a function which is unity on the intervalz
P@0,zmax# and is zero elsewhere. This result can be used

obtain the identityAq* Aqf Q
q85xqq8(Q)(sQ

q )2f Q
q , where the

overlap function xqq8(Q) is defined by the expressio

^ f Q
q , f Q8

q8 &5xqq8(Q)d (2)(Q82Q). An explicit expression for
sQ

q may be found but is not needed.
Returning now to the problem of constructing the SV

of A, we make use of Eq.~5! and the ansatz thatcQl (r )
5sQl

21(qsQ
q cl q(Q) f Q

q (r ), to find that the vectors of coeffi
cientscl (Q) are the eigenvectors with eigenvaluessQl

2 of a
matrix M (Q) given by the expression Mqq8(Q)

5xqq8(Q)sQ
q sQ

q8 , explicitly

FIG. 1. Tomographs at distancesz from the measurement plane. The field
view in each tomograph isl3l.
to

Mqq8~Q!5
iei«zd[kz(q81Q)2kz* (q1Q)]

4kz~q81Q!kz* ~q1Q!

3
12eizmax[«kz* (q1Q)1kz* (q)2«kz(q81Q)2kz(q8)]

«kz* ~q1Q!1kz* ~q!2«kz~q81Q!2kz~q8!
,

~10!

where«51 for the transmission geometry and«521 for
the reflection geometry (zd50). SinceM (Q) is Hermitian
we can choose thecl (Q) to be orthonormal. It may now be
obtained from Eq. ~6! that the fQl (r ) are given by

fQl q8(r)5cl q8(Q)gQ
q8(r). The solution to Eq.~3! may now

be expressed as

V~r !5E d2r8A1~r ,r8!U~r8!, ~11!

where

A1~r ,r8!5E d2Q(
l

1

sQl

cQl ~r !fQl* ~r8!, ~12!

is the generalized inverse ofA(r,r 8). Finally, using Eqs.
~11! and ~12! we obtain our main result:

V~r !5E d2r8E d2Q(
l ,q

1

sQl

cQl ~r !fQl q* ~r8!Uq~r8!,

~13!

or explicitly,

V~r !5
2 i

2~2p!2 E d2Q (
q,q8,l

1

sQl
2 cl q8

Q cl q
Q*

3exp$ iQ"r2 i uz2zdukz* ~q81Q!2 izkz* ~q8!%

3Ũq~q1Q!, ~14!

FIG. 2. Tomographs of a scatterer consisting of two point scatterers a
tance 0.51l from the detector with signal to noise ratios~SNR! as indicated.
The SNR is the ratio of magnitude of the signal to the standard deviatio
the noise at each data point.
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where Ũq(Q) is the two dimensional Fourier transform o
Uq(r).

The above formula gives the minimumL2 norm solution
to the inverse problem given the scattering data. This st
ment follows from the result that the SVD provides the s
lution to Eq.~3! that belongs to the orthogonal compleme
of the null space. It is important to note that the size of
null space is expected to decrease as the number of inc
wave vectors increases and thus the inversion procedu
systematically improvable. Additionally the SVD provide
considerable information on the degree of ill posedness
the problem through the rate of decay of the singular valu
It also gives insight into how much information is contain
in the data by controlling which features ofV can be recov-
ered in a stable way, namely those that are close to a sing
function with correspondingly large singular value.

The inversion kernel Eq.~12! is highly singular, and thus
numerically unstable. As a consequence, it is necessar
introduce a cutoff on the small singular values thereby
fecting a regularization of the inverse problem. That is,
setcQl 5fQl 50 for sQl ,smin , wheresmin must be cho-
sen appropriately for the available data. Note that regular
tion here has a natural physical interpretation—it simply s
the spatial resolution of the reconstruction.

To demonstrate the feasibility of the reconstruction alg
rithm, we have numerically simulated the forward proble
to obtain the data for measurements made in a transmis
geometry. The scatterer consists of a three-dimensional
tribution of twelve point scatterers, two on the horizont
vertical, or diagonal axis of each of six planes. Figure
shows the reconstructions obtained. Because the high
quency components of the field fall off exponentially wi
distance from the scatterer, the resolution of the image
dependent on the depth of the slice. The simulations w
done for 21 angles of illumination with transverse wave v
tors all directed in thex̂ direction and ranging uniformly
from 2kox̂ to k0x̂. The inversion kernel@Eq. ~12!# was ob-
tained by computing the matricesM from expression~10!
and numerically diagonalizing to obtain thecl

Q andsQl . It is
important to note that this is a one time computational co
The sum onl was truncated forsQl

2 ,max(sQl
2 )31027.
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The Fourier transform of the fieldŨq(Q) was computed for
vectorsQ on a 41 by 41 grid with a spacing of 0.5k0 . The
images are displayed on a quadratic gray scale and neg
values of the reconstructed potential have been rejected

Figure 2 demonstrates the robustness of the invers
procedure in the presence of noise. We present the re
struction of two point scatterers a distance 0.51l from the
measurement plane with noise added to the signal at var
levels as indicated. The noise was taken to be Gaussian
of zero mean, with a variance proportional to the square
the signal at each pixel on the measurement plane.

In conclusion, we have described an inverse scatte
method for near-field scattered waves that provides subw
length resolution. We emphasize that our approach re
sents an analytic rather than a numerical solution to the
age reconstruction problem. The recent demonstration
phase measurements in the optical near field13 suggests that
the idea presented here is experimentally feasible. Furt
more, our results are of general physical interest since t
are applicable to imaging with any scalar wave with da
obtained in any zone.

The authors wish to thank Dr. Vadim Markel for valu
able discussions.
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