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Abstrac t. The optical cross-section theorem is extended to cases in which
the incident ® eld contains evanescent waves. Physical interpretations are
discussed. Some explicit examples are given and possible applications are
proposed.

1. In tro d u c tio n

The optical theorem is generally formulated for the case where the incident
® eld is a single homogeneous plane wave [1, 2] and for pairs of plane waves
incident on non-absorbing media[3, p. 47]. More recently the theorem has been
generalized for arbitrary incident-free ® elds [4], that is ® elds containing homo-
geneous plane wave modes only. In this paper a generalization of the theorem is
derived which applies when evanescent waves are present in the incident ® eld.

The generalization of the optical theorem obtained in [4] has the form

P e 4p
k

I s , s f s , s d2s d2s , 1

where

s , s a s a s 2

and P e is the power extinguished from the incident beam by scattering and
absorption. is the angular correlation function of the incident ® eld which is
described statistically by an ensemble, each member of which is a superposition of
plane waves with randomly distributed amplitudes a s and I denotes the
imaginary part. Further, f s , s is the scattering amplitude in the direction
speci® ed by the unit vector s when the incident wave is a plane wave which
propagates in the direction speci® ed by s . More explicitly, the total ® eld is given
by

w r w i r w s r , 3

where
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w
i r a s exp ikr·s d2s , 4

w s r a s f s, s
exp ikr

r
d2s , 5

s
r

r
r r , 6

s px̂ qŷ 1 p2 q2 1/ 2ẑ, 7

s px̂ qŷ, 8

d2s dp dq, 9

and x̂, ŷ and ẑ are the Cartesian unit vectors in the x, y and z directions
respectively. The absorbed power is given by the expression

P a 1
k

I
R

w Ñ w ·s dR , 10

where R is a surface which completely enclosed the scatterer. The power carried by
the scattered ® eld is given by the expression

P s 1
k

I
R

w s Ñ w s ·s dR . 11

Noting that since w i satis® es the homogeneous Helmholtz equation

I
R

w i Ñ w
i ·s dR 0, 12

we ® nd that for any deterministic ® eld the extinguished power is given by the
expression

P e 1
k

I
R

w i Ñ w
s

w s Ñ w i ·s dR . 13

The theorem given by equation (1) has been derived by integrating the right-
hand side of equation (13) over the surface R of a large sphere of radius R, centred
at some point in the scatterer. The extinguishedpower is independentof the size of
the sphere over which the ¯ ux is integrated so long as the sphere encloses the
scatterer. For kR su� ciently large the integral may be evaluted by the method of
stationary phase [5]. Such aderivation is valid only with free incident ® elds, that is
with incident ® elds of the form given by equation (4) for which the angular
spectrum amplitudes a s may be non-zero only for real unit vectors s so that

s2 p2 q2 < 1. 14

It should be noted that, although equation (1) is a generalization of what is
usually referred to as the optical cross-section theorem, we have abandoned the
concept of cross-section and instead deal with the unnormalized extinguished
power P e . The cross-section is de® ned as the extinguished power divided by the
incident power per unit area. The incident power per unit area for anything other
than a single plane wave is an ambiguous quantity which depends not only on the
orientation of the plane of projection but also on its absolute position.
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2. De r iv a ti on o f th e th e or e m fo r e v an e s c e n t in c id e n t ® e ld s

We shall generalize the theorem expressed by equation (1) to include any
incident ® eld which propagates into the half-space z > 0. To do this we shall ® rst
extend the optical theorem to situations where the incident ® eld is evanescent, that
is ® elds for which the incident plane wave has the form

w
i exp ikr·s0 , 15

where the z component of the unit vector s0 (s0 ·s0 1) is strictly imaginary. Such
a wave decays exponentially in amplitude with increasing values of z.

The extinguished power in this case is still taken to be the sum of the absorbed
power and the power carried by the scattered ® eld alone and equation (13) still
holds. However, one must now note that, in order to calculate the power absorbed
by the scatterer as is done in equation (10), the source of the incident ® eld must lie
entirely outside the surface R of integration. Since any incident ® eld containing
evanescent components must be generated at ® nite distances from the scatterer,
the surface R cannot simply be taken as large as we like as is done in calculations
involving asymptotic methods for incident ® elds which are homogeneous. The
source of homogeneous ® elds may be regarded as being located in® nitely far from
the scatterer and thus always outside R . Thus R must lie at a ® nite distance from
the scatterer and we abandon the asymptotic methods employed to derive the
theorem for homogeneous ® elds.

We can determine the power extinguished from an incident evanescent wave by
identifying the variables in which the extinguished power must be analytic and
then proceed to continue analytically, in several variables, the result pertaining to
incident homogeneous waves.

It has been shown[6] that, if the unit vector sj is expressed in polar coordinates
(µj , u j),

sj x̂ sinµj cos u j ŷ sinµj sin u j ẑ cosµj , 16

where x̂, ŷ and ẑ are the unit vectors along the x, y and z directions respectively,
then the scattering amplitude f s1, s2 is an analytic function of µ1. Furthermore,
in view of the reciprocity relation which holds for both real and complex directions
of propagation [7],

f s1, s2 f s2, s1 , 17

the scattering amplitude f s1, s2 must also be an analytic function of µ2. The
complex unit vectors corresponding to the evanescent components of the ® eld may
be expressed in terms of complex µ and real u . The analytic continuation of
f s1, s2 to complex directions of propagation is unique and unambiguous and
gives us a complete descrption of the scattered ® eld including the near zone. ²

Let us consider the power extinguished from acoherent beam consisting of two
plane waves

w i a1 exp ikr·s1 a2 exp ikr·s2 . 18

Optical cross-section theorem 893

² We refer the reader to[6], speci® cally equation (2.10). The amplitude in that reference
is related to the scattering amplitude in our notation by A a , b f ẑ , s where s is given by
equation (2.9) of [6]. For applications of analytic continuation to the calculation of the
scattered ® eld and the extinction coe� cient associated with the reaction of evanescent
waves, see references[8].



We denote the extinguished power in this case as P e a1, a2 . Making use of
equation (13)) this quantity may be expressed in the form

P e a1, a2 r
4p

s s1 a1a1f s, s1 exp ikr· s s1

s s2 a2a2f s, s2 exp ikr· s s2

s s2 a1a2f s, s1 exp ikr· s s2

s s1 a2a1f s, s2 exp ikr· s s1 ·s dX s , 19

where dX s sinµdµdu , µ and u being the polar coordinates of the unit vector s.
Because the real part of the integral is taken, this quantity is not analytic in the
angular variables µ1 or µ2. In order to exploit the analytic properties of the
scattering amplitude, it will prove useful to de® ne a quantity

P e 1, i P e 1, i i P e 1, 1 P e 1, 1 . 20

Using equation (19) which applies for real as well as complex s1 and s2, we ® nd
that

2ir
4p

s s1 f s, s2 exp ikr· s s1

s s2 f s, s1 exp ikr· s s2 ·s dX s , 21

for all, generally complex, unit vectors s1 and s2.
In view of the analytic properties of f s1, s2 it follows from equation (21) and

Theorem 4.9.1 of [9] that is an analytic function of the two complex variables µ1
and µ2 separately. By Hartog’s theorem [10, theorem 2, p. 32] it follows that is
analytic in the space of the two complex variables µ1 and µ2.

The angular correlation function of the incident ® eld consisting of two
monochromatic plane waves de® ned by equation (18) is given by the expression

s , s a1d 2 s s1 a2d 2 s s2

a1d 2 s s1 a2d 2 s s2 , 22

where d 2 is the two-dimensional Dirac deltafunction. It follows from equation (1)
that, for real s1 and s2,

P e a1, a2
4p
k

I a1
2f s1, s1 a1a2 f s1, s2 a2a1f s2, s1 a2

2f s2, s2 .

23

Using equation (23) and the de® nition (20) we ® nd that
8p
k

f s1, s2 f s2, s1 , 24
for real s1 and s2.

Since , given by equation (21), is an analytic function of µ1 and µ2 the
expression on the right-hand side of equation (24) is the boundary value on the real
µ1 and µ2 axes of an analytic function of two complex variables. We seek the
continuation of equation (24) in the space of complex µ1 and µ2.

We recall that if g z is an analytic function of z, then so is g z and that g z
is an analytic function of z . We see that there is precisely one function, analytic in
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µ1 and µ2, whose boundary value on the real µ1 and µ2 axes is equation (24), namely
the function

8p
k

f s1, s2 f s2, s1 . 25

The uniqueness of this continuation follows from a basic theorem of analytic
function theory.

If we take s1 s2 s0, we deduce from the de® nition (20) that

4iP e 1, 0 . 26

The power extinguished from a single incident plane wave, be it evanescent or
homogeneous, is therefore given by the expression

P e 4p
k

If s0, s0 . 27

Making use of the linearity of the problem, as was done in [4] to obtain equation
(1), we ® nd that the generalized optical theorem with arbitrary incident ® elds has
the form

P e 4p
k

I s , s f s , s d2s d2s , 28

which reduces, as it should, toequation (1) when the incident ® eld does not contain
evanescent waves.

3. Ph ys i c a l in te rp r e ta ti on

When the incident ® eld is homogeneous, equation (27) has a well-known
physical interpretation. Conservation of energy requires that the extinguished
power P e must be removed from the incident ® eld, evidently by an interference
mechanism. As one moves progressively farther from the scatterer, there is only
one component of the scattered ® eld which propagates along with the incident
plane wave, namely the forward-scattered ® eld. We may therefore conclude without
any calculation that P e must be a function of the forward± scattering amplitude
f s0, s0 . The exact functional relationship has to be worked out and is given by
equation (27) with s0 being real for homogeneous waves [1± 4].

If the incident wave is evanescent, the physical picture becomes more compli-
cated. Evanescent waves cannot exist in a source-free unbounded three-dimen-
sional space. We consider then, as a particular model for the generation of
evanescent waves, two half-spaces, the left half-space being uniformly ® lled with
a dielectricwith a real index of refraction greater than unity at the frequency which
we consider. The right half-space is taken to be vacuum, except for the presence of
a scatterer of ® nite extent. In the absence of a scatterer, a single evanescent wave
may be produced in the right half-space by the total internal re¯ ection of a
homogeneous plane wave incident from the left. The interaction of the evanescent
wave and the scatterer produces a scattered ® eld that carries a ® nite (non-zero)
amount of power to the far zone. ² Furthermore, the scatterer itself may absorb
some of the incident power.
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² The scattering amplitude f s1, s2 in this case must take into account the presence of
the dielectric half-space. Within the accuracy of the ® rst Born approximation (single
scattering) the scattering amplitude is unchanged from that of the scatterer in free space.



We must account for the power scattered and absorbed by the scatterer in the
right half-space by depletion of the rē ected beam in the left half-space. There is
precisely one component of the scattered ® eld which may couple back into the left half-
space and propagate concurrently with the rē ected beam and that is the evanescent
component of the scattered ® eld corresponding to the complex direction of propagation
speci® ed by s0. The power must therefore be a function of the scattering amplitude
in the direction speci® ed by s0 for an incident evanescent plane wave with complex
direction speci® ed by s0 ( ® gure 1). Equation (27) expresses this relationship.

There are other ways that one might envisage the generation of evanescent
plane waves. One might consider the evanescent wave to be a component of a ® eld
produced by a source near the scatterer which does not itself appreciably interact
with the scattered ® eld. It has been shown that an evanescent wave may also be
represented as a singular limit of a superposition of homogeneous plane waves, a
particular example being the situation where evanescent waves are generated in the
waist plane of a narrow Gaussian beam [11].

4. Exa m p le s o f ap p l ic a tio n s

To illustrate the main result derived in section 2, we consider the scattering of
an evanescent wave by a dielectric medium characterized by a dielectric suscept-
ibility h r so that

2 w r k2 w r 4p k2 h r w r . 29
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Figure 1. An evanescent plane wave in the right half-space is generated by total internal
re¯ ection of a wave which propagates in the direction speci® ed by the unit vector
s px̂ qŷ mẑ in the left half-space. The resulting evanescent wave corresponds
to a complex direction of propagation speci® ed by the unit vector
s npx̂ nqŷ im ẑ with m n2p2 n2q2 1 1/ 2, assuming that n 2 < p2 q2.
The re¯ ected wave propagates in the direction speci® ed by the unit vector
~s px̂ qŷ mẑ. A and B are constants which depend on the value of the index of
refraction in the left half-space. The process of scattering generates another
evanescent wave which corresponds to a complex direction of propagation s and
couples back into the dielectric half-space as a homogeneous plane wave which
propagates in the direction of the re¯ ected wave, ~s.



Assuming that the susceptibility is small compared with unity and from point to
point changes smoothly throughout the scatterer, we may calculate the power
perturbatively (i.e. by means of the Born series). We ® nd that, to ® rst order in h ,
the power extinguished from a single plane wave is given by the expression

P e 4p kI h r exp ikr · s0 s0 d3r . 30

When the incident ® eld is a homogeneous plane wave, the extinguished power
yields information only about the volume integral of the imaginary part of the
susceptibility. We can see that, when the incident ® eld is evanescent, the extin-
guishing power is related to a component of the analytic continuation of the
Fourier transform of the imaginary part of the suseptibility. If it is known a priori
that the medium may be described by a function which is separable in the spatial
variables in the form

I h r a z b q , 31

where z is the distance along the direction of decay of the evanescent wave and q is
a vector orthogonal to the z axis, then, by performing experiments with evanescent
waves which decay at various rates, we may construct a Laplace transform of the z
dependence of the imaginary part of the susceptibiility, that is the z dependence of
the absorptive part a z of the medium. As a speci® c example of this situation,
consider a slab of material whose susceptibility varies smoothly from zero to some
maximum value and then back to zero over the thickness of the slab (this is in
keeping with the conditions required for the validity of the ® rst Born approxima-
tion), for example

a z a 0 sin
p z
t

32

for 0 < z < t where t is the thickness of the slab. Writing

b q d2q A b , 33

we ® nd that the power is given by the expression

P e 4ktA b a 0
1 exp k s0 t

1 k s0z t 2 , 34

which is proportional to the Laplace transform of a z with the variable of
transformation being k s0z ( ® gure 2).

We might also apply this result to scattering on a highly disordered non-
absorbable scatterer. Explicitly, we consider the situation where

I h r 0 35

and

C r, r C h r d r r , 36

where C r, r h r h r is the two-point correlation function of the suscep-
tibility h .

It has been shown [4] that for such a medium the scattering amplitude to the
second order of perturbation is given by the expression
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f s, s0 k4

V V
C r , r

exp ik r r
r r

exp ik s·r s0 ·r d3r d2r . 37

Using equation (37) and (27) we see that in this case

P e 4p k4

V
C h r exp ik s0 s0 ·r d3r , 38

which gives the familiar result that, when the incident ® eld is homogeneous, the
extinguished power is proportional to the zero spatial frequency component of the
¯ uctuations of the medium. When the incident ® eld is evanescent, the extin-
guished power is related toacomponent of the analytic continuation of the Fourier
transform of the spatial ¯ uctuations of the medium.

In both examples given here, the information obtained in measuring the
extinguished power may be useful in calculating a super-resolved image of the
scattering object. Traditional methods of super-resolution rely, either explicitly or
implicitly, on analytic continuation of the Fourier components of the scatterer
outside the Ewald limiting sphere. These methods are computationally unstable
because of the exponential growth of noise in the process. The ability to measure
the Fourier transform of the object function at points along the imaginary axes of
the complex Fourier variables may allow for a check against run-away exponential
errors.

5. Co n c lu s io n

We have found a generalization of the optical theorem to situations in which
the incident wave is evanescent. In most practical situations the evanescent
components of the incident ® eld may be neglected because they fall o� exponen-
tially with increasing propagation distance. However, there are some situations,
notably in near-® eld optics, in which the scatterer is in close proximity to a source
of inhomogeneous ® elds. In these situations the evanescent components of the
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Figure 2. The extinguished power as a function of the decay constant of the evanescent
wave, s0z , for the scatterer described by equation (32) with the wavelength of the
incident ® eld being such that kt 5.



incident ® eld may interact with the scatterer and contribute signi® cantly to the
power radiated to the far ® eld.
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