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Abstract:  Synthetic optical holography (SOH) provides efficient encod-
ing of the complex optical signal, both amplitude and phase, for scanning
imaging methods. Prior demonstrations have synthesized reference fields
with a plane-wave-like linear variation of the phase with position. To
record large images without probe-mirror synchronization, a long-travel,
closed-loop reference mirror stage has been required. Here we present SOH
with a synthetic reference wave with sinusoidal spatial variation of the
phase. This allows the use of open loop, limited mirror travel range in SOH,
and leads to a novel holographic inversion algorithm. We validate the theory
with scans of graphene grain boundaries from a scanning near-field optical
microscope, for which SOH has been shown to drastically increase scan
speeds [Nat. Commun. 5, 3499 (2014)]
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1. Introduction

In holography [1-6], an unknown complex signal is encoded as an intensity image such that
information is distributed across the whole image through interference with a known reference
field. In digital holography, the hologram intensity is recorded on a CCD, and the unknown
signal field is retrieved using digital processing [7-9]. This has led in turn to digita holo-
graphic microscopy, a wide-field technique providing quantitative phase [10-12]. Such phase
information can be used for three-dimensional reconstructions [4, 13-15], numerical refocus-
ing [4,16,17], and aberration correction [16]. A recent development in scanning microscopy
has extended the holographic concept of distributed phase information to scanning imaging
through synthetic optical holography (SOH) [18,19].

In SOH, the complex field scattered from afocus or alocal probe interferes with areference
beam at aone-pixel detector. Whilethefocusor thelocal probeis scanned acrossthe sample, the
amplitude and phase of the reference beam is varied slowly compared to the scanning. Record-
ing the detector signal as a function of position yields a hologram where the complex field is
encoded as intensity in a fashion ana ogous the fringe patterns found in wide-field holograms.
The complex field can then be reconstructed by applying a suitable inversion algorithm. The
distributed encoding approach offers several advantages in scanning phase imaging applica
tions: fast phase imaging in combination with technical simplicity and simultaneous operation
at visible and infrared frequencies. Thus, SOH may become an attractive alternative to inter-
ferometric methods of phase imaging which determine the phase at each position of the image
independently and so do not take advantage of the mutual information across pixels.

SOH was demonstrated in both scattering-type scanning near-field optical microscopy (s
SNOM) [18] and scanning confocal microscopy [19]. In those cases, a reference field was
synthesized with a phase linear in position. Such a reference field may be seen to result in
data analogous to those obtained in a holographic measurement with an off-axis plane-wave
reference.

Plane waves often have been used as the reference field in holography as they are relatively
easy to produce using diffractive optics, and signal retrieval is straight forward. The linear (in
position) phase of the plane wave leads to a simple shift of the encoded complex signal in
the Fourier domain, and that signal is thus recovered by filtering and shifting in the Fourier
domain. However, holography may also be seen as an approximately linear optical inverse
problem [20], and so it becomes clear that a large class of reference fields could be used if it
were advantageous to do so.

There are practical motives to develop alternatives to a linear-phase reference wave in SOH.
SOH uses atranglation stage, driven for example by a piezo-electric device, with limited travel
range to move the reference mirror. Long-travel-range, closed-loop piezoel ectric devices must
be used, and the mirror position must be reset occasionally: a process that can lead to errorsin
positioning or timing. A convenient solution would be to perform the scanning imaging while
trand ating the reference mirror slowly and periodically over alimited range.

Such amovement is potentially easy to perform with a short-range piezo-electric device oper-
ated in open loop and would allow to acquire arbitrarily large images without intermittent piezo
retraction. Thus, as a specific example, we implement in this paper a reference in which the
phase varies sinusoidally rather than linearly with position in the detector plane. This reference
field requires a modified inversion algorithm which might be seen to be a multidimensional
generalization of pseudoheterodyne interferometry (PHI) [21-24].
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An analysis different than traditional PHI is required for two reasons. First, the reference
phase variation can be mapped to agrid, on which it variesin two spatial dimension rather than
one temporal dimension. Second, the spatial variation of the signal manifests as broadband
spatial frequency information, whereas the signal is usually taken to be monochromatic (that
is sinusoidal) in PHI. The latter difference requires a modified inversion process, and places
constraints on the signal and reference fields.

In Section 2, Fourier holography and SOH are briefly reviewed. In Section 3 we model data
collection, and present an algorithm for retrieving the amplitude and phase. In Section 4 the
approach is validated in as-SNOM experiment, and noise considerations are discussed.

2. Synthetic optical holography

SOH was recently developed as away to bring the advantages of digital holography [18,19] to
scanning imaging methods. Figure 1 is a sketch of the basic SOH setup. We wish to determine
the complex value of afield Us(r) with full spatial bandwidth Aks located in a plane zs, typi-
cally generated by a sample. A point detector is placed in the image plane, and the sample is
scanned to collect agrid of equally spaced intensity values. At the detector, the signal interferes
with atime-varying referencefield Ugr (t), whose phase is dictated by the displacement of aref-
erence mirror along the z axis. The result is atwo-dimensional grid of intensity values denoted
by I, at each pixel index (a,b).

77

o s

Us (X2 Vi)

Fig. 1. Sketch of setup for synthetic optical holography. The sample is scanned while the
reference mirror moves, creating atime-dependent reference phase. A point detector isused
to assemble a holographic intensity map.

The sampled signal field at each pixel issimply

Usap = Us(XaX+ YbY) - )

Once a particular scan pattern is chosen, the reference field can be reparameterized by pixel
index rather than time. Aslong as the reference phase varies slowly with respect to the integra-
tion time, the sampled reference field at pixel (a,b) is given by Ur ap = Ur (XaX+ YbY) (Where
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the time dependence at optical frequencies has been suppressed). The recorded intensity value
at thispixel is

lab = [Usab+Urapl” = [Usap|® + [Urabl* +UdapUrab +UsapUg ap 2

The basic task of digital holography is to use an inversion algorithm to extract a quantity pro-
portional to Us,p from the data Y., 1ap. The specific inversion algorithm depends on which
reference field, Ur (t), is chosen and what is known a priori about the unknown field.

For the remainder of the manuscript, we will assume that the scanning isin on arectangular
Cartesian grid with uniform sampling so that x(t) = wt and y(t) = wt and measurements are
made at timest, 1, to correspond with pointsr a4, = (Xa, Yb) 0N the sampling grid X, = aAy + Xo,
Vb = bAy + yo. If the mirror in the reference arm is moved also in a fashion linear in time, that
is the reference arm introduces an additional path length d such that d = 2vgt, then Urap =

ARei(kX’wkbe) = ARe”‘H'ra»b. The effective wavevector, k|, is given by kx = 4vr/(vxA) and
ky = 4nvr/ (WA ) where A isthe wavelength of thelight. Assumek lieson the reciprocal lattice
of the sampling grid, explicitly ke = x2m/[(Nx — 1)Ay], and ky = £y2m /[(Ny — 1)Ay],where N;
is the number of sample pointsin direction j and ¢x and ¢y are integers. In the discrete Fourier
transform (DFT) domain the recorded intensity is given by the expression

[ = [ARI*Sp.q+Cpg+ARUS, - o.ty—a+ARUs b pay v, (©)

whereatildeindicatesaDFT, 8, q isthe Kronicker deltafunction, and Cp q = DF T [[Ugap|?] is
the DFT of the autocorrelation term. Thefinal two terms are copies of the unknown field, offset
from the origin and referred to as the conjugate and direct terms, respectively. This situation
is very much like that seen in Leith-Upatnieks off axis holography. A simulation is shown in
Fig. 2 to demonstrate the linear phase, the resulting fringe pattern in the hologram, and the
separation of the direct and conjugate terms.

The unknown field may be recovered from Eq. (3) in astraight forward manner if thefieldis
sufficiently band-limited and k| is sufficiently large. For sufficiently large values of Ag, it can
be assumed that Cp,q is negligible. The DFT of the intensity, filtered with a window centered
at (—{lx,—{y) (the width of which is set to a maximum of ¢,/2,¢,/2 in each dimension) and
shifted to the origin, yields Us, the DFT of the unknown signal. This is demonstrated in Fig. 2
where the two grey-scale images are encoded as the real and imaginary parts of the field. Each
image is 2048x 2048 pixels. The wavevector k| is chosen so that the phase of the reference
cycles through 27 every 4 pixels in the horizontal, or X, direction, and every 10 pixelsin the
vertical, or y, direction. The complex image is recovered from the data indicated in the red box
in panel (e) and the resultant real and imaginary parts are shown in panels (f) and (g).

When épﬁq is not negligible, k; must be larger or the filter narrower, or both. If k| is not
on the reciprocal lattice, then k| = (£x27/[(Nx — 1)Ax], fy27 /[(Ny — 1)Ay]) + Ak and the pro-
cedure described above needs to be augmented with a subpixel shift in the Fourier domain, or,
equivalently, by multiplying the results by €T, Among many advantages of the linear-phase
approach is that a great deal of work has been done to develop the necessary tools of signal
analysisto recover Us [7-9].

3. Sinusoidal-phase reference wave

In principle, the phase of reference field Ur can be chosen as any function of position by con-
trolling the position of the reference mirror in time. The methods used in SOH with linear-
phase reference waves offer the advantage of drawing on well-established techniquesin signal
processing. However, to create the linear-phase synthetic reference wave, the mirror in the ref-
erence arm must have a long travel range. For instance, with A = 10um, a sguare megapixel
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image requires travel of the reference arm mirror of more than 1.25 mm. To avoid this require-
ment and gain other advantages discussed below, we set the reference mirror to oscillate about
its zero position sinusoidally, creating a reference of the form

Ur (t) _ AReiysin(erftJrq))’ (4)

where y is the modulation amplitude in radians, f isthe oscillation frequency in Hz, and ¢ is
a phase offset generated when the mirror zero position does not coincide with the scan zero
position.

There is precedent for the choice of a sinusoidal-phase reference wave. The resulting inter-
ference pattern isthe basis for pseudoheterodyne interferometry, which wasinvented more than
thirty years ago [21]. More recently, sinusoidal mirror motion has been used in wide-field dig-
ital holography [25-27]. In contrast to previous work, here phase information about the object
is shared among pixels and collected as a spatially varying intensity, and we will see that the
non-zero spatial bandwidth of the object results in special concerns in the demodulation step
typical to such techniques.

The sampled sinusoidal-phase reference is

Urab = Arexpliysin(2r ((f —N fs,x) Xa/Vx+ (f =M f&,y) yb/Vy) +9¢)], 5

where fsx and fsy are the sampling frequenciesin the fast and slow scan directions respectively,
v and vy are the scan velocities, and N and M are integers which account for the possibility of
aliasing [28]. The sampling frequencies are discussed further in section 3.2.

We define awavevector for the sinusoidal case, k|, with ks = 27 (f —Nfsx) /vy and
ky =27 (f —Nfsy) /v. The reference field may be expressed in terms of plane-wave compo-
nents by the Jacobi-Anger expansion,

Urap = Arg73n(K7+) — a3 3, ()dnlkiTe). ©)

N=—oco

The intensity from Eq. (2) thus becomes

lab = [Usabl*+ AR+ ARUgap Y, Jdn(y)€™e™iTar+cc. )

N=—oo

Taking a DFT, we have

lpa=IUsabl*8pa+Coa+ArR X, In(1)€"Usn, pniyq

N=—oo

+AR 2 v (7) eiin¢03n’£x+p7n'iy+q- (8)

n=—o

It is convenient to replace ' — —n in the second summation and apply the Bessel function
identity J_m (X) = (—1)"Jm (), allowing us to combine the two summations with the result

lpa = Urab[?8pa+Cpa+ D, Jn(r)€™ (ARUé,nerp,nérq + (_1)nA?iUS,pfn€x7qfn€y> -9
N=—oo

This is the discrete Fourier transform of the intensity as a function of position, analogous to
Eq. (3). There are several pointsin this result that deserve comment. First, asin the linear case,
the autocorrelation may be neglected or filtered, and the constant background manifesting as
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the first term in Eq. (9) may aso be eliminated by filtering. Second, the terms appearing in
the parentheses under the summation are grouped so that, for each value of n, the d.c. part
(the zero spatial frequency) is shifted from the origin by n- (¢x,¢y). Third, for each value of
n the quantity in the parentheses may be seen to be proportional to the Fourier transform of
the real or imaginary parts of the field depending on whether n is even or odd respectively.
That is 2ReU (q) = U*(—q) +U(q) and 2i ImU (q) = U(q) — U*(—q). Fourth, the wavevec-
tor, k, or the corresponding integer pixel index version (¢x,£y), is completely independent of
the wavelength of the light, and instead determined by the velocities of the mirror, the scanning
probe and the sampling rate. This standsin contrast to the linear case, in which the wavevector
isinversely proportional to the wavelength. Fifth, the infinite series of copies of the real and
imaginary parts of thefield falls off rapidly and so may safely be truncated at some point. How-
ever, as may be seenin Fig. 2, it is certainly possible to put nonnegligible amounts of energy
into high-order terms which will alias, or wrap around in the Fourier domain. The weighting
given to each term is determined by the modulation depth which is where the wavelength af-
fects the hologram. A shift in wavelength results in a change in weightings among the terms.
Thistoo stands in contrast to the linear case where a shift in wavelength resultsin a shift in the
Fourier space.

3.1. Inversion

In order to retrieve Us, we must combine at least two of the terms from the summation in Eq.
(9) withindicesn = 2m— 1 (odd) and n = 2m (even), me Z, # 0. Each term isthen filtered with
awindow centered at (nly, néy) and shifted to the origin by (—néy, —néy), the result written I,.
The odd terms, after filtering and shifting, are

I~2m—17p,q =Jm1 (7) g@m-1)¢ (ARLjé_p,_q - AT?US PTQ) )

and the even terms are
[om = Ardom (7)€% (ARUS 4+ ARUspa) -
Taking an inverse DFT of these values and rearranging yields the real and imaginary parts of
the unknown field. We can define two terms
B lom-1
~ 2Jom-1(v) explidam 1)

= Im{ARUs}, (10)

and
I 2m

X = —
2Jom () exp(i¢om)
where an isthe phase of I,,. The unknown field is then simply

U_AR(X—HY)
ST AR

= Re{A3Us}. (11)

(12)

Both X and Y theoretically lie along radial lines in the complex plane, and (ﬁn should therefore
be identical at every pixel in |,. In practice, small variations cause the phase to differ slightly
at each pixel in I, and some kind of estimation must be used. In this manuscript, the phase is
rounded to the nearest 0.01 radians, and the mode is chosen as a measure of ¢,.

Asinthe linear casg, if k| does not lie on the reciprocal |attice of the spatial sampling grid,
a linear phase ramp will appear in the reconstruction. This may be eliminated by several ap-
proaches, including simply multiplication by the appropriate compensating phase ramp. Mak-
ing small adjustments to ky and k, until 11 has aflat phase eliminates the need to know these
valuesa priori.
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Original complex image

Fig. 2. Simulations of SOH with linear- and sinusoidal-phase reference waves. The real
and imaginary part of the origina complex-valued image are shown in panels (a) and (b)
respectively. The mirror position in radians asafunction of position in the scanned imageis
shown in (c) and the resulting hologram is shown in (d) with a41x zoom inset. The Fourier
transform of the hologram is shown in (€) demonstrating the separation of the direct and
conjugate images with the filter used indicated by the red box. The recovered images are
shown in panels(f) and (g). The mirror position for sinusoidal-phase SOH is shown in panel
(h) with resulting hologram and 41x zoom showing the fringe pattern in (i). The Fourier
transform of the hologram is shown in (j) with the two filters used to recover the rea and
imaginary parts of the field indicated by red boxes. The recovered images are shown in (k)
and (1).
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It is also necessary to take care to set the mirror modulation depth such that none of the
denominators Jom-1 () nor Jom () is close to O for any of the terms used in the reconstruction
asthis clearly yields an unstabl e solution. Choosing a small modulation depth along with small
m enforces this constraint.

The sinusoidal phase variation is demonstrated in the simulationin Fig. 2. The resultant holo-
gram and fringes are shown. The same images were used asin the linear case. The wavevectors
were set so that the mechanical mirror phase, that is k - r, cycles through 27 every 8 pixels
in the horizontal direction and every 20 pixels in the vertical direction. The mirror oscillation
depth is set to 1.5 radians (3 radians peak-to-peak).

The Fourier transform is shown in panel (j) where multiple orders may be seen. Then=1
and n = 2 orders have been highlighted in red boxes and labeled Re and Im, and encode the
quantities X and Y given in Egs. (10) and (11). Thereal and imaginary parts of the reconstruc-
tion are obtained by filtering and shifting the data.in the red boxesin accordance with Egs. (10),
(12), and (12).

3.2.  Wavevector and scan parameters

The raster-scan pattern is specified by the forward scan speed in pixels per second (vs), the
backward scan speed (vp), the wait time per slow scan line (Ty) in which the sample is not
scanning, the number of pixels in the fast-scan direction (ny), and the time between pixelsin
the fast scan direction (tx). The sampling frequency in the fast direction is fx = 1/tx. For a
mirror oscillation frequency f in Hz, the spatial frequency of the phase sinusoid in the fast-
scan directionisky = 2r(f —Mfsx) /vy in oscillations per pixel. The mirror frequency f can be
easily chosen small enough that M = 0. The spatial frequency in the slow-scan direction is

n n
ky = 27(f —Mfsy) /vy = 2m(f — Mfsy) (\/:+VZ+TW). (13)

Care must be taken to ensure that each filtered Fourier term contains only negligible contri-
butions from neighboring terms. To that end, the spacing between terms must be larger than
the spatial bandwidth of the sampled object. Practically, the filter applied to each Fourier term
in Eq. (9) should capture the full bandwidth of Us while not overlapping with other terms. In
general, this imposes two constraints. First, ke and ky should be chosen such that Aksj < K
for j € (x,y). This ensures that the full bandwidth of the signal can be captured without in-
terference from neighboring terms. Second, care must be taken to avoid interference from
high-spatial-frequency terms since they wrap around the Fourier plane. There are two ways
to do this: the modulation depth of the mirror can be kept small so that J, (y) is negligible for
n > ArgMin{ny/2lx,ny/2ly}, or ke can be chosen large enough that the wrapped Fourier terms
are safely shifted to in the horizontal direction and do not interfere with the non-wrapped terms,
i.e. ke > Aksyxky/Ny. Theformer strategy was employed in the experimental data presented here.
The object can be oversampled in one or both dimensions to ensure that these constraints are
met. In some experiments, it may be cumbersome to control Ty, or to make vy different from vy,
Inthat case, the Fourier terms can be arranged by making small changesto the mirror oscillation

frequency.

4. Experimental validation

We demonstrate SOH with a sinusoidal-phase reference wave by s-SNOM imaging the same
graphene grain boundary asin [18]. S SNOM [29-32] is a scanning microscopy technique that
circumvents the diffraction limit and provides nanoscale spatial resolution at visible, infrared
and THz wavelengths by recording the light scattered at a scanning probe tip. Detection of both
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Linear-Phase SOH Sinusoidal-Phase SOH
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-25°

Fig. 3. Experimental results for both linear- and sinusoidal-phase reference waves. The
hologram for the linear case is shown in panel (a) with logarithm of the absolute values of
the Fourier transform in panel (b). The magnitude and phase of the linear case reconstruc-
tionsare shown in panels(c) and (d). The hologram for the sinusoidal caseis shownin panel
(e) with logarithm of the absolute values of the Fourier transform in panel (f). Theinverse
Fourier transforms of the data shown in the red boxes, corresponding to X and Y are shown
in the call-outs. The resultant magnitude and phase of the sinusoidal case reconstructions
are shown in panels (g) and (h).
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the amplitude and phase of the tip-scattered light is desirable because it provides the full sup-
pression of background contributions and enables access to the near-field phase [22]. To this
end, different interferometric detection methods have been implemented in ss<SNOM such as
quadrature homodyne [33-35], heterodyne [36—39] and pseudoheterodyne [22] detection. With
the recent introduction of SOH, a fast and technically easy alternative to these interferometic
methods was presented [18]. In s-SNOM, SOH enables rapid nanoimaging, e.g. the acquisi-
tion of megapixel near-field images on the time scale of ten minutes, and imaging at two (and
potentially even more) wavelengths simultaneously. While only linear-phase reference waves
have been considered so far, in the following we will implement and demonstrate SOH with
sinusoidal-phase reference waves in ssSNOM.

Our s-SNOM s based on an atomic force microscope where a sharp metal probe is brought
into near-contact with a sample. When the tip is illuminated with a monochromatic focused
laser beam, it scatters the local near field into propagating modes which becomes the signal
field Us above. Thetip-scattered field Us is collected by a parabolic mirror and interfered at the
detector with a sinusoidal-phase reference field Ur. The latter is generated by reflection from
a piezo-actuated mirror that is slowly moved in a sinusoidal fashion. To suppress background
contributions in Us, the probe is made to oscillate verticaly at a frequency Q and the detector
signal is demodulated at a higher-harmonic frequency nQ [34]. Specifically, while the sample
is scanned, the demodulated detector signal is recorded at the n = 3 harmonic as a function of
position and a near-field hologram is obtained. For comparison, we also performed SOH with
a linear-phase reference wave with the same setup and under the same conditions as has been
described in [18]. In this case, the piezo-actuated mirror is slowly moved at constant velocity.

The results for the sinusoidal and linear cases of SOH SNOM are shown in Fig. 3. In the
sinusoidal case (right column), the measurement was accomplished with a significantly shorter
tranglation of the reference mirror, 3.74um as compared to 1360um in the linear case (left col-
umn), and the piezo was operated in open loop, simplifying acquisition (Physikinstrumente,
model P-611). The illumination wavelength was 10.6um, and the line rate for cases was 4.95
lines per second. The reference mirror modulation depth was measured with the position sen-
sors in the piezo stage to be 3.74um (peak-to-peak), corresponding to y = 2.22 radians, and
its oscillation frequency was set such that it one oscillation was completed in ten scan lines.
Thus, M =N = 0in Egs. (5) and (13). Note that in the linear case, the large travel range of
1360um required two intermittent piezo retracts during image acquisition because the range
of the employed piezo stage was limited to 600um (Physikinstrumente, model PiHera PI-628).
These retracts produced two horizontal stripesin the imagesin Figs. 3(c) and 3(d). Such piezo
retractions are entirely avoided in the sinusoidal case, allowing for the acquisition of arbitrarily
large images without artifacts.

The scan parameters used to acquire the data shown in Fig. 3 resulted in the Fourier terms
from Eq. (9) being arranged nearly vertically, with power being distributed mostly among the
first three terms. Note that by choosing different scan parameters, the arrangement and energy
distribution can be modified. The near-field hologram in Fig. 3(e) shows afast variation in the
slow scan (vertical) direction. The Fourier terms at multiples of k; are present along a nearly
vertical line in the Fourier transform. As shown above, we require one even term and one odd
term to reconstruct the object. In this example, we take the n = +1 and +2 terms, which are
filtered using a Hanning window [40] and shifted to DC. The image was oversampled by a
factor of four in the slow-scan direction to ensure enough separation between Fourier terms
resulting in a hologram that is 256 x 1024 pixels. The window width was set to ~ 0.23ny.
The real and imaginary parts of the image are constructed from then = +2 and n = +1 terms
separately (shown inthe call outs). The amplitude and phase were cal culated then from Eq. (12)
and displayed in panels (g) and (h) of Fig. 3. The images show interference fringes resulting
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from the reflection of plasmons from the graphene grain boundaries [18,41].

We note that since the filters used in the sinusoidal-phase case are smaller than those in the
linear phase, the retrieved objects appear to have smoother edges. Indeed, there is a tradeoff be-
tween the simplicity of the equipment (open loop, short-range piezos) and the object bandwith
for the same size data set. However, if sharper edges are required, the object may be sampled
on afiner grid in order to keep the filter size similar to that used in the linear case. This is
accomplished at the cost of scan speed for agiven SNR.

About 5% of the image was cropped on all sides because of scan stage instabilities during
stop/start and turnaround. These reconstructed images are similar to the results obtained with
pseudoheterodyne interferometry in [41].

The higher-order terms appearing in the Fourier domain may, in principle, be use to recon-
struct the complex field. We demonstrate thisin Fig. 4. The second and third order terms are
used to calculate the real and imaginary parts of the susceptibility, respectively, as indicated
by the red boxes in the Fourier domain image. The use of the higher-order terms may provide
some advantage in reducing certain types of additive noise, which we discuss below.

Fig. 4. Reconstructions computed from the second and third order terms of the sinusoidal-
phase hologram as indicated by the red boxes in the Fourier domain image (I€ft), resulting
in the amplitude (center) and phase (right) images shown.

4.1. Noise considerations

It may be advantageous to include additional Fourier terms from Eq. (9) to improve SNR de-
pending on the noisein the system. For example, we might assume the presence of phase drift in
the interferometer, resulting in noise that is multiplicative in the intensity, or shot noise, which
is additive. In the case that both are present, the intensity is given by

lab = lo.ap(1+ €1ab) + €2ab; (14

where g is the noiseless intensity, &; represents multiplicative noise, and &, represents additive
noise. The subscripts (a,b) have been included to remind us of the domain of the intensity.
Taking a DFT gives N N y
Ipa=lopg+lopg*eLpg+E&2pa- (15

where x represents a convolution.

The spatial power spectrum of &, can be considered uniform if it comes from shot noise.
The multiplicative noise results from randomness in the optical path difference, and its power
spectrum would be expected to fall off at high spatial frequencies [42]. The convolution in
Eg. (15) means that identical copies of the multiplicative noise are reproduced at every Fourier
term, so the inclusion of additional terms does not help mitigate it. However, if the intensity is
dominated by additive noise, it may be useful to include additional Fourier terms.
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FFT of signal [log] Retrieved phase Retrieved amplitude

6 term, original data

2 term, noise added

8 term, weighted average

Fig. 5. Example of multiple-term reconstruction with simulated noise. Top row: Original
datawith 6-term reconstruction. Middle row: Two-term reconstructed with simul ated Gaus-
sian white noise added to interferogram in the spatial domain. The noise is mostly evident
in the phase reconstruction. Bottom row: Eight term reconstruction with simulated noise
and o = 1. Theresult isimproved over the two-term case.
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The general procedure for doing so is as follows. Define a set of odd indices .#, |.#| = M,
and a set of even indices ./",|.4"| = N. For each index, the DFT of the intensity is filtered,
shifted, and an inverse DFT is taken as in the two-term case above. The retrieved complex
signal Usis given by

Us= X/ +iY, (16)

where X’ and Y’ are, for aweighting parameter o € [0, 1], sums over the even and odd terms,
i.e
1 I oldn(y)|+1-o
Yo =5 T (17)
¢ ZmGZ.// I (7) €xp [i m| v (It (V) [+1—x)

and
1 In oh(P)]+1-o

2 neZJV In () exp [i én] Sw oIy (V)| +1—a)

Note that as oo — 0, these equations indicate a straight average over the Fourier terms as indi-
cated by Egs. (10) and (11), and as o« — 1, they indicate a weighted average proportional to
each term’s magnitude (i.e. its SNR for additive white noise), which is advantageous for noisy
data. Asin the two-term case, care must be taken that the Bessel functions are not close to zero,
or the solution is unstable. Further regularization could be used to improve the stability [43].

Figure 5 is an illustration of the above procedure. The first row shows the original data
inverted using the j = £ (1,2, 3) terms. Since we have ahigh SNR, we seelittle to no improve-
ment over the two-term inversion in Fig. 3. In the subsequent rows, we have computationally
added Gaussian-distributed additive white noise to the recorded intensity signal (the SNR was
set to ~ 1.2). The middle row shows the result of the two-term inversion, which includes a
strong complex error, particularly visible in the phase. The bottom row shows the result of
applying Egs. (17) and (17) to eight Fourier terms with o set to 1, implying an average with
weights equal to |Jm|. The result of including eight terms in this case is a clear improvement
over the two-term case, with the grain boundaries being more visible and better defined.

(18)

X, =

5. Conclusion

We have introduced a new option in SOH which uses a sinusoidal-phase reference wave to
perform synthetic digital optical holography. We have provided guidelines for experimental de-
sign and an algorithm for inversion of the data, and we have discussed scan parameters and
noise concerns. Synthetic optical holography provides the means to construct sinusoidal-phase
references, which solve challengesin SOH eliminating mirror travel range as a limiting factor.
Comparing SOH-based and pseudoheterodyne-based s-SNOM it should be noted that in the
latter, the mirror frequency must be on the order of the pixel rate, whereas sinusoidal-phase
SOH requires only that the mirror oscillation frequency is on the order of the line rate, dramati-
cally increasing the imaging speed. Sinusoidal-phase reference waves are aso an example of a
broader class of reference waves not normally seen in digital holography which are now easily
accessible with SOH.
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