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Abstract

Classical methods of analysis for Synthetic Aperture Sonar (SAS) systems do not

account for any multi-path propagation e¤ects. If multi-path e¤ects are significant

but not allowed for, they are likely to adversely a¤ect image quality. This investi-

gation addresses multi-path propagation from the sea surface and its e¤ect on SAS

systems. To simplify the problem, only first-order reflections from the sea surface

are considered. Other e¤ects (such as Doppler shift and reflection from bubbles) are

ignored. The propagation of the acoustic signal and its scattering at the surface must

be considered.

The investigation is carried out primarily through computer simulations. Sea sur-

face functions are constructed through the realization of a stochastic model. To make

the problem computationally tractable, a facet-ensemble methodology is employed

when simulating the multi-path returns. Two models are examined – one treats

each facet as a Lambertian reflector, and the other treats each facet as a di¤racting

aperture. The theory needed to perform these simulations is developed.

Both models are applied to a simulated sea surface, a flat surface and an ensemble

of sea surfaces. The results are examined in terms of the physics of each model and in

terms of the possible e¤ects on SAS imaging. The characteristics of the two models

are seen to vary significantly but both are shown to produce significant multi-path

returns. Despite the di¤erences in the models, the general form of the multi-path

response is observed to be similar.
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Chapter 1

Introduction

1.1 Synthetic Aperture Sonar (SAS) Basics

This thesis is concerned with signal propagation e¤ects in Synthetic Aperture Sonar

(SAS) systems. A brief, intuitive description of SAS systems is provided here, along

with some standard terminology. See Chapter 2 for a more detailed treatment.

Figure 1.1. SAS system geometry

Sonar (radar) systems ensonify (illuminate) a target area using acoustic (electro-

magnetic) waves and use the echoes returned to the receiver to image the target.

This thesis will investigate the sonar case, where the target area is the sea-floor or

other submerged targets. Traditional systems isolate a small target subarea by using

a narrow ensonifying beam. The system focuses this beam on di¤erent areas in order

to build an image of the target subarea by subarea. The resolution of the resulting

image is obviously determined by the size of the subareas – a narrower beam leads
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to better resolution. The width of the beam is in turn defined by the size of the trans-

mitting and receiving apertures (larger apertures lead to narrower beams.) Thus, the

quality of image produced is limited by the size of the apertures.

Synthetic aperture techniques are used to circumvent this limitation. A small

aperture transmits and receives signals over a range of positions. The data is collected

coherently ( i.e., baseband phase information is retained) and used to synthesize an

image. Intuitively, data collected from several positions can be used to synthesize a

return from a single larger aperture. A diagram of the basic SAS system geometry is

shown in Figure 1.1.

Figure 1.1 defines a three-dimensional coordinate system (x, y, z). The x¡y plane

is horizontal and lies on the average sea surface level. The z dimension represents

depth below the sea surface. The transmitting and receiving apertures are assumed

to be coincident or nearly coincident and travel along the y-axis between ¡Y0 and

Y0. For this reason, the y-axis is known as the “along-track” dimension. Similarly,

as the x-axis is perpendicular to the aperture path, it is known as the “cross-track”

dimension.

1.2 Problem Statement

Conventional analysis of SAS signals considers the returns from targets as simply an

attenuated and delayed version of the transmitted signal (see Chapter 2.) In practice

this produces good results, but the images are far from perfect and the received signal

is known to be more complex than stated above. It is hoped that further investigation

of these more complex e¤ects will result in an increased understanding of the limits

of current SAS systems.

The particular e¤ect to be investigated is that of multi-path propagation. Multi-

path propagation occurs when reflections allow a signal to take more than one path

between two points. Current methods account for only direct (line-of-sight) propaga-
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Figure 1.2. Graphical example of multi-path propagation

tion. In reality, more complex propagation paths must be added to this.

Figure 1.2 shows multiple paths only from the target back to the receiver. This

‘one-way’ multi-path assumption will be made throughout the investigation . Multi-

path e¤ects from the transmitter to the target are ignored because it is assumed

that the transmitter has su¢cient directivity to not ensonify the sea surface. In

addition, it is assumed that only first-order ( i.e., one reflection between target and

receiver) reflections from the sea surface are significant. Essentially this means that

it is assumed the target is in deep water, and any higher-order paths are attenuated

to an insignificant level. For simplicity, other known e¤ects (such as shadowing and

Doppler shifts) are assumed to have negligible e¤ect.

The ultimate goal of this investigation is to increase understanding of the e¤ects

of multi-path propagation in SAS systems. In particular the e¤ects on the KIWI-SAS

system operated by the University of Canterbury in New Zealand - see [1] and [2].
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1.3 Facet-Ensemble Simulations

The aim of this investigation is to gain an insight into the acoustical signals measured

by real SAS systems. However, the investigation will be pursued by means of com-

puter simulations rather than physical experimentation. Computer simulations have

the advantage of repeatability and minimal expense. In addition, computer simula-

tions allow considerable flexibility when setting parameters such as sea state, target

characteristics and SAS system configuration. Using simulations also allows theo-

retically useful but physically impossible situations to be investigated ( e.g. reflection

from a point target and removal of all e¤ects other than multi-path propagation.) It

is hoped that the results garnered from simulation methods will transfer readily into

real systems.

The simulation method used is known as the facet-ensemble model. This method

has a long history in the analysis of acoustical scattering from the ocean surface –

see [3], [4] and [5]. The facet-ensemble model relies on dividing the rough sea surface

into many small areas. These small areas can then be approximated as flat reflectors

(or some other well-described scattering element.) The returns from each of the facets

can then be summed to give the response from the whole sea surface. The results from

this facet-ensemble method may be used to validate or refute proposed multi-path

models. They may also facilitate improved intuitive understanding.

1.4 Overview of Thesis

Following this introductory chapter is a chapter containing background material and

some preliminary analysis. This chapter restates some basic SAS results before in-

corporating a multi-path return into the same framework. The Sea Surface Modeling

and Simulation chapter follows, in which an approximate sea surface is developed

for computer simulation. The Multi-path Simulation chapter explains the simulation

methodology and the reasoning behind it. Some results from a single sea surface are
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then presented, followed by results from an ensemble of sea surfaces. Conclusions are

drawn, and an appendix follows. The appendix contains the derivation of a Fourier

transform used in modeling the system, a list of variables used in this thesis, and a

code listing.
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Chapter 2

Background and Preliminary Analysis

2.1 Mathematical Description of SAS Data

This sub-section provides a mathematical description of the signals gathered by a SAS

system and is largely adapted directly from [6]. Several assumptions are made in this

development, the first of which is that the target area is on the same horizontal

plane as the transmit/receive apparatus. If this is not the case, it is a relatively

simple transformation to shift the target plane to a level below the transmit/receive

plane. Secondly, it is assumed that the transmit/receive structure is stationary during

the pulse propagation (so the echo signal is received at the same location as the

original signal was transmitted.) This approximation is known as the ‘hop-and-stop’

approximation as it assumes the system hops to the next transmission point, stops for

transmission and reception and then hops to the next point. Thirdly, it is assumed

that the receiver has a gain that increases with time. This gain is designed to undo the

radius-squared spreading losses encountered ( 1
r
amplitude attenuation to the target

and 1
r
attenuation back to the receiver.) Thus the receiver has a gain of r2 at a

propagation time corresponding to a target at range r. Finally, it is assumed that

the apertures have dimensions smaller than the wavelength of the transmitted signal.

This means that the apertures are not directional. In [6], larger apertures are factored

in after the basic development has been completed.

Let the acoustic reflectivity of the target area be given by the complex function

tt (x, y). The phase of tt (x, y) is typically highly random which means that the Fourier

transform of tt (x, y) is spread over a large range of the spectrum. At this point it

is appropriate to explain the double-functional notation used for tt (x, y) and several

functions that will be defined later. This notation allows a clear representation of
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various Fourier transformations. For example, T t (kx, y) is the Fourier transform of

tt (x, y) in the x direction, tT (x, ky) is the Fourier transform in the y direction and

TT (kx, ky) is the two-dimensional Fourier transform of tt (x, y).

Using the preceding assumptions and notations, dd (®, y 0) will be defined as the

signal collected at position y0 as function of the time variable ®. This data function

can be written as shown below.

dd (®, y0) =

Z

y

Z

x

tt (x, y) p

µ
® ¡ 2

vs

q
x2 + (y¡ y 0)2

¶
dxdy (2.1)

With vs being the speed of sound in water and p (®) being the transmitted pulse

(in complex notation.) It should be noted that p (®) may be the raw transmitted

pulse or the pulse-compressed signal. Pulse compression is performed by running the

received signal through a filter matched to the transmitted pulse – this process is

often done ‘on-the-fly’ in real SAS systems. Using Equation 2.1, the following relation

can be derived.

Dd (!, y0) = P (!)

Z

y

Z

x

tt (x, y) exp

�
¡j2k

q
x2 + (y¡ y0)2

¸
dxdy (2.2)

Where k = !
vs
. Using the principle of stationary phase allows a spatial Fourier

transform to be calculated.

DD (!, ky0) = P (!)

Z

y

Z

x

tt (x,y)exp
h
¡j
q
4k2¡ k2y0x

i
exp [¡jky0y] dxdy (2.3)

It should be noted that a
q

1
4k2¡k2

y0
term does arise when taking the Fourier transform

of exp
�
¡j2k

q
x2+ (y ¡ y0)2

¸
. This term is neglected in [6]. It is mentioned in [7]

but is not included in the development. Typically DD (!, ky0) is multiplied by a
q

k
k0

factor in order to negate this unwanted term. This inversion is only approximate, but

the
q

1
4k2¡k2

y 0
term is generally ignored.

A coordinate transform is now used.

kx (!, ky0) =
q
4k2 ¡ k2y0

ky (!, ky0) = ky0 (2.4)
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This coordinate change is known as the Stolt mapping and will be denoted by §{·}.

The final integral in Equation 2.3 can now be recognized as a 2D Fourier transform.

DD (!, ky0) = P (!) TT (kx, ky) (2.5)

In [6] it is shown that aperture e¤ects can be incorporated as follows.

DD (!, ky0) = P (!)A (ky0) TT (kx, ky) (2.6)

A (ky0) is constructed from the Fourier transforms of the transmit and receive

apertures. From Equation 2.6 it can be seen that the transmitted pulse limits the

resolution in the ! direction and the apertures limit the resolution in the ky0 direction.

It should also be noted that these two limiting functions are defined on a di¤erent

coordinate system to the target information. Also, the above development does not

take multi-path e¤ects in to account.

2.2 Form of the Multi-Path Response

In this section a general mathematical representation of the multi-path system will

be derived. Several simplifying assumptions will be made during the course of this

development.

Looking at Figure 1.2, it seems logical that the multi-path response will depend on

the sea surface and on the position of the target and the receiver. For simplicity it will

be assumed that a single target and the receiver are at fixed locations. This means the

simulations will only be valid for one target at one position but it is hoped that this

will still provide insight into the system. This system geometry can also be altered to

investigate di¤erent targets on subsequent runs, and the principle of superposition can

be used to create multiple-target responses. The multi-path response is dependent

on the sea surface which is a function of time. Thus, the multi-path system will be

modeled as a linear (as the acoustical-wave system is linear), time-varying system.
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In Section 2.1 the signal returned to the receiver by a single target was simply the

transmitted pulse delayed by the time-of-flight. In the multi-path case this term is

returned, but so are a series of attenuated and delayed echoes from the sea surface.

Using the standard representation of a linear, time-varying system, the multi-path

returned signal pM (®) can be written as follows.

pM (®) =

Z 1

¡1
p (¾) ee (®,¾) d¾ (2.7)

Where ee (®,¾) is the response at time ® to an impulse applied at time ¾. Both

p (¾) and ee (®, t) are expressed in complex notation ( i.e. amplitude and phase repre-

sentation.)

For a SAS system, pM (®) is generated at di¤erent y0 positions (along-track lo-

cations.) The receiver will be at di¤erent y0 positions at di¤erent times. Standard

SAS terminology makes the distinction between ‘fast’ and ‘slow’ time. Fast time is

represented by the ® variable introduced in Section 2.1 – i.e. it represents the time

coordinate in a single transmitted pulse. As the name suggests, slow time exists on a

longer time scale. Slow time (denoted by t here) corresponds to the time measured as

the system travels its along-track path. Thus, pM (®, t) is the pM (®) given by trans-

mission at time t (or equivalently pM (®, y0) is the pM (®) given at the along-track

position corresponding to time t.) The function pM (®, t) can be calculated by using

Equation 2.7 and advancing the system t seconds.

pM (®, t) =

Z 1

¡1
p (¾) ee (t+ ®, t+ ¾)d¾ (2.8)

The duration of p (¾) is limited to a time-scale much less than that of t (as the

signal p (¾) is transmitted and received many times over a single SAS run.) If ee(®,¾)

can be approximated as time-invariant over a time-scale comparable to both p (¾) and

the range of fast-time (®) data collected on each pulse, then the following is true.

pM (®, t) '
Z 1

¡1
p (¾) ee (® ¡ ¾, t) d¾ (2.9)
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Where ee(t+®, t + ¾) ' ee (® ¡ ¾, t). The physical meaning of this approxi-

mation is to say that the sea surface can be approximated as unmoving ( i.e.time-

invariant) over the time it takes to transmit a single signal and receive the echoes from

the target area. This is justifiable for the KIWI-SAS which transmits and receives a

signal over a time period on the order of 0.1 seconds. It should be noted that this

approximation removes all temporal Doppler e¤ects.

The integral in Equation 2.9 is simply a convolution.

pM (®, t) = p (®) ¤® ee(®, t) (2.10)

Where the ¤® notation is used to explicitly indicate that the convolution is in the

® dimension. Equation 2.10 can also be written as shown below.

pM (®, y
0) = p (®) ¤® ee(®, y0) (2.11)

Where y0 is simply the along-track position at time t.

2.3 Analysis of Multi-Path E¤ects on the SAS Data

This subsection takes the results from Section 2.2 and incorporates them into the

development in Section 2.1. The aim is to provide a mathematical description of the

e¤ect of multi-path e¤ects on the SAS imaging system.

In Section 2.2 the multi-path system was made tractable by assuming a single

target at a fixed location.

tt (x, y) = tt (x0, y0) ± (x¡ x0, y¡ y0) (2.12)

The simulations can be run for di¤erent (x0, y0) pairs. Using Equation 2.11 and

following the steps in Section 2.1 results in the following development.

dd (®, y0) =

Z

y

Z

x

tt (x, y)pM

µ
® ¡ 2

vs

q
x2 + (y¡ y 0)2, y0

¶
dxdy (2.13)
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Taking the temporal Fourier transform.

Dd (!, y0) = PM (!, y
0)

Z

y

Z

x

tt (x, y) exp

�
¡j2k

q
x2 + (y ¡ y0)2

¸
dxdy (2.14)

Using Equation 2.11

Dd (!, y0) = P (!)Ee (!, y0)

Z

y

Z

x

tt (x, y)exp

�
¡j2k

q
x2 + (y ¡ y 0)2

¸
dxdy (2.15)

Taking the Fourier transform with respect to y0.

DD (!, ky0) = P (!)EE (!, ky0 )¤ky0Z

y

Z

x

tt (x, y)exp
h
¡j
q
4k2¡ k2y0x

i
exp [¡jky0y] dxdy (2.16)

Using the Stolt mapping of Equation 2.4 gives the following equation.

DD (!, ky0 ) = P (!)EE (!, ky0) ¤ky 0 T T (kx, ky)

DD (!, ky0 ) = P (!) TTM (kx, ky) (2.17)

Where TTM (kx, ky) = EE (!, ky0) ¤ky0 T T (kx, ky) represents the Fourier image

of the target area after multi-path e¤ects are included. Reconstruction algorithms

start from Equation 2.5 (or Equation 2.6 when including aperture e¤ects) and work to

retrieve the target data. By looking at Equation 2.17, it can be seen that T TM (kx, ky)

will be estimated by the reconstruction algorithms. The form of this function will

be investigated as it represents the ideal reconstruction goal of traditional methods.

By taking the inverse 2D Fourier transform of TTM (kx, ky), it is possible to find an

expression for the spatial image of the target after multi-path e¤ects are included.

ttM (x, y) = ee (x, y) ¤x tt (x, y) (2.18)

It should be noted that to arrive at Equation 2.18 it was necessary to invoke the

ky0 = ky property of the Stolt mapping and to use the relation k = !
vs
. The following

steps are used to find ee (x, y) (let = denote the Fourier transform.)

EE (kx, ky) = § {EE (!, ky0)} (Stolt mapping)

ee (x, y) = =¡12D {EE (kx, ky)} (2.19)
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The Stolt mapping is not well defined over the whole frequency-plane (for exam-

ple, Equation 2.4 does not give negative kx frequencies.) For this reason, it will be

necessary to carry out steps of Equation 2.19 over a limited frequency band. This

band should be at least the support of the transmitted-pulse spectrum P (!). Using

this limited frequency band will cause smoothing e¤ects but using a large band will

still allow insight to be gained.

Equation 2.12 embodies the decision to evaluate the response of a single target.

Substituting into Equation 2.18 gives the following expression.

ttM (x, y) = tt (x0, y0) ee (x ¡ x0, y0) ± (y¡ y0) (2.20)

So the multi-path image of a target at (x0, y0) is given by Equation 2.20. It can

be seen that ttM (x, y) is a scaled and shifted version of an x-axis slice of ee(x, y). All

that is required to evaluate Equation 2.20 is the function ee (®, y0) (defined in Section

2.2) as this function gives ee (x, y) (via the steps in Equation 2.19.) An interesting

property of Equation 2.20 is that the image the SAS system produces (with multi-

path e¤ects included) is non-zero only at the along-track position equal to that of the

target. It should be noted that the analysis contained in this section has not required

the assumption of only investigating first order reflections.
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Chapter 3

Sea Surface Modeling and Simulation

3.1 Stochastic Sea Surface Model

In order to use a facet model it is necessary to have a description of the sea surface

function s (bx,by, t), where the value of s (bx, by, t) gives the displacement from the mean

surface level (the accents are to distinguish this coordinate system from (x, y, z),

which specifically represent cross-track, along-track and depth axes.) This function

can be thought of as one realization of the random process S (bx,by, t) (capitalization

will be used to indicate stochastic quantities.) Using this approach accounts for the

uncertainty in the sea surface ( i.e. the SAS system does not measure the sea surface

shape, so for any given acoustic pulse the sea surface could take on any number

of shapes.) While the sonar system gathers no direct readings on the sea surface,

some basic a-priori properties of the surface are known (it contains a traveling wave

structure dependent on wind speed.) A convenient model of these properties is given

in [8]. This model is simply a correlation model of S (bx,by, t) that is based on the

physics of the ocean and on experimental measurements.

It should be noted that the model defines S in windward, crosswind and time

(w, c, t) coordinates. These can be easily related to the (bx,by, t) coordinate system

by defining a rotation angle Ã, which is simply a measure of the angle between

wind direction and the bx-axis. Thus the model can be defined in (w, c, t)-space and

converted to (bx,by, t)-space using the following rotation transformation.
2

4
bx
by
t

3

5 =

2

4
cosÃ ¡ sinÃ 0
sinÃ cosÃ 0
0 0 1

3

5

2

4
w
c
t

3

5 (3.1)
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The auto-correlation function that constitutes the model is given below.

RS (³, ´, ¿ ) = A
2
D exp

"
¡ (³ ¡ uG¿)2

L2w

#
exp

"
¡
µ
´

Lc

¶2#
cos [Kw³ ¡ - ¿ ] (3.2)

With related variables - ³ Windward delay

´ Crosswind delay

¿ Temporal delay

AD R.M.S. displacement amplitude

Lw Windward correlation length

Lc Crosswind correlation length

Lt Temporal correlation time

Kw Spatial frequency in windward direction

- Temporal frequency

uG =
Lx
Lt

Group velocity of waves

uP = -
Kw

Phase velocity of waves

In addition, measurements show that the distribution of displacements at a given

point is approximately Gaussian [8]. It will be assumed that the random process

S (bx, by, t) is Gaussian. Stationarity is also assumed.

A small modification was made to the model outlined. It can be seen that

RS (³, ´, ¿ ) is made up of a travelling wave (the cosine term) and two correlation

decay terms. As would be expected, when ³ = ´ = ¿ = 0 the function is at a maxi-

mum. However, if ´ = 0 and ³ = uG¿ the function has the potential (depending on

the cosine) to reach the same maximum. This is meant to account for the wave-group

travelling at velocity uG but has the unreasonable property that at any separation
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in time, their are two wave-crests whose correlation coe¢cient is 1. To remedy this

problem without changing the essence of the model, a temporal window function

(win (¿ )) was added.

RS (³, ´, ¿) = A
2
D exp

"
¡ (³ ¡ uG¿ )2

L2w

#
exp

"
¡
µ
´

Lc

¶2#
cos [Kw³ ¡ - ¿]win (¿ ) (3.3)

This model was used throughout the rest of the investigation.

3.2 Sea Surface Simulation Method

To generate a sea surface function s (bx,by, t) it is su¢cient to create one realization of

the random process S (bx,by, t), or equivalently of S (w, c, t) (windward and crosswind

coordinate system.) In order to do this it is su¢cient to realize a three-dimensional

Gaussian random process with an auto-correlation function as given in Equation

3.3. This can be done by passing a three-dimensional, Gaussian, white-noise process

(W (w, c, t)) through a filter (h (w, c, t).)

N (w, c, t) = W (w, c, t) ¤ h (w, c, t) (3.4)

The auto-correlation function of N (w, c, t) is given below.

RN (³, ´, ¿ ) = h (³, ´, ¿) ¤ h (¡³,¡´,¡¿) (3.5)

So to realize S (w, c, t), all that is required is to pass white, Gaussian noise through

a filter that satisfies the following equation.

h (³, ´, ¿) ¤ h (¡³,¡´,¡¿) = RS (³, ´, ¿ ) (3.6)

RS (³, ´, ¿ ) is given by Equation 3.3. Equation 3.6 can be readily solved in the
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Fourier domain.

= [h (³, ´, ¿ )]= [h (¡³ ,¡´,¡¿)] = = [RS (³, ´, ¿ )]

|= [h (³, ´, ¿)]|2 = = [RS (³, ´, ¿ )]

= [h (³, ´, ¿)] =
p
= [RS (³, ´, ¿ )]

h (³, ´, ¿) = =¡1
hp
= [RS (³, ´, ¿)]

i
(3.7)

The penultimate step relies on the fact that the Fourier transform of an auto-

correlation function is always real and non-negative.

It is fairly straight forward to implement the methodology above using a digital

computer and the FFT algorithm. One small wrinkle does occur when taking the

square-root in Equation 3.7 however. It is true that the spectrum of RS (³, ´, ¿ ) as

given in Equation 3.2 is real and greater that zero but that given in Equation 3.3 is not

necessarily so. This is because of the multiplication with the window functionwin (¿ ).

The e¤ect on the spectrum of multiplying by win (¿) is to convolve the spectrum

with Fourier transform of win (¿) . There are possible windows with real, positive

spectrums (such as the triangular window) that would not result in negative frequency

components, however they may alter the form of the auto-correlation function too

significantly.

In order to carry out the digital implementation it is necessary to have a finite-time

auto-correlation - this means truncating RS (³, ´, ¿ ). So not only is there the window

win (¿ ) present, but there are also windows in the spatial dimensions for the purposes

of truncation. Intuitively, using a window that does not significantly alter the form of

RS (³, ´, ¿ ) and doesn’t truncate out significant energy should have a minimal e¤ect

on the spectrum. This is the logic that was used in the digital implementation. The

Fourier transform of the digital approximation to RS (³, ´, ¿ ) was taken and checked

for positivity. Those frequency points that were negative or complex were set to their

absolute value. The energy in these points was totalled and compared to the total

energy. As expected, the energy of the components in error was minimal when the
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Figure 3.1. Example sea surface

approximation to RS (³, ´, ¿) was good. This method produced surfaces that looked

credible to the eye and evolved through time in a reasonable manner. An example

surface is shown in Figure 3.1
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Chapter 4

Multi-Path Propagation Simulation

4.1 General Facet Structure

As mentioned in Section 1.3, the facet-ensemble method works by partitioning a large

complex problem into many small and simple sub-problems. By combining the so-

lutions to these small problems, it is possible to solve the larger problem. For this

application the sea surface is divided into many small facets which are then assumed

to have simple reflection properties. As an acoustical-wave system is linear, the re-

sulting reflections can then be combined by simple addition. In this manner the

facet-ensemble method allows the construction of a set of multi-path, impulse re-

sponses (ee(®, t)) from a set of sea surface functions (s (bx, by, t)). It can be seen that

the facet-ensemble method collapses a four-dimensional system (acoustical propaga-

tion through bx, by, bz and ®) to a two dimensional system (in ® and t (fast and slow

time).) Once the system is in this form it is more tractable mathematically.

Figure 4.1. Method of facet division

In order to provide a comparison, two separate cases will be considered. First,

each facet will be modeled as a section of a plane. This results in triangular facets,

as it takes three points to define a plane. This tiling method is shown in Figure 4.1.
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The simulation software was written to allow a lower-left to upper-right triangular

division (as shown in Figure 4.1) or an upper-left to lower-right triangular division.

The facets are assumed to completely reflect all incident sonic energy. This approx-

imation is justified by noting the large acoustical impedance mismatch between air

and water (approximate velocities are 331m.s¡1 in air and 1500m.s¡1 in water.) As

each facet is a section of a reflecting plane, it can be equally well represented as a

di¤racting aperture. Fourier optics can then be used to determine how the acoustic

waves are reflected.

The second method uses the same tiling method and also assumes complete reflec-

tion from the water/air boundary. However in this case each facet is assumed to have

a rough surface. A phenomenon known as capillary waves are observed on real sea

surfaces. Capillary waves are generated by the local wind conditions (as opposed to

the large scale wind characteristics that produce the troughs and crests described by

Equation 3.3.) These low amplitude capillary waves have a short spatial wavelength

which can be used to justify this ‘roughness’ of the facet model. Mathematically,

the roughness is accounted for by using a Lambertian reflection model for each facet.

Both the Lambertian and the di¤raction-based model will be discussed in detail later

in this section.

4.2 Vector Framework for Facet Analysis

As an acceptable method for developing the sea surface function (s (bx, by, t)) has been

found and the general structure of the facet model has been established, the next

step is to calculate the contribution from each facet. To simplify the mathematics, a

vector system will be used to describe relevant parameters in the multi-path system.

These vectors will be defined over the spatial variables (bx,by,bz) . The target (at depth

Dt) and receiver (at depth Dr) are separated by a distance R and both lie on the

by axis. This is shown pictorially in Figure 4.2, along with the previously mentioned
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Figure 4.2. Geometry used to calculate facet returns

vector system. The vectors are defined as follows

v1 Vector from target to surface

v2 Vector from surface to receiver

v3 Upward normal from current facet

v4 Normal (away from target) to receiver plane

v5 Vector pointing in the direction of a ray reflection from the facet

v6 Vector from target to receiver

Expressions for these vectors will now be found. It is assumed that the facet of

interest is at position (bx0,by0) and has a displacement height of bz0 = s (bx0,by0, t0). In

Section 2.2 a justification was made for taking the sea surface as unmoving over one

set of returns. This is why a single temporal slice at t0 has been taken to give the

facet displacements. The coordinates (bx0,by0) will be defined to be located half way

between the two sample points that form the endpoints of the facet’s hypotenuse (see

Figure 4.1.) Similarly bz0 is defined as the average height of the two sample points

that form the endpoints of the facet’s hypotenuse. From this it can be seen any facet
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and its complementary facet (the one that shares a common hypotenuse) have the

same location (bx0,by0) and the same height bz0.

Figure 4.3. Facet ray reflection angles

Using this framework and referring to Figure 4.2, it is easy to find expressions for

v1 and v2.

v1 =

µ
bx0,
R

2
+ by0, Dt + bz0

¶
(4.1)

v2 =

µ
¡bx0,

R

2
¡ by0,¡ (Dr + bz0)

¶
(4.2)

The upward normal vector v3 can be constructed using the directional slopes of

the facet (mbx in the bx direction and mby in the by direction.) These gradients can be

found from the directional tilts of the facet (µbx and µby.)

v3 = (¡mbx,¡mby, 1) = (¡ tan (µbx) ,¡ tan (µby) , 1) (4.3)

The normal to the receiver plane (v4) is user specified. Typically, the receiver

plane is parallel to the along-track path. For example, a receiver pointed directly

toward the target (azimuthally) and along the horizontal plane would give a v4 of

(0, 1, 0).



30

The vector v5 points along the ray reflection path ( i.e. angle of incidence = angle

of reflection and the rays stay in the plane of incidence.) Figure 4.3 shows how v5

can be calculated – the figure is only two dimensional but it is generalized to three

dimensions in a straightforward manner.. Clockwise angles are positive and anti-

clockwise angles are negative. The angles µbx and µby are the same as used in the

calculation of v3. The angles Ábx and Áby are the slopes of v1 in the bx and by directions.

Ábx = tan
¡1
µ
v1,bz
v1,bx

¶
= tan¡1

µ
Dt + bz0
bx0

¶

Áby = tan
¡1
µ
v1,bz
v1,by

¶
= tan¡1

Ã
Dt + bz0
R
2 + by0

!
(4.4)

Using basic trigonometry v5 can be calculated using the angles shown in Figure

4.3.

v5 =

µ
¾

tan (2µbx¡ Ábx)
,

¾

tan (2µby ¡ Áby)
,¾

¶
(4.5)

Where ¾ is any real number. If ¾ is positive the vector will point upward, if it

is negative the vector will point downward. Obviously only one of these is the true

reflected path. To find which one, the vector dot-product v3 · v5 will be taken. As

the reflected path doesn’t exist above the facet, ¾ will be chosen such that (v3 · v5)

is negative. The absolute value of ¾ is arbitrarily set to one.

v5 =

µ
1

tan (2µbx ¡ Ábx)
,

1

tan (2µby ¡ Áby)
, 1

¶
OR

v5 = ¡
µ

1

tan (2µbx ¡ Ábx)
,

1

tan (2µby ¡ Áby)
, 1

¶
(4.6)

The calculation of v6 is straightforward.

v6 = (0, R,Dt ¡Dr) (4.7)

4.3 Common Facet Analysis

In order to create the impulse response for a given surface ( i.e. ee (®, t0)), it is neces-

sary to calculate a gain coe¢cient (G (bx0, by0)) and a delay time (À (bx0,by0)) for each
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facet. The delay time is referenced to the arrival time for the direct (or line-of-sight)

return. The propagation time from transmitter to target is fixed (as it is assumed no

multi-path propagation occurs) but the propagation time from target to receiver is

not. For a given facet, the di¤erence in propagation distance is shown below.

d (bx0, by0) = |v1|+ |v2|¡ |v6|

=
p
v1 · v1 +

p
v2 · v2 ¡

p
v6 · v6 (4.8)

The delay time is related to d (bx0,by0) very simply.

À (bx0,by0) =
1

vs
d (bx0, by0) (4.9)

Calculating the gain coe¢cient is a lot more complex. There will be a 1
|v6 | attenu-

ation in pulse amplitude as it travels to the target (corresponding to a 1
|v6|2

intensity

attenuation.) This will be following by a 1
|v1 | attenuation as the reflection travels to

the facet. Vector calculus must then be used to determine the flux incident on the

facet (IF (bx0, by0).)

IF (bx0,by0) =
1

|v6|
1

|v1|

Z

facet

v1
|v1|

· v3|v3|
dS (4.10)

The integral in Equation 4.10 is a surface integral over the facet. The normalized

v1 term is a unit vector in direction of propagation and the normalized v3 vector is

a unit normal. Equation 4.10 can be simplified by projecting down on to the bx ¡ by

plane. In order to do this, Equation 4.10 must be divided by the bz term of the unit

normal.

IF (bx0,by0) =
1

|v6|
1

|v1|
|v3|
v3,bz

Z

facet
projection

v1
|v1|

· v3|v3|
dbxdby (4.11)

It will be assumed that the facet is small enough to allow the amplitude to be

approximated as constant across its surface. The area of the facet projection is found

simply by evaluating the area of a right-triangle with side lengths ¢bx and ¢by (the
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sampling periods in the bx and by directions.)

IF (bx0,by0) =
1

|v6|
1

|v1|
|v3|
v3,bz

¢bx¢by
2

v1
|v1|

· v3|v3|

=
¢bx¢by
2

1

|v1|2 v3,bz |v6|
(v1 · v3) (4.12)

This incident flux is then scattered toward the receiver in some fashion by the

facet. This scattering is model dependent ( i.e. di¤erent for the di¤raction model and

the Lambertian model) and for the time being will simply be represented by the

coe¢cient � . In the next section � will be evaluated.

The next step is to model the propagation from the facet to the receiver (which

has an area of ar.) There will be a 1
|v2 | propagation loss and a flux integral at the

receiver. The received flux is denoted by RF (bx0, by0).

RF (bx0,by0) = IF (bx0, by0) �
1

|v2|

Z

receiver

v2
|v2|

· v4|v4|
dS

= IF (bx0, by0) �
1

|v2|
ar
v2
|v2|

· v4|v4|
(4.13)

It has been assumed that the receiver area is small enough to allow the incident

flux to be modeled as a constant. The actual value of the receiver area (ar) is a

constant by which every return will be multiplied. The analysis of Section 2.1 has

neglected any such constants as they do not e¤ect the end image (which will be

normalized to some range.) For this reason, the ar term will be dropped.

Equation 4.12 can be substituted into Equation 4.13.

RF (bx0,by0) = �
¢bx¢by
2

1

|v1|2 |v2|2 v3,bz |v4| |v6|
(v1 · v3) (v2 · v4) (4.14)

To get the gain termG (bx0, by0) it is necessary to multiplyRF (bx0,by0) by the time-

varying gain of the receiver (as mentioned in Section 2.1.) This gain term is twice the

range that the receiver perceives the signal to have come from. A facet with delay

d (bx0, by0) will be perceived to correspond to a target at a range of d(bx0 ,by0)+2|v6|2 as the
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signal travels |v6| to the target and d (bx0, by0) + |v6| back to the receiver.

G (bx0,by0) =
µ
|v6|+

d (bx0, by0)
2

¶2
�
¢bx¢by
2

£

1

|v1|2 |v2|2 v3,bz |v4| |v6|
(v1 · v3) (v2 · v4) (4.15)

It should be noted that this gain term does not account for e¤ects such as occlu-

sions or reflections from bubbles.

4.4 Model Specific Facet Analysis

In order to fully evaluate G (bx0, by0) it is necessary to find an expression for � (the

attenuation due to scattering.) As mentioned earlier, this factor will di¤er for the

two models used (the Lambertian model and the di¤raction-based model.)

4.4.1 Lambertian Model

As mentioned earlier, the Lambertian model is used when the facets are considered

to be rough. This model is simple and commonly used for modelling scattering from

a rough surface [9]. The Lambertian model is an intensity model. As amplitude

calculations are being performed here, some modifications will need to be made.

If a field of intensity 1 is incident on a Lambertian surface (with 100% reflectivity),

the following equation describes the distribution of the reflected energy.

I =
cos'

¼
(4.16)

Where ' is the angle between the out-going ray path and the surface normal. The

factor of ¼ ensures that energy is conserved. Spreading losses have been removed

from this equation as they are already accounted for in Equation 4.15.

Taking the square-root of Equation 4.16 results in an expression for the modulus

of the scattered amplitude

|� | =
r
1

¼

p
cos' =

r
1

¼

s
(v2 ·¡v3)
|v2| |v3|

(4.17)
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As Equation 4.17 shows, cos' is readily expressed in terms of the vector system

developed (as (v2 ·¡v3) = |v2| |v3| cos'.)

It was decided to assign a phase to � that corresponded to the phase delay induced

by propagation over a distance of
q
|v1|2 + |v2|2 ( i.e. the length of the propagation

path from target to receiver.) Obviously this phase delay is dependent upon the wave-

length of the signal. A representative wavelength ¸ was assumed. A reasonable value

for this parameter could be determined by the carrier frequency of the transmitted

signal.

¸ =
2¼vs
!c

(4.18)

Where !c is the carrier frequency. Defining a representative wavelength has the

potential to be an over-simplification, especially as the majority of signals used in

SAS imagery are wide-band chirp signals. This simplification does produce a well

defined phase for � however.

! � = exp
�
j
2¼

¸
(|v1|+ |v2|)

¸
(4.19)

Combining Equation 4.17 and Equation 4.19 results in the following equation.

� =

r
1

¼

s
1

|v2| |v3|
p
(v2 ·¡v3) exp

�
j
2¼

¸
(|v1|+ |v2|)

¸
(4.20)

Combining Equation 4.15 and Equation 4.20 gives an expression for the Lam-

bertian facet gain GL (bx0, by0).

GL (bx0,by0) =
µ
|v6|+

d (bx0,by0)
2

¶2 ¢bx¢by
2
p
¼
exp

�
j
2¼

¸
(|v1|+ |v2|)

¸
£

1

|v1|2 |v2|
5
2
p
|v3|v3,bz |v4| |v6|

(v1 · v3)
p
(v2 ·¡v3) (v2 · v4) (4.21)

By following the development of Equation 4.21, it can be seen that the inner

product terms come from the calculation of |GL (bx0, by0)| and consequently should be

positive. This can be justified for physical reasons too.
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(v1 · v3) < 0 =) The ray is striking the facet from above the surface.

(v2 ·¡v3) < 0 =) The path to the receiver passes through the surface.

(v2 · v4) < 0 =) The facet is behind the receiver.

In of these cases the facet is either occluded ((v1 · v3) < 0) or would not scatter

any energy to the receiver. This leads to the following condition.

If (v1 ·v3) < 0 or (v2 ·¡v3) < 0 or (v2 · v4) < 0

then GL (bx0, by0) = 0 (4.22)

4.4.2 Di¤raction-Based Model

This model uses Fourier optics to find the scattering attenuation � . As each facet is

being treated separately, each facet can be considered as an aperture being ensonified

by a source. This system must be set up so that the amplitude function across the

aperture is equal to that produced by ensonification from the return from the target.

The system will be analyzed at the single wavelength ¸ (as in Section 4.4.1.) The

same accuracy concerns (regarding the single wavelength approximation) as in Section

4.4.1 apply here.

The modulus of the amplitude across the facet aperture has been accounted for

in Equation 4.15. The phase across the aperture and the resultant scattering pattern

must be determined. The first step in doing this is to rotate the facet into a convenient

coordinate system. A coordinate rotation can be performed by pre-multiplication by

a matrix ª, whose rows are orthonormal vectors. The rotation defined here will take

the facet from (bx, by,bz) coordinates to (ex,ey,ez) coordinates.

ª

2

4
bx
by
bz

3

5 =

2

4
ex
ey
ez

3

5 (4.23)

The first requirement of the rotation will be that it rotates the facet’s downward-

normal to lie along one axis. This means one row of ª must be the normalized
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downward facet normal. As the facet edges running along the bx- and by-axis are

orthogonal to the facet downward-normal, it will be possible to define the rotation

such that one of these edges also runs along an axis in (ex,ey,ez) space. The edge

running along the by-axis will be chosen as low grazing angles are predominantly in

the by-direction and the scattering functions are more sensitive to small changes at

low grazing angles. So one row of ª is a normalized version of a vector running along

the by edge. The Gram-Schmidt orthonormalization procedure can then be used to

find a normalized vector orthogonal to both the downward normal and the by edge.

Before this is done, two useful terms will be defined. The quantity ¢bzbx is the change

in sea surface displacement along the facet edge parallel to the bx-axis. Similarly, ¢bzby
is the change in sea surface displacement along the facet edge parallel to the by-axis.

The facet downward-normal vector (fn) is simply ¡v3.

fn = ¡v3

= (mbx,mby,¡1)

=

µ
¢bzbx
¢bx

,
¢bzby
¢by

,¡1
¶

(4.24)

Vectors representing the facet edges (febx and feby) are also easily defined

febx = (¢bx, 0,¢bzbx) (4.25)

feby = (0,¢by,¢bzby) (4.26)

By examining Equations 4.24, 4.25 and 4.26, it can be seen that the downward

normal is indeed orthogonal to both edge vectors.

As mentioned earlier, two rows of the rotation matrix ª will be given by fn
|fn|

and feby

|feby| and the third row (ª3) must be orthogonal to both of these. Using Gram-

Schmidt, a vector (feorth) was constructed to be orthogonal to fn
|fn| and

feby

|feby| . feorth
represents an edge of a facet that is a right-triangle, has another edge given by feby

and a downward normal fn.

feorth =

Ã
¢bx,¡¢by¢bzbx¢bzby

¢by2+¢bz2by
,¢bzbx ¡

¢bzbx¢bz2by
¢by2 +¢bz2by

!
(4.27)
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This now allows the rotation matrix to be defined.

ª =

2

64

feorth
|feorth |
feby

|feby|
fn
|fn|

3

75 (4.28)

By comparing Equation 4.25 to Equation 4.27, it can be seen that if ¢bzbx and ¢bzby
are small in comparison to ¢bx and ¢by, then febx ' feorth. This condition will be

met in a real system as the slope of the sea surface is relatively small, which means

¢bzbx and ¢bzby are small in comparison to ¢bx and ¢by. This leads to the following

approximation.

ª
£
feTbx feTby fnT

¤
'

2

4
|febx| 0 0
0 |feby| 0
0 0 |fn|

3

5 (4.29)

This approximationmeans the rotation matrixª takes the facet to a right-triangle

in the ex¡ ey plane. The rotation will also be applied to the vectors v1, v2 and v5.

ª
£
vT1 vT2 vT5

¤
=
£
ev1T ev2T ev5T

¤
(4.30)

The incident field in the vicinity of the facet can be approximated as a plane wave.

So the phase can be written as shown below.

!IF (ex, ey, ez) = exp
�
j
2¼

¸
(µex (ex¡ ext) + µey (ey ¡ eyt) + µez (ez ¡ ezt))

¸
(4.31)

Where (ext,eyt, ezt) is the target position in (ex, ey, ez) coordinates and the following

definition holds.
ev1
| ev1|

= (µex, µey, µez) (4.32)

The facet is located at (ex0,ey0,ez0) (found by applying ª to (bx0, by0, bz0)) and lies in

the ex ¡ ey plane. This means the phase across the aperture can be written as shown
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below.

!IF (ex, ey) = exp
�
j
2¼

¸
(µex (ex0 ¡ ext) +µey (ey0 ¡ eyt) +µez (ez0 ¡ ezt))

¸

£ exp
�
j
2¼

¸
(µex (ex ¡ ex0) + µey (ey ¡ ey0))

¸

= exp

�
j
2¼

¸
|v1|
¸
exp

�
j
2¼

¸
(µex (ex¡ ex0) + µey (ey ¡ ey0))

¸
(4.33)

It can be seen that Equation 4.33 has been written in a form that places the facet

at the origin ((ex ¡ ex0) and (ey¡ ey0) coordinates.) Appendix A contains the derivation

of the Fourier transform of a facet with zero phase across it and dimensions ¢bx and

¢by - this Fourier transform is denoted by F (!ex,!ey). The Fourier transform of a facet

(with zero phase and at the origin) with dimensions |febx| and |feby| (given by Equation

4.29) can be found using basic properties of the Fourier transform.

FA (!ex,!ey) =
|febx|
¢bx

|feby|
¢by

F

µ
|febx|
¢bx

(±!ex) ,
|feby|
¢by

(±!ey)
¶

(4.34)

The ± terms account for the di¤erent faceting methods. There are four possible

facet orientations which corresponds to the four possible functions obtainable from

Equation 4.34. Including the phase of Equation 4.33 gives the Fourier transform of

the facet aperture function.

FAP (!ex,!ey) = exp

�
j
2¼

¸
|v1|

¸
FA

µ
!ex ¡

2¼µex
¸
,!ey ¡

2¼µey
¸

¶
(4.35)

Fourier optics can now be used to calculate the field at the receiver. First define

the following unit vector.
ev2
| ev2|

= (½ex, ½ey, ½ez) (4.36)

If the receiver is located at (exr, eyr,ezr) in (ex, ey, ez) coordinates then the following

result holds.

½ex =
exr ¡ ex0
| ev2|

(4.37)

½ey =
eyr¡ ey0
| ev2|

(4.38)
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Note that the distances above are referenced to the facet position. Fourier Optics

and in particular Fraunhofer di¤raction (see [10]) can now be applied to give the field

at the receiver.

� =
exp

£
j 2¼
¸
|v2|

¤

j¸
FAP

µ
2¼½ex
¸
,
2¼½ey
¸

¶

=
exp

£
j 2¼
¸
(|v1|+ |v2|)

¤

j¸
FA

µ
2¼ (½ex ¡ µex)

¸
,
2¼ (½ey ¡ µey)

¸

¶
(4.39)

The term accounting for propagation loss has been left out of Equation 4.39 as

it is accounted for in Equation 4.15. Substituting � (as it is defined in Equation

4.39) into Equation 4.15 gives the following expression for the gain when using the

di¤raction model (GD (bx0,by0).)

GD (bx0, by0) =
µ
|v6|+

d (bx0, by0)
2

¶2 ¢bx¢by
2

exp
£
j 2¼¸ (|v1|+ |v2|)

¤

j¸
£

FA

µ
2¼ (½ex ¡µex)

¸
,
2¼ (½ey ¡ µey)

¸

¶
£

1

|v1|2 |v2|2 v3,bz |v4| |v6|
(v1 · v3) (v2 · v4) (4.40)

It should be noted that FA (!ex,!ey) is at its maximum at (0, 0) (this is true of the

Fourier transform of any positive function.) This means that � will be at a maximum

when ½ex = µex and ½ey = µey. This can be justified intuitively. Referring back to

Equation 4.30, Equation 4.32 and the laws of reflection the following can be seen.

ev5
| ev5|

= (µex, µey,¡µez) (4.41)

Equation 4.41 defines the path of a reflected ray (v5) from the path of the incident

ray (v1.) So when the receiver (located by v2) lies along the path of the reflected ray,

½ex = µex, ½ey = µey (Equation 4.36 defines ½ex and ½ey) and the scattered amplitude will

be at a maximum.

The checks of Equation 4.22 will be applied for the same reasons as given in

Section 4.4.1.
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The calculation of GD (bx0, by0) is a long process so the steps will be briefly re-

stated. First the rotation matrix ª is calculated from the sample points. This matrix

transformation is applied to the vectors v1 (or v5) and v2 (which gives the variables

½ex, ½ey, µex and µey.) The sample points are used to calculate the facet edge lengths

|febx| and |feby| which are then used to calculate FA (!ex,!ey). These variables and the

framework of Sections 4.2 and 4.3 allow GD (bx0,by0) to be calculated (using Equation

4.40.)

4.5 Constructing the Impulse Response

Now that each facet has been assigned a delay time À (bx0, by0) (Equation 4.9) and a

gain term G (bx0, by0) (Equation 4.21 or Equation 4.40), the impulse response ee (®, t0)

can be constructed. As this process is being carried out digitally, a sampling period

for ee (®, t0) will have to be found. Each sample in the impulse response has the

e¤ect of adding an attenuated and delayed version of the transmitted pulse. For this

sampled function to adequately represent the continuous case, the transmitted signal

should vary little over the sampling period (denoted by ¢®.) A representative figure

for how fast the signal changes is the central (or carrier) frequency !c – the larger

!c is, the faster the signal varies. So the sampling period can be set as given below.

¢® =
1

CS!c
(4.42)

Where CS is a sampling constant.

An alternative way of approaching this problem is to consider a Nyquist approach.

It is possible that the impulse response ee (®, t0) has a highly variable phase and thus

a very large bandwidth. However, ee (®, t0) is convolved with p (®) to get the received

signal (Equation 2.9.) This means the resultant bandwidth will be limited to that of

p (®). Thus it is only necessary to adequately represent the frequency components of

ee (®, t0) falling within this bandwidth. The Nyquist sampling theorem states that
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the sampling rate ( 1¢®) must be at least twice the highest frequency present. This

highest frequency can be written as
¡
!c
2¼
+ BW

2

¢
(using Hertz rather than angular

frequency and letting BW denote the baseband bandwidth of p (®).) Applying the

Nyquist sampling theorem gives the following result.

1

¢®
¸ 2

µ
!c
2¼
+
BW

2

¶
(4.43)

So Equation 4.43 gives a minimum requirement on CS . However, it should be

noted that the discrete version of ee (®, t0) (denoted by eeD (n¢®, t0)) is not con-

structed by sampling the continuous signal. This means application of the Nyquist

sampling theorem is more of an intuitive approach than one solidly grounded in the-

ory.

The impulse response contains terms for both the echoes from the surface and the

line-of-sight signal. As the delay times are referenced to the time-of-arrival of the

line-of-sight signal, the delay for the line-of-sight term will be zero. As mentioned in

Section 2.1, the time varying gain of the receiver will negate any propagation losses.

This means the following assignment can be made.

eeD (0, t0) = 1 (4.44)

The rest of the impulse response is constructed from the facet returns. Each facet

has to be assigned to a delay time n¢®. This is found by simply rounding the facet

delay to the nearest delay value.

n = round

µ
À (bx0, by0)
¢®

¶
(4.45)

The temporal delay n¢® has a corresponding phase delay of exp
£
j 2¼¸ n¢®

¤
. Thus,

when assigning a facet to a delay of n¢®, the gain is multiplied by exp
£
¡j 2¼¸ n¢®

¤
.

This is because in both the Lambertian model and the di¤raction model, continuous-

wave (CW) analysis was used but the finite duration of p (®) ensures that the system

is not CW. In the CW analysis the delays were represented solely by a phase shift.
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When constructing the impulse response used here, delays are made explicit, so a

corresponding amount of phase shift should be removed.

Each term of eeD (n¢®, t0) is found by simply adding all the facets assigned to

that delay.

eeD (n¢®, t0) =
X

(bx,by) s.t. round(À(bx,by)¢® )=n

G (bx,by) exp
�
¡j 2¼

¸
n¢®

¸
(4.46)

The gain terms are complex and are added using complex addition. Physically,

this corresponds to coherent addition.
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Chapter 5

Single Surface Simulation Results

There are a large number of variables that need to be defined in order to perform a

single simulation run. Some of these variables correspond to physical properties of the

system while others are related to how the simulation is carried out. In order to gain

an intuitive understanding of the system, the results leading to a single multi-path

return (eeD (n¢®, t0)) will be investigated. Two cases will be examined, the response

from a simulated sea surface and the response from a perfectly flat surface. An

intuitive analogy to the multi-path propagation observed is also given. The variables

needed to perform the simulation run will now be given, along with an explanation

of how they were chosen.

Firstly the sea surface correlation function (Equation 3.3) must be defined. The

variables were defined as follows simply because they seemed reasonable for a calm

sea surface.

AD = 0.2m R.M.S. sea surface displacement

Lw = 7m Windward correlation length

Lc = 12m Crosswind correlation length

Lt = 7s Temporal correlation

Kw = 1 rad.m¡1 Windward spatial angular frequency

- = 2 rad.s¡1 Temporal angular frequency

Ã = 0.7¼ rad Wind direction (arbitrary)

win (¿ ) Hanning window

Obviously for the flat sea surface none of these parameters were used. The surface
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was simply s (x, y, t0) = 0.

The variables Dt, Dr, R and v4 define the geometry of a single return (see Figure

4.2.) These will be chosen to be within the design parameters of the KIWI-SAS

system and with the target directly in front of the receiver.

Dt = 10m Target depth

Dr = 10m Receiver depth

R = 100m Target range

v4 = (0, 1, 0) Receiver plane normal

Again following the KIWI-SAS system, the carrier frequency !c is chosen to be

2¼ £ 30£ 103 rad.s¡1.

The variables already mentioned in this section are ones that correspond to the

physical parameters of the system. Several more variables must be defined in order to

run a simulation. The sampling periods of the sea surface are ¢bx, ¢by and ¢t. These

parameters must be chosen so that the sampled surface adequately represents the

real surface it is modeling. This means they depend on the sea surface parameters.

The temporal sampling period (¢t) was chosen to be 0.2 s. This is significant over-

sampling (for a dominant temporal frequency of 2 rad.s¡1) but is on the same order as

the KIWI-SAS signalling period. The spatial sampling periods (¢bx and ¢by) are very

important as they define the facet size. The facetsmust be small enough to adequately

capture the sea surface. In addition, Fraunhofer di¤raction assumes that the receiver

is in the far field which also means a small facet is desirable. Acting against this is the

need for the facet to have dimensions of at least several wavelengths. Fourier optics

was applied in the di¤raction-based model and this methodology does not hold well

for apertures of a size similar to the wavelength. The wavelength ¸ is determined

by the carrier frequency (¸ = 2¼vs
!c
) which in this case gives a wavelength of 5 cm.

With these considerations in mind, a sampling period of 50 cm was chosen in both
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directions.

The size of the surface to be simulated is limited by computational resources.

Through a process of trial and error a suitable size was found. If 128 sample points are

taken in the bx direction (corresponds to a range of 64m), 384 points in the by direction

(a range of 192m) then the surface contains all the significantly contributing facet

positions. Temporally, 128 sample points were taken to give a range of approximately

26s. The sea surface generation code was run with these parameters. As mentioned

in Section 3.2, there will be some correlation frequencies that may be considered in

error. A function was written to calculate the power in these frequencies. For this

particular example, these frequencies represent less than 2% of the total power.

Other parameters that need to be defined are the facet division method (see Sec-

tion 4.1), the model type (Lambertian or di¤raction) and the sampling period of the

impulse response (¢®.) A nominal value for the sampling rate was selected to be 8

times the carrier frequency, i.e.CS = 8
2¼
(see Equation 4.42.)

Figure 5.1. Example sea surface as an image

The following multi-path results are from a flat surface and from the first temporal

slice of sea surface data generated using the parameters above. This sea surface is

the one plotted in Figure 3.1 and displayed as an image in Figure 5.1.
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5.1 Flat Surface Response

The flat sea surface response is useful in that it is deterministic and represents the

mean sea surface state. This allows the underlying trends in the facet gain terms

(G (bx,by)) to be examined. In this section the multi-path results for a flat surface are

presented.

One useful tool in doing this is to plot the modulus of the facet-gains as a function

of facet position. This results in an image that shows which parts of the sea surface

contribute significantly to the impulse response. Each sample point in these images

is the coherent sum of a facet and its complementary facet (so the gain-modulus

value represents the return from the area between four neighboring sea-surface sample

points.)

The delay associated with each facet is a function of position. For a flat surface,

the minimum delay will lie on the surface point equidistant from the target and

receiver. With the geometry used here the target is at (0,¡50) (at a depth of 10m)

and the receiver is at (0, 50) (also at a depth of 10m), so the minimum delay point is

at the origin. Contours of constant delay are ellipses moving out from this point as

the delay time increases.

Another advantage of investigating a flat surface is that the simulation parameters

can be varied and the results examined. The facet size (determined by ¢bx and ¢by)

will be varied. The assumed wavelength ¸ will also be varied (because SAS signals

are typically wideband and assuming a single ¸ is not a well justified approximation.)

The resulting impulse response (eeD (n¢®, t0)) will also be constructed and dis-

cussed.

5.1.1 Lambertian Model

When a multi-path simulation was run for a Lambertian scattering model on a flat

surface, the gain-modulus image of Figure 5.2 was produced. The darker areas rep-
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Figure 5.2. Gain-modulus image for a flat surface with a Lambertian scattering
model

resent a stronger return. The target lies beneath (0,¡50) and the receiver is beneath

(0, 50). It can be seen that there is a strong return directly above the target and

another smaller peak just in front of the receiver. This behavior can be explained by

examining the gain expression of Equation 4.21. The dominant terms in this equation

are the inner-product expressions. The term (v1 · v3) corresponds to the solid angle

a facet presents to the field originating at the target. This term is at a maximum di-

rectly above the target. Similarly, the term (v2 · v4) corresponds to the solid angle the

receiver presents to the return from the sea surface and increases as the facet position

moves away from the receiver. The term (v2 ·¡v3) corresponds to the Lambertian

scattering model – as the path to the receiver moves closer to the facet normal, the

scattered return increases. This term increases as the facet position moves closer to

the receiver. The net e¤ect of all these factors is the response of Figure 5.2.

It should be noted that when a facet and its complementary facet were added

to get a sample point, they were added coherently. However, both facets have the

same reference point and as the phase was assigned by propagation distance, both

facets have identical phase. This means their complex addition can be described

physically as constructive interference. Nearby facets have a similar propagation

distance ( i.e. propagation distance di¤erence ¿ ¸) which means they have a similar

phase. Thus the phase varies smoothly across the surface.
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Figure 5.3. Modulus of the impulse response for a flat surface with a Lambertian
scattering model

Figure 5.4. Phase of the impulse response for a flat surface with a Lambertian
scattering model
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Figure 5.3 shows the modulus of the resulting multi-path impulse response, while

Figure 5.4 is the corresponding phase plot. It should be noted that the first sample

point (which always has a value of 1) has not been plotted as doing so makes the

range on the vertical axis too large. A gap of about 2ms can be seen between when

the line-of-sight signal arrives and when the first echo responses are registered. This

makes sense as the shortest echo path is considerably longer than the direct path from

target to receiver. After that gap, a return is observed that has a modulus decaying

with time.

Both of the plots appear very noisy. Much of this is due to how the signals are

constructed. Facets are assigned (by delay time) to the nearest sample point. A

sampling period was chosen (see Section 4.5 for how it is chosen) that resulted in

approximately 17000 sample points. With this many sample points, some delays

have no facets assigned to them, which results in a gain of 0. This has the potential

to make the plots look very noisy. However, for the 2000 samples between the delay

times of 2ms and 10ms, only 303 have gains of zero.

If the time step in the impulse response is coarsened, there is a potential for the

facets to average out to a smoother curve. Doing this would also have the e¤ect

of increasing the amplitude of the curve. This result emphasizes the fact that the

constructed impulse response (eeD (n¢®, t0)) cannot be thought of as a sampled ver-

sion of the continuous signal (ee (®, t0).) How the impulse will e¤ect the final image

is dependent upon the transmitted signal p (®). Convolving p (®) with the impulse

response constructed will give an approximation to the actual signal measured at the

receiver. This idea can be observed in Equation 2.17. This Equation is formulated so

that the multi-path e¤ects change the observable target not the actual image formed;

and the range resolution is determined by the transmitted signal – i.e. the transmit-

ted pulse p (®) will ‘smooth’ the target into what is observed. One way of quantifying

the e¤ect of the multi-path propagation is to take some sort of energy measure. For

this particular case, the R.M.S. sum of the facets contributions is 0.435, which is a
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significant fraction of the amplitude from the direct propagation (which is 1.)

Figure 5.5. Gain-modulus image for a flat surface with a Lambertian scattering
model and a larger facet size

Figure 5.4 shows a highly variable phase that is distributed between ¡0.4 and 0.4

radians. This result is logical when the method for assigning phase in the Lambertian

model is considered. Phase is assigned to a facet-gain by simply calculating the phase

delay over the propagation distance. When the impulse response is constructed these

delays are rounded to the nearest delay sample-point and this amount of phase delay

is removed from the gain expression. As mentioned earlier, the transmitted pulse

should vary little between adjacent delay sample-points. This means the phase delay

of the facet and the phase delay of the sample-point it is assigned to should not vary

significantly. There will be a small variation however and this corresponds to what is

observed in Figure 5.4.

A flat surface is simple and deterministic. In addition, faceting the surface does not

introduce any approximation error (the faceted surface is also flat.) For this reason

the surface will be sampled at 1m in both directions and the response examined.

Any change in the response is due to the simulation procedure as the surface remains

perfectly represented. Intuitive insights are di¢cult to gain from the impulse response

(see Figures 5.3 and 5.4) so the gain-modulus plots will be examined. This neglects

phase characteristics, but for the Lambertian case these are well understood.

Figure 5.5 shows the gain-modulus plot for this larger facet size. Comparing it
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Figure 5.6. Gain-modulus image for a flat surface with a Lambertian scattering
model and a shorter characteristic wavelength

to Figure 5.2 (the smaller facet size), no di¤erences are evident. This makes sense as

the development of the Lambertian model contains no aspects that are sensitive to

facet size.

Another simulation parameter that can be varied is the carrier frequency !c. A

simulation was run with twice the carrier frequency used previously ( i.e.,!c is chosen

to be 2¼£ 60£ 103.) The gain-modulus image for this simulation is shown in Figure

5.6. Again, there are no noticeable di¤erences. With the Lambertian model, the

carrier frequency only e¤ects the phase term. As mentioned earlier in this section,

this term is essentially undone when the impulse response is constructed. The phase

variance observed in Figure 5.4 does increase. This is a simulation e¤ect but it could

be argued that the phase should be more variable for a higher frequency transmitted

signal.

5.1.2 Di¤raction-Based Model

Figure 5.7 is the gain-modulus image that was produced when a simulation was

run on a flat surface with a di¤raction-based scattering model. It can be seen that

this response is significantly di¤erent from the Lambertian case (Figure 5.2.) The

Lambertian case is smooth while the di¤raction-based case is oscillatory. This is due



52

Figure 5.7. Gain-modulus image for a flat surface with a di¤raction-based scattering
model

to the Fourier transform term in the di¤raction-based gain equation (Equation 4.40),

which tends to dominate the more slowly-varying terms. Since the surface is flat,

each facet and its complementary facet add to give a rectangular area. As stated in

Appendix A, this results in a separable two-dimensional sinc function for the Fourier

transform. The shape of this can be seen in Figure 5.7. The angle between the ray

reflection and the path to the receiver are the ordinates of this Fourier transform (see

Section 4.4.2.) Thus the area that corresponds to a near direct ray-reflection from

facet to receiver ( i.e. the central area directly between the target and receiver) has

the largest returns. Positions further from this area take on lesser values and tend to

oscillate in the same fashion as the two-dimensional sinc function.

Figure 5.7 has been explained in terms of the mathematics of the model but is

it reasonable physically? One unlikely property is the lack of smooth contours. The

major return from the surface is between the target and the receiver, with smaller

responses along the two axes – there are not significant returns on the ‘diagonals’.

It seems likely that this phenomenon is a result of choosing triangular facets (that

sum to rectangles) rather than any physical property of the real system. A more

intuitive response would have elliptical contours of equal return (this sort of result

would be produced if the facet’s Fourier transform had circular symmetry.) Another

questionable phenomenon is the oscillation in the image –does this seem reasonable?

The impulse response resulting from this surface was constructed. The ampli-
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Figure 5.8. Modulus of the impulse response for a flat surface with a di¤raction-
based scattering model

Figure 5.9. Phase of the impulse response for a flat surface with a di¤raction-based
scattering model
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Figure 5.10. Gain-modulus image for a flat surface with a di¤raction-based scat-
tering model and a larger facet size

tude and phase responses are shown in Figure 5.8 and Figure 5.9 respectively (again,

the line-of-sight response is not plotted.) It can be seen that these plots also dif-

fer substantially from the Lambertian case. The amplitude response has a higher

maximum and the response is concentrated in a shorter time period. Looking at the

gain-modulus image of Figure 5.7, this makes sense. The strong returns are concen-

trated in a small area (with a small range of delay times) and decay rapidly. The

R.M.S. sum of the returns is 0.348, which is similar to the Lambertian case (and

again significant.)

Figure 5.11. Gain-modulus image for a flat surface with a di¤raction-based scat-
tering model and a larger facet size synthesized by summing smaller facets

The phase of the di¤raction model comes from three terms. Firstly there is the

phase delay associated with the propagation delay (identical to the Lambertian case),

secondly there is a 1
j
term present and the third contribution comes from the phase
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of the Fourier transform term. As mentioned earlier, the flat surface is a special

case where the triangular facets add to give rectangular facets. The rectangular

facets have a real Fourier transform so the phase must come from the first two terms

mentioned above. The 1
j
term results in a phase of ±¼

2
. Like the Lambertian case,

the propagation phase delay only produces a small variance in the phase (as the term

is mostly undone when the impulse response is constructed.) Figure 5.9 has a phase

response contained mostly within the ±¼
2 range. The terms that exceed this range

occur when two or more facets are added and the variation in the individual phases

allows the phase of the sum to exceed the stated range. Like the Lambertian case, the

phase here has a predictable structure. However, for the Lambertian case this should

be a general result, whereas for the di¤raction-based case this only occurs because

the surface is flat.

Figure 5.12. Gain-modulus image for a flat surface with a di¤raction-based scat-
tering and a shorter characteristic wavelength

In order to investigate the simulation reliability, the e¤ects of varying the facet

size and the characteristic wavelength were investigated. Figure 5.10 is the gain-

modulus image for a flat surface, with a di¤raction based model and a facet size of

1m £ 1m. This larger facet size results in a more localized response. When the

facet size is increased, the corresponding Fourier transform becomes narrower which

results in the response observed. Unlike the Lambertian model, the change in facet

size produced noticeable changes in the results. However, direct comparison between
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the two facet sizes may not be justified. It is possible that the larger facet response

can be synthesized by summing smaller facets. This idea appeals to the principal

of superposition in a linear system. This approach was tried and the results are

shown in Figure 5.11. It can be seen that the response does closely resemble that

of the larger facet size. There are di¤erences however – these can be attributed

to system non-linearity ( i.e.the time-varying receiver gain) and the sensitivity to

sampling e¤ects when considering oscillatory signals. This analysis would indicate

that the di¤erences inherent in di¤ering facet sizes are not significant. However when

a sea surface is considered, di¤ering facet sizes will represent the surface with di¤ering

accuracies.

Figure 5.12 shows the gain-modulus image for the di¤raction-based model, when

the carrier frequency is doubled to 2¼ £ 60 £ 103 rad.s¡1. The results are similar to

what was observed when the facet size was increased. In essence this is what has

occurred – the facet size is now larger when compared to the wavelength and this

is the ratio that is used in Fourier optics. In fact, by examining the gain equation,

an identical result is expected. The di¤erences between the larger facet size image

(Figure 5.10) and the shorter wavelength image (Figure 5.12) can be attributed to

the di¤erence in image size (in pixels.) The shorter wavelength plot is twice as large

and hence allows the main return to appear thicker to the eye. The important result

is that the form of the return does vary with wavelength (which is not the case for the

Lambertian model.) This means that the assumption of a characteristic wavelength

is likely to introduce inaccuracies with the di¤raction-based model.

5.2 Sea Surface Response

The response from a simulated sea surface will now be investigated. The particular

surface used is that seen in Figures 3.1 and 5.1. The same sorts of investigation

methods as used in the previous section will be applied here.
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Figure 5.13. Gain-modulus image for a sea surface with a Lambertian scattering
model

5.2.1 Lambertian Model

Figure 5.13 shows the gain-modulus image for a sea surface with a Lambertian scat-

tering model. This image has the same general trend as the flat surface case (Figure

5.2) but with the wave structure imposing lengths of minimal or zero gain. These

structures tend to be more dense away from the area directly between the target and

receiver. They can be accounted for by the vector checks of Equation 4.22. As the

position moves further away from the receiver, the facet tilt is more likely to produce

vectors such that (v2 ·¡v3) < 0 ( i.e. the path to the receiver passes through the

surface.) Similarly, as the position moves further from the target, the facet tilt is

more likely to produce vectors such that (v1 · v3) < 0 ( i.e. the ray strikes the facet

from above.) While occlusions are not specifically checked for, it should be noted

that both of the above vector checks represent occlusion situations. The R.M.S. sum

of the contributions is 0.354, which is less than the flat surface response but still

significant when compared to the line-of-sight term with amplitude 1.

Plots of the impulse response are shown in Figures 5.14 and 5.15. These responses

appear very similar to those for the flat surface case. It should be noted that the range

of the phase response is still limited. This seems unlikely when considering real-world

scattering from a rough surface.
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Figure 5.14. Modulus of the impulse response for a sea surface with a Lambertian
scattering model

Figure 5.15. Phase of the impulse response for a sea surface with a Lambertian
scattering model
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Figure 5.16. Gain-modulus image for a sea surface with a di¤raction-based scatter-
ing model

5.2.2 Di¤raction-Based Model

The gain-modulus image for a sea surface using the di¤raction-based model is shown

in Figure 5.16. It resembles its flat surface counterpart but does have significant

e¤ects present attributable to the wave structure. Like the Lambertian case, the tilts

of the facets have the e¤ect of reducing the gain in certain places. The R.M.S. sum of

the contributions is 0.279– again, less than the flat surface total but still significant.

The impulse response for the sea surface with a di¤raction-based model is shown

in Figures 5.17 and 5.18. The amplitude response looks similar to the flat surface

case, with the significant terms being concentrated early in the response. The phase

term is di¤erent in that it is random over the whole range of possible values. As

mentioned earlier, the phase response of a flat surface with a di¤raction-based model

represented a special case. As was expected, when a more realistic surface was used,

the phase become more random.

5.3 An Intuitive Analogy

It is often instructive to relate a complex problem to an analogous situation for

which an intuitive understanding exists. Such an analogy can be developed here by

considering the sun at a low level over an ocean surface. The sun emits a wave-field,

like the target considered in this investigation. This field is then reflected o¤ the
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Figure 5.17. Modulus of the impulse response for a sea surface with a di¤raction-
based scattering model

Figure 5.18. Phase of the impulse response for a sea surface with a di¤raction-based
scattering model



61

sea surface and returned to the receiver – which in the sun-over-sea analogy is the

observer’s eye. The glitter pattern observed on the ocean surface is analogous to the

gain-modulus plots used extensively in this section.

Figure 5.19. ‘Glitter’ image for a sea surface

There are a number of di¤erences between the analogy and the problem. Per-

haps the most significant is the wavelength of the field. The light observed at optical

frequencies has a wavelength in the vicinity of 500nm (c.f. 5 cmused in this investi-

gation.) At these very short wavelengths the sea surface does not appear rough –

i.e. the structure of the sea surface is at a scale far greater than the wavelength. This

means that the system can be modeled very accurately by ray optics. Points of glitter

are observed where the facet angle is such that the reflected ray is incident on the

observer’s eye. This situation was simulated on the example surface used. When the

reflected ray path ( v5|v5 |) was within a small tolerance of the path to the receiver (
v2
|v2|)

that facet was marked as a ‘glitter point.’

Figure 5.19 shows the image resulting from this simulation. This response bears

a close resemblance to that observed with the di¤raction-based model on the same

surface. As mentioned in Section 4.4.2, the development of the di¤raction-based

model results in a facet response that is maximum along the path of a reflected ray.

Thus the di¤raction-based model bears a resemblance to the ray optics case and hence

the sun-over-sea analogy.

The Lambertian results di¤er significantly from both the di¤raction-based model
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results and the sun-over-sea analogy. The gain term for the Lambertian model (Equa-

tion 4.21) contains no reference to the reflected vector (v5) and is generally a smooth

function. As it has no narrow dominant function (like the Fourier transform expres-

sion in the di¤raction-based model) it is more sensitive to the e¤ects of the target’s

radiation pattern. This is significant because the field from the sun is very accurately

represented as a plane wave, however the source from the SAS target is a spherical

wave. This represents another major di¤erence between the sun-over-sea analogy and

the SAS system. This di¤erence in source characteristics and also in wavelength,

means that the sun-over-sea analogy should be applied very cautiously.

5.4 Model Comparison

A basic empirical comparison between the impulse responses reveals some basic prop-

erties. Both responses have a set delay gap before multi-path e¤ects contribute. Very

soon after this delay gap both responses reach a maximum and then decay with time.

The di¤raction-based model tends to decay far more rapidly than the Lambertian

model but has a similar R.M.S. sum of multi-path contributions. The phase response

of the Lambertian model is random and restricted to a small range while the phase

response of the di¤raction model is also random but has a full 2¼ range.

The gain-modulus images of the Lambertian and di¤raction-based models also

varied significantly. These images identify areas of the surface that contribute strongly

to the multi-path response. The Lambertian images showed a broad, smooth function

concentrated on the surface above the target. The di¤raction-based model showed

a narrow response stretching along the path between the target and receiver. Less

significant areas were positioned in a periodic manner adjacent to the main area. The

di¤raction-based gain-modulus plot looked to have a close relation to that expected

from a ray optics model (and the sun-over-sea analogy.)

While the di¤raction-based model corresponded closely to a ray optics result,
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it’s derivation relies on a Fourier optics model. This is satisfying as the model was

based on the physics of wave propagation but also produced an intuitive result. The

di¤raction-based model did have the draw back in that it appeared to be sensitive to

the assumed wavelength ¸. This wavelength assumption is recognized as a possible

source of error and the di¤raction-based model results confirm this.

In comparison, the Lambertian model did not correspond to ray optics. The

results it produced did seem reasonable however, and the gain-modulus plot was

smooth. In addition, the Lambertian model was insensitive to varying the assumed

wavelength ¸. A counterpoint to this is that the results probably should depend on

the wavelength of the signal transmitted. Similarly, the phase of the impulse response

was approximately zero, but this does not seem physically reasonable either. It seems

very unlikely that the multi-path response should have a predictable phase. The

phase of the Lambertian model was added in an ad-hoc manner with the purpose of

converting an intensity model (a classical Lambertian reflector) into the amplitude

model used here. Assigning a random phase to each facet was investigated. The result

was that neighboring facets had no phase correlation and tended to add randomly.

This resulted in a gain-modulus image similar to Figure 5.2 but with approximately

half of the pixels randomly zeroed. This response did not seem acceptable.

In conclusion, both models had strengths and weaknesses. Although the mecha-

nisms and gain-modulus images of both methods contrasted, the form of the resultant

impulse responses was similar. In reality both methods are likely to be significant

over-simplifications. Scattering from rough surfaces is a di¢cult open problem with

volumes dedicated to its study ( e.g. [11].)
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Chapter 6

Multiple Surface Simulation Results

The previous chapter presented results for a single simulation surface. However, the

analysis of Section 2.3 uses the impulse response over the whole ensemble of sea

surfaces. A dicrete approximation to these impulse responses (eeD (n¢®,m¢t)) can

be easily generated by simply applying the simulation method to successive surfaces.

Figure 6.1. Set of impulse response magnitudes displayed as an image for sea
surfaces with a Lambertian scattering model

As the sea surface evolves, the receiver platform will be travelling along the syn-

thetic aperture path. This means that the distance to the target will change. This

e¤ect is modeled by simply changing the range parameter R appropriately at each

surface. It may also seem necessary to change the receiver vector v4 as the angle to

the target varies. This is not the case – the aperture function A (ky0) (from Equation
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2.6) accounts for this e¤ect. The vector v4 is used to calculate the obliquity factor for

responses from di¤erent facet angles, whereas A (ky0) includes the overall obliquity

factor from target to receiver.

It should be noted that the above approach does introduce a slight inaccuracy.

Simply changing the target range has the e¤ect of producing a rotation in the sea

surface. The sea surface is generated on the (bx,by, t) coordinate system where the by-

axis is defined so that the target and receiver both rely upon it. As the receiver moves,

so must the by-axis. The sea surface has a directional structure so this produces a slight

inaccuracy. To solve this problem would require generating a set of sea surfaces wide

enough to support the whole receiver path (from ¡Y0 to Y0.) This was not practical

due to computational limitations. In the following simulation examples, the receiver

path is from ¡25m to 25m and the target is positioned at 0m with a range of 100m.

This means the by-axis rotates through 30o.

Figure 6.2. Set of impulse response magnitudes for sea surfaces with a Lambertian
scattering model after Stolt mapping
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6.1 Lambertian Model

Figure 6.1 is an image containing the set of impulse response amplitudes for a sea

surface with a Lambertian reflector. The first term (® = 0) for each impulse has not

been included so that the detail of the lower amplitude facet returns is clearly visible.

As would be expected, the facet returns start earliest when the target is at its closest

to the receiver (y0 = 0.)

Figure 6.3. Target profile when including multi-path e¤ects (Lambertian scattering
model)

Section 2.3 makes use of the function ee(x, y) which is found by performing a

Stolt mapping of ee (t, y0) (Figure 6.1) in the Fourier domain. Figure 6.2 shows the

simulated result after performing the Stolt mapping (the image has been clipped at

a value of 0.05 so that the high-amplitude line-of-sight term (the vertical line) didn’t

make the multi-path contributions di¢cult to see) over the range of frequencies from

10kHz to 50kHz. The transmitted signal used in the KIWI-SAS system extends

from 20kHz to 40kHz, a region that was included in the Stolt mapping.

Figure 6.2 certainly retains the general form of Figure 6.1. By examining Equation
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2.20, it can be seen that the e¤ect on the image will be to give the target a x

profile given by taking the y = 0 slice of Figure 6.2. This profile is shown in Figure

6.3. The line-of-sight term’s amplitude is approximately one and the multi-path

profile resembles that observed for a single surface in the previous section. The final

amplitude of the multi-path profile is determined by the transmitted pulse parameters

but (as in the previous chapter) it is significant. Although the amplitude is low at

this sample spacing, it has a long duration and an R.M.S. sum of 0.209.

Figure 6.4. Set of impulse response magnitudes displayed as an image for sea
surfaces with a di¤raction-based scattering model

6.2 Di¤raction-Based Model

The same results are presented for the di¤raction-based model. Figure 6.4 shows the

set of raw impulse responses (again with the ® = 0 term omitted.)

Figure 6.5 shows the results of the Stolt mapping (again an image clipped at 0.05

is displayed and the same 10kHz to 50kHz range is used.) Figure 6.6 gives the

final target profile. In this case the R.M.S. sum is 0.190. Like the single surface
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Figure 6.5. Set of impulse response magnitudes for sea surfaces with a di¤raction-
based scattering model after Stolt mapping

Figure 6.6. Target profile when including multi-path e¤ects (di¤raction-based scat-
tering model)
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results, the main di¤erence between the di¤raction-based and the Lambertian models

is how quickly the multi-path response decays – the di¤raction-based model decays

significantly faster.
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Chapter 7

Conclusions

This thesis investigated the e¤ects of multi-path propagation on Synthetic Aperture

Sonar systems. The investigation was carried out with a small amount of mathe-

matical analysis but primarily through computer simulation. The multi-path e¤ects

investigated involved scattering from a rough surface (the sea surface.) This is a

di¢cult, open problem so a facet-ensemble approach was used to develop a workable

simulation method.

Some common, well-understood expressions were derived for the facet model (in-

volving propagation loss, flux calculation, etc.) However, a degree-of-freedom was

present in the choice of the facet-scattering model. From physical arguments, two

possible models were justified; modeling each facet as a Lambertian reflector and

modeling each facet as a di¤racting aperture. Results were analysed for both cases

and found to produce quite di¤erent results.

A particularly insightful technique was to examine which areas of the sea surface

produced the strongest returns under the di¤erent models. The Lambertian case had

a smooth function centered above the target while the di¤raction-based model had a

narrow reflecting area positioned between the target and receiver. This di¤raction-

based pattern was found to similar to what would be expected from a ray-optics

model.

The Lambertian model was justified by the reasonable assumption that each facet

is a rough surface. The di¤raction-based model treated each surface as smooth but

was a bona-fide amplitude method (whereas the Lambertian model was essentially

an intensity method.) The di¤raction-based model also gave more believable phase

characteristics.
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Despite these di¤erences, both models produced returns of the same form – a

very rapidly rising and then decaying signal, delayed with respect to the line-of-sight

return. The main di¤erence was that the di¤raction-based model decayed a faster rate

than its Lambertian couterpart. Both models’ signals contained significant energy

which indicates the e¤ect on the SAS image would also be significant.

This investigation allows some of the artifacts present in SAS images to be ac-

counted for, at least in a qualitive sense. Possible future work could involve thoroughly

comparing simulation results and real results. An ideal outcome from this sort of com-

parison would be a more accurate empirical model. Alternatively, another possible

approach is to try to amalgamate the Lambertian and di¤raction-based models.
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Appendix A

Derivation of the Fourier Transform of a
Right-Triangle

Figure A.1. Right-triangle

The function triangle (ex, ey) has an amplitude of 1 inside the triangle shown in

Figure A.1 and 0 outside this triangle. This appendix contains the derivation of the

Fourier transform of triangle (ex, ey).

F (!ex,!ey) =

Z 1

¡1

Z 1

¡1
triangle (ex,ey) exp [¡j (!exex+ !eyey)] dexdey

=

Z ¢by
2

¡¢by
2
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2
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exp [¡j (!exex+ !eyey)] dexdey

=
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2

¡¢by
2
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Z ¢bx

2

ey
exp [¡j!exex] dexdey
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Evaluate the inner integral first.

F (!ex,!ey) =

Z ¢by
2

¡¢by
2

exp [¡j!eyey ]
j

!ex
[exp (¡j!exex)]

¢bx
2

ey dey

=
j

!ex

Z ¢by
2

¡¢by
2

exp [¡j!eyey]
�
exp

µ
¡j!ex

¢bx
2

¶
¡ exp (¡j!exey)

¸
dey

Split into two integrals.
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Using the Fourier transform property = {triangle (¡ex,¡ey)} = F (¡!ex,¡!ey) it is

easy to find the Fourier transform of the complementary triangle. It is also straight-

forward to show the following result.

F (!ex,!ey) + F (¡!ex,¡!ey) = ¢by¢bx sinc
µ
!ey
¢by
2

¶
sinc

µ
!ex
¢bx
2

¶

This can be recognized as the Fourier transform of a rectangular function. This

property is expected as triangle(ex, ey)+ triangle (¡ex,¡ey) gives this rectangular func-

tion. Using the appropriate Fourier properties, the Fourier transform of any right-

triangle can be found from the result presented in this appendix (this obviously in-

cludes the right-triangles generated in Section 4.4.2.)
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Appendix B

Notation Glossary

This appendix contains a glossary of all the variables used and defined throughout this

thesis. In the interests of brevity, some generalizations have been made. Functions

are only listed as dependent on one set of variables whereas in the text they may have

also been written in terms of another set of variables ( e.g. the sea surface s (bx, by, t)

was also written in windward and crosswind coordinates – s (w, c, t).) The variables

listed do not generally include subscripts – for example, k is the spatial frequency

found by dividing the temporal frequency ! by the speed of sound, but kx is a spatial

frequency variable in the cross-track dimension (in this listing k is given simply as ‘a

spatial frequency variable.’) Also, a function will only be listed in one Fourier space

( e.g. tt (x, y) is listed but Tt (kx, y), tT (x, ky), TT (kx, ky) are not.)

A (ky0) SAS Aperture Function

AD R.M.S. sea surface displacement

ar Receiver area

® Fast time coordinate

BW Transmitted signal bandwidth

CS Sampling Constant

Dr Receiver depth

Dt Target depth

d (bx0, by0) Facet’s extra propagation distance
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dd (®, y 0) SAS data received

dS Infinitesimal surface

¢® Fast time sampling period

¢bx, ¢by Sea surface sampling period

¢bzbx, ¢bzby Change in sea surface displacement across facet

ee (®, t) Multi-path impulse response

eeD (n¢®,m¢t) Discrete time multi-path impulse response

F (!ex,!ey) Fourier transform of a right-triangle

FA (!ex,!ey) Fourier transform of a facet

FAP (!ex,!ey) Fourier transform of a phase-modulated facet

febx, feby Facet edge vectors

feorth A vector perpendicular to a facet normal and edge

fn Facet normal

= Fourier transform

(³, ´, ¿) Delay coordinates (windward, crosswind and time)

G (bx0,by0) Facet gain

h (w, c, t) Filter used to generate sea surface

µbx, µby Facet tilt-angles

I Intensity

IF (bx0,by0) Facet incident flux

Kw Dominant windward spatial frequency
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k Spatial frequency

� Facet scattering coe¢cient

Lc Sea surface crosswind correlation length

Lt Sea surface temporal correlation length

Lw Sea surface windward correlation length

¸ Assumed wavelength

m Slow time sample coordinate

mbx, mby Facet slopes

µex, µey, µez Direction from target to facet (unit vector)

N (w, c, t) Filtered white noise

n Fast time sample coordinate

p (®) Transmitted signal

pM (®, t) Transmitted signal after multi-path e¤ects

½ex, ½ey, ½ez Direction from facet to receiver (unit vector)

R Distance between receiver and target

RS (³, ´, ¿ ) Sea surface auto-correlation function

RF (bx0,by0) Received flux from facet

r General range/radius variable

s (bx, by,t) Sea surface

§ Stolt mapping

¾ Dummy variable
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tt (x, y) Target function

ttM (x, y) Target function after multi-path e¤ects

triangle (ex, ey) Right-triangle function

uG Sea surface group velocity

uP Sea surface phase velocity

À (bx0, by0) Facet’s extra propagation time

v1 Target to facet vector

v2 Facet to receiver vector

v3 Upward facet normal

v4 Receiver plane normal

v5 Reflected ray vector

v6 Target to receiver vector

ev1 Target to facet vector (facet-based coordinates)

ev2 Facet to receiver vector (facet-based coordinates)

ev5 Reflected ray vector (facet-based coordinates)

vs Speed of sound in water

Ábx, Áby Tilt angles of target to facet vector

ª Rotation matrix (receiver-target to facet-based coordinates )

Ã Wind direction

' Angle between facet normal and path to receiver

(w, c) Windward and crosswind coordinates
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win (¿ ) Sea surface auto-correlation window

W (w, c, t) White noise

- Sea surface dominant temporal frequency

! Frequency variable

!c Carrier frequency

(x, y, z) Receiver-path based coordinates

(bx, by, bz) Receiver and target based coordinates

(ex, ey, ez) Facet based coordinates

ext, eyt, ezt Target position (facet-based coordinates)

exr, eyr,ezr Receiver position (facet-based coordinates)

x0, y0 Target position (receiver-path based coordinates)

bx0,by0, bz0, t0 Facet position (receiver-target and slow time coordinates)

ex0,ey0, ez0 Facet position (facet-based coordinates)

¡Y0, Y0 Receiver path endpoints (receiver-path coordinates)

y 0 Receiver position (receiver-path coordinates)
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Appendix C

Simulation Code

The simulation code was written completely in the MATLABTM software package.

The code is presented in the order in which it is run.

The first function is shown below and generates a matrix containing the auto-

correlation function given in Equation 3.3.

function [corrmat,xvec,yvec,tvec]=corrfunc()

% Patch size (pixels)

M=128; %x axis

N=128; %y axis

T=64; %t axis

% Physical dimensions

dx=.5; %metres

dy=.5; %metres

dt=.2; %seconds

%Sea State

Lw=7; %Correlation length - Windward (metres)

Lc=12; %Correlation length - Crosswind (metres)

Lt=7; %Correlation length - Temporal (seconds)

K=1; %Dominant wavenumber - Windward (1/metres)
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W=2; %Temporal Frequency - (radians/second)

A=0.2; %RMS wave amplitude - (metres)

O=0.7*pi; %Wind direction - From x-axis (radians)

ug=Lw/Lt; %Group velocity - (metres per second)

uv=W/K; %Phase velocity - (metres per second)

xvec=[(-(M-1)*dx/2):dx:((M-1)*dx/2)];

yvec=[(-(N-1)*dy/2):dy:((N-1)*dy/2)];

tvec=[(-(T-1)*dt/2):dt:((T-1)*dt/2)];

corrmat=zeros(M,N,T);

for i = 1:M,

for j = 1:N,

for k = 1:T,

x=(i-(M+1)/2)*dx;

y=(j-(N+1)/2)*dy;

t=(k-(T+1)/2)*dt;

w=cos(O)*x+sin(O)*y; %Go to windward and

c=sin(-O)*x+cos(O)*y; %crosswind co-ordinates

corrmat(i,j,k)=A^2*exp(-((w-ug*t)/Lw)^2)*exp(-(c/Lc)^2)*

cos((K*w)-(W*t));

end

end

end
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xwindow=hanning(M);

ywindow=hanning(N);

twindow=hanning(T);

[i,j,k]=ndgrid(1:M,1:N,1:T);

window=xwindow(i).*ywindow(j).*twindow(k);

corrmat=corrmat.*window;

A short function was written to calculate the frequencies that were considered in

error. It returns the ratio of the power in these frequencies to the total power. This

function is given below.

function[err,angles,realH2]=err(corrmat)

angletol=.001; %amount angle can be from zero (between 0 and 1)

[M,N,T]=size(corrmat);

% Zero Pad the correlation function

temp=zeros(2*M,2*N,2*T);

temp((M/2+1):(3*M/2),(N/2+1):(3*N/2),(T/2+1):(3*T/2))=corrmat;

corrmat=temp;

% Calculate the Power Spectral Density

corrmat=¤tshift(corrmat);

H2=¤t(corrmat,[],1);

H2=¤t(H2,[],2);

H2=¤t(H2,[],3);
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H2=¤tshift(H2);

% Find the dimensionality of the PSD

dim=size(H2);

if length(dim)==2

dim=[dim,1];

end

D=0;

for j=1:3

if dim(j)~=1

D=D+1;

end

end

% Find the phase of the PSD

% Note, a phase shift of half a pixel must first be undone

% This phase arises because the PSD has even pixel dimensions

[X,Y,Z]=ndgrid(0:(dim(1)-1),0:(dim(2)-1),0:(dim(3)-1));

phase=i^D*exp(-i*pi*(X/dim(1)+Y/dim(2)+Z/dim(3)));

realH2=H2.*phase;

angles=angle(realH2);

angles=abs(angles)/pi; %between 0 and 1

angles=angletol-angles; %between angletol and -(1-angletol)

angles=ceil(angles); %binary mask
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% Calculate the power in the error frequencies

magH2=abs(H2);

err=1-sum(sum(sum(angles.*magH2)))/sum(sum(sum(magH2))) %Mea-

sure of ’truncation noise’

The following function is used to generate a sea surface from the auto-correlation

matrix. This function splits the process into several consecutive sub-processes in order

to reduce memory requirements

function[yvec,tvec,h,H,H2]=wavegen(corrmat,dy,dt)

[M,N,T]=size(corrmat);

% Output size is a multiple of the size of corrmat

% Size of overall output (M)x(Nx*N)x(Tx*T)

Nx=3;

Tx=2;

yvec=[(-(Nx*N-1)*dy/2):dy:((Nx*N-1)*dy/2)];

tvec=[(-(Tx*T-1)*dt/2):dt:((Tx*T-1)*dt/2)];

% Zero Pad the correlation function to avoid circular convolution

temp=zeros(2*M,2*N,2*T);

temp((M/2+1):(3*M/2),(N/2+1):(3*N/2),(T/2+1):(3*T/2))=corrmat;

corrmat=temp;

% Calculate filter impulse response

corrmat=¤tshift(corrmat);

H2=¤t(corrmat,[],1);
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H2=¤t(H2,[],2);

H2=¤t(H2,[],3);

H2=¤tshift(H2);

H=sqrt(abs(H2));

H=¤tshift(H);

h=i¤t(H,[],1);

h=i¤t(h,[],2);

h=i¤t(h,[],3);

h=¤tshift(real(h));

disp(’Finished calculating filter impulse response’)

% Next few loops create overlapping noise files

% Calculations are split into several files due to computational limits

wnoise=randn(2*M,2*N,2*T);

save noise11 wnoise;

% Extend in y direction (first ’row’)

for y=2:Nx,

newnoise=randn(2*M,2*N,2*T);

newnoise(1:2*M,1:N,1:2*T)=wnoise(1:2*M,(1:N)+N,1:2*T);

wnoise=newnoise;

save(strcat(’noise’,num2str(y),’1’),’wnoise’)

end

% Extend in t direction (first ’column’)
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load noise11;

for t=2:Tx,

newnoise=randn(2*M,2*N,2*T);

newnoise(1:2*M,1:2*N,1:T)=wnoise(1:2*M,1:2*N,(1:T)+T);

wnoise=newnoise;

save(strcat(’noise1’,num2str(t)),’wnoise’)

end

% Extend in y & t direction (row by row)

for t=2:Tx,

for y=2:Nx,

newnoise=randn(2*M,2*N,2*T);

load(strcat(’noise’,num2str(y),num2str(t-1)));

newnoise(1:2*M,1:2*N,1:T)=wnoise(1:2*M,1:2*N,(1:T)+T);

load(strcat(’noise’,num2str(y-1),num2str(t)));

newnoise(1:2*M,1:N,1:2*T)=wnoise(1:2*M,(1:N)+N,1:2*T);

wnoise=newnoise;

save(strcat(’noise’,num2str(y),num2str(t)),’wnoise’)

end

end

disp(’Finished creating noise’)

% Perform filtering to create sea surface

for t=1:Tx,
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for y=1:Nx,

load(strcat(’noise’,num2str(y),num2str(t)));

wnoise=¤tshift(wnoise);

WN=¤t(wnoise,[],1);

WN=¤t(WN,[],2);

WN=¤t(WN,[],3);

W=WN.*H;

w=i¤t(W,[],1);

w=i¤t(w,[],2);

w=i¤t(w,[],3);

w=¤tshift(real(w));

% Take central part (avoid circular convolution e¤ects)

w=w((M/2+1):(3*M/2),(N/2+1):(3*N/2),(T/2+1):(3*T/2));

waves(1:M,(1:N)+(y-1)*N,(1:T)+(t-1)*T)=w;

delete(strcat(’noise’,num2str(y),num2str(t),’.mat’));

end

end

save waves waves

H=¤tshift(H);

Now that the sea surface has been created, the next step is to calculate the impulse

response. The function that does this calls three lower-level functions. The first of

these lower level functions takes a single temporal slice of the sea surface and returns

facet tilt angles and positions.
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function[angleup,anglelow,csurf,cxvec,cyvec]=facets(surface,xvec,yvec)

% Facet division method

method=1; % Method 0 is an upper right to lower left division

% Method 1 is an upper left to lower right division

% Where x is horizontal axis and y is vertical

% Find pixel spaceing and surface size

dx=xvec(2)-xvec(1);

dy=yvec(2)-yvec(1);

[M,N]=size(surface);

% Create x-y co-ordinates for centre spots

cxvec=xvec(1:M-1)+dx/2;

cyvec=yvec(1:N-1)+dy/2;

% Create z co-ordinates for centre spots

if method == 0

for j=1:(M-1),

for k=1:(N-1),

csurf(j,k)=(surface(j+1,k+1)+surface(j,k))/2;

end

end

end

if method == 1
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for j=1:(M-1),

for k=1:(N-1),

csurf(j,k)=(surface(j+1,k)+surface(j,k+1))/2;

end

end

end

% Calculate x and y tilts (in radians)

if method == 1

for j=1:(M-1),

for k=1:(N-1),

a=(surface(j+1,k+1)-surface(j,k+1))/dx;

b=(surface(j+1,k+1)-surface(j+1,k))/dy;

angleup(j,k,1)=atan(a);

angleup(j,k,2)=atan(b);

end

end

for j=1:(M-1),

for k=1:(N-1),

a=(surface(j+1,k)-surface(j,k))/dx;

b=(surface(j,k+1)-surface(j,k))/dy;

anglelow(j,k,1)=atan(a);

anglelow(j,k,2)=atan(b);
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end

end

end

if method == 0

for j=1:(M-1),

for k=1:(N-1),

a=(surface(j+1,k+1)-surface(j,k+1))/dx;

b=(surface(j,k+1)-surface(j,k))/dy;

angleup(j,k,1)=atan(a);

angleup(j,k,2)=atan(b);

end

end

for j=1:(M-1),

for k=1:(N-1),

a=(surface(j+1,k)-surface(j,k))/dx;

b=(surface(j+1,k+1)-surface(j+1,k))/dy;

anglelow(j,k,1)=atan(a);

anglelow(j,k,2)=atan(b);

end

end

end

The next lower level function handles the calculation of the coordinate rotation

associated with the di¤raction-based model.
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function[rotmat,fex,fey]=rotmatcalc(v3,dx,dy)

fn=-v3;

dzx=fn(1)*dx;

dzy=fn(2)*dy;

fex=[dx,0,dzx];

fey=[0,dy,dzy];

feorth=[dx,-(dy*dzx*dzy)/(dy^2+dzy^2),dzx-(dzx*dzy^2)/(dy^2+dzy^2)];

rotmat=[feorth/sqrt(feorth*feorth’);fey/sqrt(fey*fey’);fn/sqrt(fn*fn’)];

The final lower-level function calculates the Fourier transform component of Equa-

tion 4.40.

function[result]=di¢eld(v2p,v5p,fex,fey,dx,dy,wl,uorl,method);

% uorl=1 indicates the upper triangle

f1=sqrt(fex*fex’)/dx*2*pi*(v2p(1)-v5p(1))/wl;

f2=sqrt(fey*fey’)/dy*2*pi*(v2p(2)-v5p(2))/wl;

if method==1,

f1=-f1;

end

if uorl==1,

f1=-f1;

f2=-f2;

end
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result=sqrt(fey*fey’)/dy*sqrt(fex*fex’)/dx*dy*i/f1*(exp(-i/2*f1*dx)*

sinc(dy*f2/2/pi) - sinc(dy/2*(f1+f2)/pi));

% /pi in sinc argument is to account for MATLAB’s definition of sinc

It is now possible to use these lower level functions in the calculation of the multi-

path impulse response. The target’s range and depth, the receivers depth, the carrier

frequency and the type of model to be used must all be specified.

function[h,tauvec,Y,A,glitmat]=impresp(waves,xvec,yvec,R,Dt,Dr,fc,lamb)

% ’lamb’ is a Lambertian reflector switch - 1 is on, 0 is di¤raction model

memef=1; % memef=1 ==> a memory e¢cient method

is used (but outputs A & glitmat are for last surface only)

e=.0015; % Distance from 1 that cos(angle di¤erence)

can be to be considered direct reflection

vel=1500; % Speed of sound in water (m/s)

oversamp=4; % Oversampling of the output (taking fc as base)

dtau=1/2/oversamp/fc; % Sampling period (note fc is in Hertz)

wl=vel/fc; % Wavelength of signal

method=1; % See facets.m and check it is the same

v6=[0,R,Dt-Dr]; % Target to receiver vector

v4=[0,1,0]; % Receiver normal vector

Ymin=-25; % Receiver starting position (target at y=0)

Ymax=25; % Receiver ending position

[M,N,T]=size(waves);

dx=xvec(2)-xvec(1);
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dy=yvec(2)-yvec(1);

Y=Ymin:(Ymax-Ymin)/T:Ymax;

Y=Y(1:T)+(Ymax-Ymin)/2/T;

Ro=R; % R will now represent current range rather

than nominal range

for ll=1:T

R=sqrt(Y(ll)^2+Ro^2);

l=ll;

if memef==1,

l=1;

end

% SURFACE SLOPES AND CENTER POINTS

[angleup,anglelow,csurf(:,:,l),cxvec,cyvec]=facets(waves(:,:,ll),xvec,yvec);

% INITIALIZE OUTPUTS

glitmatu(:,:,l)=zeros(M,N);

glitmatl(:,:,l)=zeros(M,N);

for j=1:(M-1),

for k=1:(N-1),

% CALCULATE REMAINING SYSTEM VECTORS

v1=[cxvec(j),cyvec(k)+(R/2),csurf(j,k,l)+Dt];

v2=[-cxvec(j),-cyvec(k)+(R/2),-csurf(j,k,l)-Dr];
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v3u=[-tan(angleup(j,k,1)),-tan(angleup(j,k,2)),1];

v3l=[-tan(anglelow(j,k,1)),-tan(anglelow(j,k,2)),1];

phix=2*angleup(j,k,1)-atan((csurf(j,k,l)+Dt)/(cxvec(j)+.00001));

phiy=2*angleup(j,k,2)-atan((csurf(j,k,l)+Dt)/(R/2+cyvec(k)+.00001));

v5u=[-1/tan(phix),-1/tan(phiy),-1];

if (v3u*v5u’) > 0, % Forcing the vector to be a true reflection

v5u=-v5u;

end

phix=2*anglelow(j,k,1)-atan((csurf(j,k,l)+Dt)/(cxvec(j)+.00001));

phiy=2*anglelow(j,k,2)-atan((csurf(j,k,l)+Dt)/(R/2+cyvec(k)+.00001));

v5l=[-1/tan(phix),-1/tan(phiy),-1];

if (v3l*v5l’) > 0, % Forcing the vector to be a true reflection

v5l=-v5l;

end

% DISTANCE FUNCTION

d(j,k,l)=sqrt(v1*v1’) + sqrt(v2*v2’) - sqrt(v6*v6’);

% UPPER& LOWER REFLECTION VALUES (DIFFRACTION

MODEL)

if lamb==0,

[rotmatu,fexu,feyu]=rotmatcalc(v3u,dx,dy);

[rotmatl,fexl,feyl]=rotmatcalc(v3l,dx,dy);

v2up=rotmatu*v2’;
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v2up=v2up’/sqrt(v2up’*v2up);

v2lp=rotmatl*v2’;

v2lp=v2lp’/sqrt(v2lp’*v2lp);

v5up=rotmatu*v5u’;

v5up=v5up’/sqrt(v5up’*v5up);

v5lp=rotmatl*v5l’;

v5lp=v5lp’/sqrt(v5lp’*v5lp);

Au(j,k,l)=(sqrt(v6*v6’)+d(j,k,l)/2)^2 * (dx*dy/(2*i*wl)) *

di¢eld(v2up,v5up,fexu,feyu,dx,dy,wl,1,method)/ (sqrt(v1*v1’)^2*

v3u(3)*sqrt(v2*v2’)^2*sqrt(v4*v4’)*sqrt(v6*v6’))*(v1*v3u’)*(v2*v4’);

Al(j,k,l)=(sqrt(v6*v6’)+d(j,k,l)/2)^2 * (dx*dy/(2*i*wl)) *

di¢eld(v2lp,v5lp,fexl,feyl,dx,dy,wl,0,method)/ (sqrt(v1*v1’)^2*

v3l(3)*sqrt(v2*v2’)^2*sqrt(v4*v4’)*sqrt(v6*v6’))*(v1*v3l’)*(v2*v4’);

Au(j,k,l)=Au(j,k,l)*exp(i*2*pi/wl*(sqrt(v1*v1’)+sqrt(v2*v2’)));

% Add phase

Al(j,k,l)=Al(j,k,l)*exp(i*2*pi/wl*(sqrt(v1*v1’)+sqrt(v2*v2’)));

% Add phase

end

% UPPER & LOWER REFLECTION VALUES (LAMBERTIAN

REFLECTORS)

if lamb==1,

Au(j,k,l)=(sqrt(v6*v6’)+d(j,k,l)/2)^2 * (dx*dy/2/sqrt(pi))

/(sqrt(v1*v1’)^2 * sqrt(v2*v2’)^(2.5) * v3u(3) *sqrt(sqrt(v3u*v3u’)) *
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sqrt(v4*v4’) * sqrt(v6*v6’)) * (v1*v3u’) * (v2*v4’) * sqrt(-v2*v3u’);

Al(j,k,l)=(sqrt(v6*v6’)+d(j,k,l)/2)^2 * (dx*dy/2/sqrt(pi))

/(sqrt(v1*v1’)^2 * sqrt(v2*v2’)^(2.5) * v3l(3) *sqrt(sqrt(v3l*v3l’)) *

sqrt(v4*v4’) * sqrt(v6*v6’)) * (v1*v3l’) * (v2*v4’) * sqrt(-v2*v3l’);

Au(j,k,l)=Au(j,k,l)*exp(i*2*pi/wl*(sqrt(v1*v1’)+sqrt(v2*v2’)));

% Add phase

Al(j,k,l)=Al(j,k,l)*exp(i*2*pi/wl*(sqrt(v1*v1’)+sqrt(v2*v2’)));

% Add phase

end

% MARK UPPER AND LOWER DIRECT REFLECTION PIX-

ELS

cosangleu=(v2*v5u’)/(sqrt(v2*v2’)*sqrt(v5u*v5u’));

if cosangleu > 1-e,

glitmatu(j,k,l)=1;

end

cosanglel=(v2*v5l’)/(sqrt(v2*v2’)*sqrt(v5l*v5l’));

if cosanglel > 1-e,

glitmatl(j,k,l)=1;

end

% PHYSICAL CHECKS

if (v1*v3u’) < 0 % Ray striking facet from above

Au(j,k,l)=0;
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glitmatu(j,k,l)=0;

elseif (v2*v4’) < 0 % Facet behind receiver

Au(j,k,l)=0;

glitmatu(j,k,l)=0;

elseif (v2*v3u’) > 0 % >90 degrees between normal and path to

receiver

Au(j,k,l)=0;

glitmatu(j,k,l)=0;

end

if (v1*v3l’) < 0 % Ray striking facet from above

Al(j,k,l)=0;

glitmatl(j,k,l)=0;

elseif (v2*v4’) < 0 % Facet behind receiver

Al(j,k,l)=0;

glitmatl(j,k,l)=0;

elseif (v2*v3l’) > 0 % >90 degrees between normal and path to

receiver

Al(j,k,l)=0;

glitmatl(j,k,l)=0;

end

A(j,k,l)=Au(j,k,l)+Al(j,k,l);

glitmat(j,k,l)=glitmatu(j,k,l)+glitmatl(j,k,l);

end
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end

% CREATE IMPULSE RESPONSE

dmax=max(max(d(:,:,l)));

dd=dtau*vel;

dvec(ll,1:(ceil(dmax/dd)+1))=0:dd:(dmax+dd);

h(ll,1:(ceil(dmax/dd)+1))=0;

for j=1:(M-1),

for k=1:(N-1),

tau=round(d(j,k,l)/dd+1);

h(ll,tau)=h(ll,tau)+A(j,k,l)*exp(-i*2*pi/wl*dvec(ll,tau));

end

end

h(ll,1)=1;

disp(strcat(num2str(ll),’_of_’,num2str(T)))

end

[a,b]=max(max(dvec,[],2));

tauvec=dvec(b,:)/vel;

The impulse responses have now been created. The final function performs the

Stolt mapping on this set, as shown in Section 2.3.

function[ee,xvec,yvec]=eecoord(hset,ypvec,tauvec)

vel=1500; %Speed of sound
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kmin=2*pi*10000/vel; %Minimum bandwidth

kmax=2*pi*50000/vel; %Maximum bandwidth

M=size(ypvec,2);

N=size(tauvec,2);

dyp=ypvec(2)-ypvec(1);

dtau=tauvec(2)-tauvec(1);

%Create ordinates for the Fourier Transform

kyprange=2*pi/dyp;

kyp=[-M/2:(M/2-1)]/M*kyprange;

ktaurange=2*pi/dtau;

ktau=[-(N-1):(N-1)]/(2*N-1)*ktaurange;

k=ktau/vel;

disp(’Taking Fourier Transform’)

hsetzp=[zeros(M,N-1),hset];

Hsetzp=¤tshift(¤t2(¤tshift(hsetzp)));

% Find Area to work in

m=find((k>=kmin) & (k<=kmax));

Hsetzp=Hsetzp(:,m);

k=k(m);

dk=k(2)-k(1);

kN=size(k,2);
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%Find output FT ordinates

ky=kyp;

kxmin=2*k(1);

kxmax=sqrt(4*k(kN)^2-kyp(M)^2);

kx=kxmin:dk:kxmax;

kxN=size(kx,2);

EE=zeros(M,kxN);

disp(’Performing Stolt Mapping’)

for n=1:M,

kstolt=sqrt(4*k.^2-kyp(n)^2);

EE(n,:)=interp1(kstolt,Hsetzp(n,:),kx,’*cubic’);

end

disp(’Taking output back to Spatial Domain’)

ee=i¤tshift(i¤t2(i¤tshift(EE)));

%Create output ordinates

xrange=2*pi/dk;

xvec=[-kxN/2:(kxN/2-1)]/kxN*xrange;

yvec=ypvec;
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