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Derivation of the Aberration Correction Filter. The dispersion-cor-
rected spectral domain optical coherence tomography signal,
Sðx; y; kÞ, acquired through two-dimensional transverse scanning
of the incident beam, can be written in terms of a two-dimen-
sional convolution of the (complex) system point-spread function
(PSF), hðx; y; z; kÞ, with the scattering potential ηðx; y; zÞ (1, 2)

Sðx; y; kÞ ¼
ZZZ

hðx − x 0; y − y 0; z 0; kÞηðx 0; y 0; z 0Þdx 0dy 0dz 0:

[S1]

Due to a double-pass (reflection imaging) geometry, the system
PSF, hðx; y; z; kÞ ¼ μrk2jPðkÞj2g2ðx; y; z; kÞ, is a product of the
complex incident and (identical) collection beam, gðx; y; z; kÞ,
where jPðkÞj2 is the optical power spectral density and μr deter-
mines the interferometric splitting ratio. The convolution theo-
rem can be invoked to rewrite Eq. S1 in the transverse spatial
frequency domain as

~SðQx; Qy; kÞ ¼
Z

HðQx; Qy; z 0; kÞ~ηðQx; Qy; z 0Þdz 0; [S2]

where the tilde ð~Þ denotes the 2D transverse Fourier transform,
and HðQx; Qy; z; kÞ encodes the (depth-dependent) transverse
bandpass response of the effective PSF. The axial coordinate
origin z ¼ 0 is set at the nominal (aberration-free) beam focus.
For the ideal case (with aberration-free beams), Eq. S2 can be
simplified using asymptotic approximations for the near and
far-from-focus regimes (2), to give the ISAM forward model
(1, 2)

~SðQx; Qy; kÞ ¼ HðQx; Qy; kÞ~~ηðQx; Qy; QzÞ; [S3]

where the double tilde ð~~Þ denotes the 3D Fourier transform,
the filter HðQx; Qy; kÞ encodes the space-invariant axial and
transverse spatial frequency response of the (ideal) system,
and Qz can be written as a function of k according to

Qz ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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. The interferometric synthetic aperture

microscopy algorithm resamples ~SðQx; Qy; kÞ according to
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, in order to compute a bandpass filtered

version of the 3D Fourier transform of the scattering potential.
Computational adaptive optics (AO) is based on computa-

tional corrections of the effects of pupil plane aberrations in
the tomogram. The objective lens pupil function Pðx; yÞ is related
to the focal-plane transverse frequency response of the single-
pass illumination beam via the coordinate change ðx; yÞ ¼
ð−2πzfQx∕k; −2πzfQy∕kÞ (3), resulting in

~gðQx; Qy; 0; kÞ ¼ P
�
−2πzfQx

k
;
−2πzfQy

k

�
; [S4]

where zf is the (object-side) focal length of the objective lens. The
beam aberration,Φg, is included in the generalized pupil function
(3) Pðx; yÞ ¼ Pidealðx; yÞeikΦgðx;yÞ, where Pidealðx; yÞ is a real Gaus-
sian envelope. Because the ideal beam focus is the impulse re-
sponse of the (single-pass) imaging system, ~gðQx; Qy; 0; kÞ can
be regarded as the (transverse) amplitude transfer function (3).

Although hardware-based AO corrects beam aberrations, our
goal is to correct the effects of aberrations in the system PSF,
hðx; y; z; kÞ. We use Eq. S4 to relate pupil aberrations of the illu-
mination beam to aberration artifacts in the system PSF. Accord-
ing to Eq. S4, pupil aberrations can be corrected in the (focal-
plane) transverse frequency domain of the illumination beam.
For an ideal focus, all transverse spatial frequencies interfere
constructively, resulting in a uniform phase response for both the
single-pass illumination beam and corresponding system PSF.
Defining Φh as the deviation of the system focal-plane PSF from
uniform transverse-frequency phase, and neglecting constant
phase offsets, we obtain

Φh
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[S5]

where the convolution, indicated by *, is performed over coordi-
nates ðQx; QyÞ. It is convenient to invoke the convolution theo-
rem, and numerically evaluate the right-hand side of Eq. S5 as a
product in the spatial domain.

Generally, aberrations in the pupil result in artifacts that vary
with depth, and therefore require correction at each plane of
reconstruction. Correcting these so-called space-variant aberra-
tion effects requires expensive (slow) computations. However,
in some cases of interest, the dominant artifacts are space-invar-
iant, and a more efficient approach may be taken. Space-invariant
contributions of aberrations can be incorporated as a linear filter,
HAðQx; Qy; kÞ, and we can rewrite the model in Eq. S3 as

~SAðQx; Qy; kÞ ≈HAðQx; Qy; kÞHðQx; Qy; kÞ~~ηðQx; Qy; QzÞ;
[S6]

where we only consider the phase contribution from the convolu-
tion in Eq. S5, to obtain the filter HAðQx; Qy; kÞ ¼
eikΦhð−2πzf Qx∕k;−2πzfQy∕kÞ. The effect of this phase filter is simply
inverted (by phase conjugation) to obtain an aberration correc-
tion filter, HACðQx; Qy; kÞ ¼ e−ikΦhð−2πzf Qx∕k;−2πzfQy∕kÞ, and the
signal with ideal (diffraction-limited) resolution restored to the
focal plane is given by

~SACðQx; Qy; kÞ ¼ HACðQx; Qy; kÞ ~SAðQx; Qy; kÞ: [S7]

Space-variant effects of aberrations can be corrected via a 2D
version of the aberration correction filter, and applied to
~SðQx; Qy; zconstÞ, at a given depth zconst (see Fig. 6 and Movie S1).
As in the case of hardware-based AO, we express the pupil

phase aberrations of the beam, Φg, as a sum of Zernike polyno-
mials, corresponding to specific, well-known, aberrations (4, 5).
Although in principle it may be possible to compute Φg from a
measurement of Φh, practically it is convenient to optimize the
aberration correction filter based on the tomogram of a sample
consisting of subresolution scatterers, or on visual inspection or
image metrics applied to the sample of interest. For the results
reported here, the aberration correction filter was optimized
through image metrics (see Methods, Movie S1, and Fig. S1)
applied to the en face planes at depths shown in Fig. 2, while tun-
ing a 2D filter [HAC;2DðQx; QyÞ ¼ e−ikcΦhð−2πzfQx∕kc;−2πzfQy∕kcÞ,

Adie et al. www.pnas.org/cgi/doi/10.1073/pnas.1121193109 1 of 3

http://www.pnas.org/cgi/doi/10.1073/pnas.1121193109


where kc is the central wavenumber] that is applied to these
planes (Movie S1 and Fig. S1). The 3D aberration correction fil-

ter was computed from this 2D filter as HACðQx; Qy; kÞ ¼
e−iðk∕kcÞ argfHAC;2DðQx;QyÞg.
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Fig. S1. Plot of the image metrics used to optimize the aberration correction, as a function of the movie frame number in Movie S1. The image metrics were
calculated for the en face amplitude image corresponding to the plane of least confusion (which is also the nominal aberration-free focal plane). SeeMethods
for details of the image metrics.

Adie et al. www.pnas.org/cgi/doi/10.1073/pnas.1121193109 2 of 3

http://www.pnas.org/cgi/doi/10.1073/pnas.1121193109


Movie S1. Compressed movie showing real-time astigmatism, spherical aberration, and defocus correction of TiO2 phantom data using a 2D aberration
correction filter. The filter was applied independently (i.e., in a space-variant manner) to the three en face depths—near the upper and lower line foci
(Top and Bottom, respectively) and the plane of least confusion (Middle). The central plot shows the cumulative pupil phase, resulting from the Zernike
polynomial corrections Z5 (astigmatism at 45°), Z6 (astigmatism at 0°), Z4 (defocus), and Z11 (spherical aberration). Gamma correction (γ ¼ 0.65) was used
to compress dynamic range in the amplitude images.

Movie S1 (AVI)
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