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Abstract.  The optical cross-section theorem is extended to cases in which
the incident field contains evanescent waves. Physical interpretations are
discussed. Some explicit examples are given and possible applications are
proposed.

1. Introduction

The optical theorem is generally formulated for the case where the incident
field is a single homogeneous plane wave [1, 2] and for pairs of plane waves
incident on non-absorbing media[3, p. 47]. More recently the theorem has been
generalized for arbitrary incident-free fields [4], that is fields containing homo-
geneous plane wave modes only. In this paper a generalization of the theorem is
derived which applies when evanescent waves are present in the incident field.

The generalization of the optical theorem obtained in [4] has the form

P(e) — 47753 JJA(Sia Si)f(s/, S”) a2 d2S”, (1)
where
A(s',s!) = {d" (sD)als])) (2)

and P is the power extinguished from the incident beam by scattering and
absorption. A is the angular correlation function of the incident field which is
described statistically by an ensemble, each member of which is a superposition of
plane waves with randomly distributed amplitudes a(si) and I denotes the
imaginary part. Further, f(s’,s") is the scattering amplitude in the direction
specified by the unit vector s’ when the incident wave is a plane wave which
propagates in the direction specified by s”. More explicitly, the total field is given
by

v(r) =y () + v (), (3)

where
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J als1) exp (ikrs") d%s, (4)
— J (lkr) dZS/, (5)
-

r._

s==0=Ir), (6)
p

s'=px+qy+1-p—P"%, (7)
s1 = pX + gy, (8)
d*s' = dpdgq, 9)

and X, y and z are the Cartesian unit vectors in the x, y and z directions
respectively. The absorbed power is given by the expression

P = —lzj (" Vi) s dz, (10)
k= Js

where X is a surface which completely enclosed the scatterer. The power carried by

the scattered field is given by the expression

PY =isj (" wy) s ds. (11)
X

Noting that since v satisfies the homogeneous Helmholtz equation
sj (W W) s ds =0, (12)
)

we find that for any deterministic field the extinguished power is given by the
expression

)

The theorem given by equation (1) has been derived by integrating the right-
hand side of equation (13) over the surface = of a large sphere of radius R, centred
at some point in the scatterer. The extinguished power is independent of the size of
the sphere over which the flux is integrated so long as the sphere encloses the
scatterer. For kR sufficiently large the integral may be evaluted by the method of
stationary phase [5]. Such a derivation is valid only with free incident fields, that is
with incident fields of the form given by equation (4) for which the angular
spectrum amplitudes a(s1) may be non-zero only for real unit vectors s so that

st=p+4< L (14)

It should be noted that, although equation (1) is a generalization of what is
usually referred to as the optical cross-section theorem, we have abandoned the
concept of cross-section and instead deal with the unnormalized extinguished
power P'_ The cross-section is defined as the extinguished power divided by the
incident power per unit area. The incident power per unit area for anything other
than a single plane wave is an ambiguous quantity which depends not only on the
orientation of the plane of projection but also on its absolute position.
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2. Derivation of the theorem for evanescent incident fields

We shall generalize the theorem expressed by equation (1) to include any
incident field which propagates into the half-space z > 0. T o do this we shall first
extend the optical theorem to situations where the incident field is evanescent, that
is fields for which the incident plane wave has the form

v = exp (ikr *so), (15)

where the z component of the unit vector so (so *so = 1) is strictly imaginary. Such
a wave decays exponentially in amplitude with increasing values of z.

The extinguished power in this case is still taken to be the sum of the absorbed
power and the power carried by the scattered field alone and equation (13) still
holds. However, one must now note that, in order to calculate the power absorbed
by the scatterer as is done in equation (10), the source of the incident field must lie
entirely outside the surface ¥ of integration. Since any incident field containing
evanescent components must be generated at finite distances from the scatterer,
the surface X cannot simply be taken as large as we like as is done in calculations
involving asymptotic methods for incident fields which are homogeneous. The
source of homogeneous fields may be regarded as being located infinitely far from
the scatterer and thus always outside X. Thus X must lie at a finite distance from
the scatterer and we abandon the asymptotic methods employed to derive the
theorem for homogeneous fields.

We can determine the power extinguished from an incident evanescent wave by
identifying the variables in which the extinguished power must be analytic and
then proceed to continue analytically, in several variables, the result pertaining to
incident homogeneous waves.

It has been shown [6] that, if the unit vector s; is expressed in polar coordinates

(). 9),
sj = Xsinfjcos ¢; + ¥ sin6;sing; +zcos o, (16)

where X, y and 2 are the unit vectors along the x, y and z directions respectively,
then the scattering amplitude f(s1, s2) is an analytic function of 6;. Furthermore,
in view of the reciprocity relation which holds for both real and complex directions
of propagation [7],

f(s1,82) = f(=s2, —s1), (17)

the scattering amplitude f(s;,s;) must also be an analytic function of 6;. The
complex unit vectors corresponding to the evanescent components of the field may
be expressed in terms of complex 6 and real ¢. The analytic continuation of
f(s1,2) to complex directions of propagation is unique and unambiguous and
gives us a complete descrption of the scattered field including the near zone.f

Let us consider the power extinguished from a coherent beam consisting of two
plane waves

W(i) = ay exp (ikr *s1) + ax exp (ikr *s2). (18)

T We refer the reader to[6], specifically equation (2. 108. The amplitude in that reference
is related to the scattering amplitude in our notation by 4{(a, g) = f (12) s) where s is given by
equation (2.9) of [6]. For applications of analytic continuation to the calculation of the
scattered field and the extinction coefficient associated with the reaction of evanescent
waves, see references [8].
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We denote the extinguished power in this case as P9y, a). Making use of
equation (13)) this quantity may be expressed in the form

P@mhm%:ﬂme«s+§mmy@snwpmv@—sm

+ (s + 83)ararf (s, s2) exp likr +(s — s5)]
+ (s + 83 a1a5f (s, s1) exp likr +(s — s5)]
+ (s + s))axayf (s, s) exp likr (s — s})]} s dals), (19)

where do(s) =sin0d0dg, 0 and ¢ being the polar coordinates of the unit vector s.
Because the real part of the integral is taken, this quantity is not analytic in the
angular variables 0; or 6. In order to exploit the analytic properties of the
scattering amplitude, it will prove useful to define a quantity

P=POL1) - PO D) +ilPI(1, 1) - PO -1 (20)
Using equation (19) which applies for real as well as complex s; and sz, we find
that
P=2ir | tls+si)Gs. ) explife s )
4
+ (s +s2)f" (s, s1) exp [~ikr +(s — s2)]} s dals), (21)

for all, generally complex, unit vectors s; and s>.

In view of the analytic properties of f(s1, s2) it follows from equation (21) and
Theorem 4.9.1 of [9] that 7 is an analytic function of the two complex variables 6}
and 6, separately. By Hartog’s theorem [10, theorem 2, p. 32] it follows that P is
analytic in the space of the two complex variables 0\ and 0.

The angular correlation function of the incident field consisting of two
monochromatic plane waves defined by equation (18) is given by the expression

Als’ s") = [ms?(s' — s1) + ws@ (s’ — )"
x [a15(2)(s” —sp) + a25(2)(8” - )], (22)

where 52 is the two-dimensional Dirac delta function. It follows from equation (1)
that, for real s; and s>,

4 * *
POay, ar) = T3l Pf(s1, s1) + danf (s, 82) + dharf(sa, s1) + laaf (s, 82)).

k
(23)
Using equation (23) and the definition (20) we find that
P=S1(s1,50) ~1'(s2.51)] (24

for real s1 and s».

Since P, given by equation (21), is an analytic function of 6] and 6, the
expression on the right-hand side of equation (24) is the boundary value on the real
6] and 6> axes of an analytic function of two complex variables. We seek the
continuation of equation (24) in the space of complex 6] and 6.

We recall that if g(z) is an analytic function of z, then sois g"(z*) and that g"(z)
is an analytic function of z*. We see that there is precisely one function, analytic in
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6 and 6>, whose boundary value on the real 6] and 6, axes is equation (24), namely
the function

8 * sk
P ==flst,s0) — £ (s3,50)) (25)
The uniqueness of this continuation follows from a basic theorem of analytic
function theory.
If we take s1 = s> = so, we deduce from the definition (20) that

P =4iP9(1,0). (26)

The power extinguished from a single incident plane wave, be it evanescent or
homogeneous, is therefore given by the expression

4 "
P = fif(so, s0). (27)
Making use of the linearity of the problem, as was done in [4] to obtain equation
(1), we find that the generalized optical theorem with arbitrary incident fields has
the form 4
P =4 “A<s s, 8" ds s (28)
which reduces, as it should, to equation (1) when the incident field does not contain
evanescent waves.

3. Physical interpretation

When the incident field is homogeneous, equa,tion (27) has a well-known
physical 1nterpretat10n Conservation of energy requires that the extinguished
power P © must be removed from the incident field, evidently by an interference
mechanism. As one moves progressively farther from the scatterer, there is only
one component of the scattered field which propagates along with the incident
plane wave, namely the forward-scattered field. We may therefore conclude without
any calculation that P must be a function of the forward-scattering amplitude
f(s0, s0). The exact functional relationship has to be worked out and is given by
equation (27) with so bemg real for homogeneous waves [1-4].

If the incident wave is evanescent, the physical picture becomes more compli-
cated. Evanescent waves cannot exist in a source-free unbounded three-dimen-
sional space. We consider then, as a particular model for the generation of
evanescent waves, two half-spaces, the left half-space being uniformly filled with
a dielectric with a real index of refraction greater than unity at the frequency which
we consider. The right half-space is taken to be vacuum, except for the presence of
a scatterer of finite extent. In the absence of a scatterer, a single evanescent wave
may be produced in the right half-space by the total internal reflection of a
homogeneous plane wave incident from the left. The interaction of the evanescent
wave and the scatterer produces a scattered field that carries a finite (non-zero)
amount of power to the far zone.T Furthermore, the scatterer itself may absorb
some of the incident power.

T The scattering amplitude f{s1, s2) in this case must take into account the presence of
the dielectric half-space. Within the accuracy of the first Born approximation (single
scattering) the scattering amplitude is unchanged from that of the scatterer in free space.
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Figure 1.  An evanescent plane wave in the right half-space is generated by total internal
reﬂection of a wave which propagates in the direction specified by the unit vector
s =pk + ¢y + mz in the left half-space. The resulting evanescent wave corresponds
to a complex d1rect1on of pr 2pa,gatlon S}?ezmﬁed by the wunit vector
s’ = np&k + ngy +im'z with m' = (n , assuming that n > < p* + ¢
The reﬂected wave propagates in the d1rect1on specified by the unit vector
3 =pk+ qy mz. A and B are constants which depend on the value of the index of
refraction in the left half-space. The process of scattering generates another
evanescent wave which corresponds to a complex direction of propagation s” and
couples back into the dielectric half-space as a homogeneous plane wave which
propagates in the direction of the reflected wave, 3.

We must account for the power scattered and absorbed by the scatterer in the
right half-space by depletion of the reflected beam in the left half-space. There is
precisely one component of the scattered field which may couple back into the left half-
space and propagate concurrently with the reflected beam and that is the evanescent
component of the scattered field corresponding to the complex direction of propagation
specified by s;. The power must therefore be a function of the scattering amplitude
in the direction specified by s, for an incident evanescent plane wave with complex
direction specified by sy (figure 1). Equation (27) expresses this relationship.

There are other ways that one might envisage the generation of evanescent
plane waves. One might consider the evanescent wave to be a component of a field
produced by a source near the scatterer which does not itself appreciably interact
with the scattered field. It has been shown that an evanescent wave may also be
represented as a singular limit of a superposition of homogeneous plane waves, a
particular example being the situation where evanescent waves are generated in the
waist plane of a narrow Gaussian beam [11].

4. Exam ples of applications

To illustrate the main result derived in section 2, we consider the scattering of
an evanescent wave by a dielectric medium characterized by a dielectric suscept-
ibility n(r) so that

V2y(r) + kK2y(r) = =413 () w(r). (29)
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Assuming that the susceptibility is small compared with unity and from point to
point changes smoothly throughout the scatterer, we may calculate the power
perturbatively (i.e. by means of the Born series). We find that, to first order in n,
the power extinguished from a single plane wave is given by the expression

P = 43 Jn(r’) exp [—ikr' (s — s0)] d*r'. (30)

When the incident field is a homogeneous plane wave, the extinguished power
yields information only about the volume integral of the imaginary part of the
susceptibility. We can see that, when the incident field is evanescent, the extin-
guishing power is related to a component of the analytic continuation of the
Fourier transform of the imaginary part of the suseptibility. If it is known a priori
that the medium may be described by a function which is separable in the spatial
variables in the form

3n(r) = alz)p(p), (31)

where z is the distance along the direction of decay of the evanescent wave and p is
a vector orthogonal to the z axis, then, by performing experiments with evanescent
waves which decay at various rates, we may construct a Laplace transform of the z
dependence of the imaginary part of the susceptibiility, that is the z dependence of
the absorptive part a(z) of the medium. As a specific example of this situation,
consider a slab of material whose susceptibility varies smoothly from zero to some
maximum value and then back to zero over the thickness of the slab (this is in
keeping with the conditions required for the validity of the first Born approxima-
tion), for example

- (T
alz) = ap s1n( ” ) (32)
for 0< z < t where ¢ is the thickness of the slab. Writing
J Blp) d*p = 4B, (33)

we find that the power is given by the expression

+ exp (—klsolt)
1+ (klso:10)*

which is proportional to the Laplace transform of o(z) with the variable of
transformation being klso:| (figure 2).

We might also apply this result to scattering on a highly disordered non-
absorbable scatterer. Explicitly, we consider the situation where

3(n(r) =0 (35)

P = 4ictA Bag 1 , (34)

and
Cr,r’) = ry(0)s(r—r"), (36)

where C(r,r’) = {y(r)n(r)) is the two-point correlation function of the suscep-
tibility 1.

It has been shown [4] that for such a medium the scattering amplitude to the
second order of perturbation is given by the expression
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Figure 2. The extinguished power as a function of the decay constant of the evanescent
wave, |so-|, for the scatterer described by equation (32) with the wavelength of the
incident field being such that k¢ = 5.

f(s, SO) :k4j J C(r/’r//)%p(ikh-/——r”b
Vv

v |r/ _ r//|
x exp [—ik(s r' —so r") d* d*r". (37)
Using equation (37) and (27) we see that in this case

Pl = 471k4j ry(r') exp [—ik(sy — so) r'] d*r, (38)
V

which gives the familiar result that, when the incident field is homogeneous, the
extinguished power is proportional to the zero spatial frequency component of the
fluctuations of the medium. When the incident field is evanescent, the extin-
guished power is related to a component of the analytic continuation of the Fourier
transform of the spatial fluctuations of the medium.

In both examples given here, the information obtained in measuring the
extinguished power may be useful in calculating a super-resolved image of the
scattering object. Traditional methods of super-resolution rely, either explicitly or
implicitly, on analytic continuation of the Fourier components of the scatterer
outside the Ewald limiting sphere. These methods are computationally unstable
because of the exponential growth of noise in the process. The ability to measure
the Fourier transform of the object function at points along the imaginary axes of
the complex Fourier variables may allow for a check against run-away exponential
erTors.

5. Conclusion

We have found a generalization of the optical theorem to situations in which
the incident wave is evanescent. In most practical situations the evanescent
components of the incident field may be neglected because they fall off exponen-
tially with increasing propagation distance. However, there are some situations,
notably in near-field optics, in which the scatterer is in close proximity to a source
of inhomogeneous fields. In these situations the evanescent components of the
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incident field may interact with the scatterer and contribute significantly to the
power radiated to the far field.
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