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The problem of predicting and interpreting the results of interferometric optical
experiments involving pulse trains is addressed. Specifically, a cyclostationary
field arising from the modulation of a stationary, stochastic source is considered
in the classical Young’s experiment. It is shown that the effects of modulation
may be identical to unrelated statistical interference effects.
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1. Introduction

Statistical optics, or coherence theory [1], can be used to predict the outcome of
measurements made with nondeterministic light. Until recently, almost all optical
experiments could be well-modelled within the framework of stationary, random processes
(or wide-sense stationary processes if only second order statistics, such as field
intensity, are of interest). It is desirable to work within such a framework as the time-
invariant nature of the statistics allows the use of powerful mathematical tools.
For example, ergodicity and the Weiner–Khintchine theorem allow the meaningful
interpretation of long-time-average and spectral measurements, respectively. Pulsed fields
are not stationary, and must be treated within a more general theory of statistical optical
fields.

Magyar and Mandel showed that when a fast-gating system is used to invalidate the
usual ergodicity assumption, structure resembling interference fringes in the overlap of
fields generated by independent masers may be observed, contrary to what one would
expect from slow measurement systems. More recently, fast pulse generation has become
the norm with pulse generation and detection being realised at the picosecond scale and
faster. Furthermore, ultrafast lasers are becoming a commonplace laboratory tool to
generate pulse trains. The long-time averages used in stationary theory no longer capture
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all relevant statistics, and a new formulation is required to accommodate the measurement
of these pulsed fields.

An idealised optical pulse train consists of an infinite set of regularly spaced individual
pulses. The spectrum for an idealised deterministic pulse train is given by the squared
modulus of the Fourier transform of the field and consists of a spectral envelope,
associated with a single pulse profile, modulated by a sum of delta functions regularly
spaced with a period equal to the pulse repetition frequency, a so-called delta comb. Pulsed
optical fields, such as those generated by mode-locked lasers, do not exist in this idealised
limit and the relevant noise properties have been studied through measurements of the
pulse energy on a photodiode [2–6]. Theoretical and experimental studies of photodiode
radio-frequency signals produced by short laser pulses in the picosecond [7] and
femtosecond regime [8–12] provide detailed information about stochastic pulse train
perturbations, including timing jitter, amplitude perturbations, and pulse width
fluctuations. More recently, the role of the carrier-envelope offset phase noise in
spectral-comb line broadening with mode-locked few-cycle lasers has been recognised,
characterised, and controlled [13–16].

The theoretical study of non-stationary statistical optics, applied to pulse trains, has
seen a recent resurgence [17–20]. In the model presented in these references, a restricted
class of non-stationary fields is considered in which a stationary field is modulated in
a deterministic fashion – this is known as an intrinsically stationary model [21]. While this
model does not encompass all pulsed optical phenomena, it is a good bridge between
a general theory of non-stationary light and standard coherence theory. An intrinsically
stationary model will also be used in this work to study interferometric experiments.

A unified treatment of the stochastic field fluctuations in pulsed light sources and the
consequences for interferometric intensity measurements is presented. Pulses are treated as
resulting from the deterministic modulation of a statistically stationary stochastic source.
A mathematical model is formulated to relate observable quantities to the properties
of the source. The results of this treatment demonstrate that care must be taken in
the interpretation of interferograms recorded with stochastic pulsed light sources.
The parameters of the deterministic modulation and the underlying stochastic source
both influence the observed intensity pattern with the result that neither can be
unambiguously determined from the interference pattern alone. Simulations are used to
verify the mathematical model, as well as to illustrate the effects of time-varying detection.

This paper is organised as follows. In the second section, the propagation of
a modulated signal is described and the two-pinhole experiment is considered. In the
third section, the model is illustrated and predictions are made regarding the intensity
pattern observed for various values of the system parameters. Results of simulations are
shown in the fourth section, and effects of fast, time-varying detection are illustrated.

2. Modulation and propagation

In order to model a pulsed, stochastic optical field, it is natural to begin with a stationary
model for the optical source and then deterministically modulate the field, so the
resultant field is pulsed. The deterministic modulation functions that render the field
non-stationary are not limited to those that create pulses, nor those that create statistically
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identical pulses. However, to model stable pulse generation, it is advantageous to assume
each pulse is created through an identical modulation.

Consider a stochastic, statistically stationary, planar, secondary source with a mutual
coherence function

!"Pðq1, q2, !Þ ¼ h !U$ðq1, tÞ !Uðq2, tþ !Þi, ð1Þ

where !Uðq, tÞ is the random field at position q and time t, and the brackets denote an
ensemble average over the fluctuating scalar field. Stationarity ensures that the coherence
function is not dependent on the temporal offset t. Additionally, the field is assumed to be
ergodic, so the ensemble average is the same as the long time average. The Fourier
transform of the mutual coherence function gives the cross-spectral density, namely,

!WPðq1, q2,!Þ ¼
ð1

&1
d! !"Pðq1, q2, !Þexpði!!Þ: ð2Þ

The planar secondary source is a model, for example, for the field at one end of a laser
cavity [22].

Suppose that the source is only allowed to radiate at certain times, or that the source is
modulated periodically in time. The field propagated from such a system will no longer be
stationary. The two-time correlation function of the nonstationary field in the source plane
takes the form

"Pðq1, q2, t1, t2Þ ¼ hU$ðq1, t1ÞUðq2, t2Þi ¼ !"Pðq1, q2, t2 & t1Þh$ðt1Þhðt2Þ, ð3Þ

where Uðq, tÞ ¼ !Uðq, tÞhðtÞ, h(t) is a deterministic shutter function that describes the
modulation of the source and the angled brackets denote an average over the ensemble
of the underlying stationary process as in Equation (1). The bar is used to denote
quantities associated with the underlying stationary field. The two-frequency
cross-spectral density for the modulated field is [1]

WPðq1, q2,!1,!2Þ ¼
ð
dt1dt2"Pðq1, q2, t1, t2Þexp½ið!2t2 & !1t1Þ(

¼
ð
d"

2p
H$ð!1 & "ÞHð!2 & "Þ !WPðq1, q2,"Þ, ð4Þ

where, again, the bar denotes the cross-spectral density of the underlying stationary source
andH(!) is the Fourier transform of h(t). The convolution has the effect of broadening the
spectrum of the underlying process.

In an ideal pulse train, each pulse is deterministic and identical. However, because of
noise processes in the system, this is generally not realisable. Within this work, the pulses
are statistically identical if the deterministic modulation/shutter is chosen to be periodic

hðtÞ ¼
XN

n¼1

hpðt& nT0Þ, ð5Þ

where hpðtÞ is the deterministic modulation for a single pulse. This periodic form of
modulation results in a field that is cyclostationary for N ! 1 [23,24]. Cyclostationarity
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and cyclo-ergodicity are well explored concepts in signal processing, resulting in a
significant body of literature which can be leveraged in studying non-deterministic, pulsed
optical fields [25]. The form of hpðtÞ can be chosen to model pulse shape, chirp, and other
deterministic effects. The cross-spectral density takes the form

WPðq1, q2,!1,!2Þ ¼
XN

m¼1

XN

n¼1

exp½iT0ðm!2 & n!1Þ(

)
ð
d"

2p
H$

pð!1 & "ÞHpð!2 & "Þ !WPðq1, q2,"Þ

) exp½&iT0"ðm& nÞ(: ð6Þ

This result differs from other reported works [17–19] in that the whole train of pulses is
considered rather than assuming that each pulse is incoherent with all other pulses.
The spectral density [19] of the pulsed beam as a function of frequency and position is
defined to be

Sðq,!Þ ¼ WPðq, q,!,!Þ ¼
ð
d"

2p
!WPðq, q,!& "ÞjHpð"Þj2

XN

m¼1

XN

n¼1

exp½iT0ðm& nÞ"(: ð7Þ

This quantity represents the energy present at frequency ! at position q. It can be seen
that as N becomes large, the double summation converges to a delta comb with a period
of 2p=T0. The comb is modulated by the spectrum of a single pulse before being convolved
with the cross-spectral density of the underlying stationary source. Equation (7) can be
seen to correspond to the conventional understanding of the frequency comb – the comb
period is the pulse repetition frequency, the duration of a single pulse determines the width
of the comb and non-deterministic effects broaden the line width.

The model presented in this paper represents a stochastic pulsed field as a modulated
stationary optical field. The underlying stochastic field is assumed to have a coherence
time !c, the duration of the single pulse hpðtÞ is characterised by T and the pulses are
repeated with a period T0. The relationship between these three time scales (T0,T, and !c)
determines the statistical properties of the pulsed field. Pulsed fields can be readily
classified into several distinct regimes based on these parameters. Three of these regimes
cover most physically realisable experiments.

. Regime I is defined by T < T0 ! !c. In this regime pulses separated by several T0

exhibit significant correlations. This regime includes devices such as stable mode-
locked lasers with long-term fluctuations in the pulse properties, which may include
timing jitter, amplitude fluctuations, carrier-envelope phase fluctuations, etc. In this
regime non-deterministic behavior results in a modest broadening of spectral comb
lines [2]. In terms of Equation (7), the width of !WPðq1, q2,!Þ is less than the comb
spacing 2"=T0, so the comb structure remains, albeit with a broader line width.

. Regime II is defined by T < !c < T0, where pulses separated by the pulse period T0

may exhibit a significant statistical relationship, but pulses separated by multiple
repetition periods are statistically uncorrelated. Highly unstable mode-locked lasers
may operate in this regime. Here one expects the power spectral density to be

1544 R.W. Schoonover et al.
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continuous as the spectral width of the underlying stationary field approaches the
repetition frequency !r ¼ 2"=T0 of the pulsed light field. However, the bandwidth of
the signal is still determined by the pulse duration T.

. Regime III is defined by !c ! T < T0, the so-called continuous-wave limit [26].
In this regime, the pulses are separated by significantly more than !c and so the fields
in separate pulses are not statistically related. Additionally, the condition !c ! T
indicates that the field at the beginning of a pulse is statistically uncorrelated with the
field at the end of the pulse. The power spectral density in this regime is dominated
by that of the underlying stochastic field. The convolution with !WPðq1, q2,!Þ in
Equation (7) destroys the comb structure and spreads the spectrum beyond the
limits of the deterministic pulse.

Returning to the propagation and interference of pulsed fields, a Young’s two-pinhole
experiment is shown in Figure 1 and is similar to many experiments such as that described
in [27]. The pulsed field is propagated to a screen A that includes two pinhole apertures.
The screen A is chosen to be perpendicular to the direction of propagation and a distance z
away from the shutter. The output of the Young’s two-pinhole experiment is then
measured at a detector in the plane D, parallel to A.

The cross-spectral density satisfies a double reduced wave equation and so may be
propagated by the method of Green functions. It has been shown [19] that the
cross-spectral density for the propagated field USðr,!Þ satisfies the equation

ðr2
1 þ k21Þðr

2
2 þ k22ÞWSðr1, r2,!1,!2Þ ¼ ð4#Þ2WQðq1, q2,!1,!2Þ, ð8Þ

where ki ¼ wi=c and WQ is the cross-spectral density of the primary source. This result
implies that the cross-spectral density for the field radiated by a secondary, planar source
is given by the expression

WSðr1, r2,!1,!2Þ ¼
1

ð2pÞ2

ðð

z0¼0
d2$01d

2$02WPðq01, q
0
2,!1,!2Þ

) @

@z01

@

@z02

expð&ik1jr1 & r01jÞ
jr1 & r01j

expðik2jr2 & r02jÞ
jr2 & r02j

, ð9Þ

A

Laser

Shutter

D

Q1

Q2

R1

R2

P  

h(t )

Figure 1. A diagrammatic sketch of the pulsed system.
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whereWS is the cross-spectral density for the fieldUS andWP is the cross-spectral density for
the secondary source. When the source is of uniform spatial intensity in the entire plane and
there is complete spatial coherence among all pairs of points in the plane, the propagated
field is a polychromatic plane wave with the same spectral content as the source.

At a point P on the detection screen (see Figure 1), the ensemble average of the
instantaneous intensity as a function of time is related to the fields in the two pinholes by
the equation

"DðP,P, t, tÞ ¼ jK1j2"AðQ1,Q1, t& R1=c, t& R1=cÞ
þ jK2j2"AðQ2,Q2, t& R2=c, t& R2=cÞ
þ K$

1K2"AðQ1,Q2, t& R1=c, t& R2=cÞ
þ K1K

$
2"AðQ2,Q1, t& R2=c, t& R1=cÞ, ð10Þ

where the Ki are constant factors that depend on the area of the holes and the distance Ri

from the ith pinhole to the point P (see Figure 1). When the bandwidth is narrow,
Ki ¼ &idA= !%Ri [28], where !% ¼ 2#c=!c and dA is the area of the pinhole. By mapping the
delay td ¼ ðR2 & R1Þ=c to points P on the plane, one can construct the expected intensity
pattern at the detector, or conversely, determine temporal coherence properties from such
a measurement.

3. Interferometric measurement

Consider a specific example of a pulsed field that is created by modulating a stationary,
random process. The cross-spectral density of the stationary laser source is taken to be

!WPðq1, q2,!Þ ¼ exp & ð!& !cÞ2

2&2

" #
, ð11Þ

where & defines the effective bandwidth of the source and !c is the center frequency of the
light. Notice that this planar stationary source is spatially completely coherent in the sense
that the spectral degree of coherence is of unit magnitude. The shutter function is likewise
taken to be a Gaussian with effective pulse time T, namely,

hpðtÞ ¼ exp & t2

2T2

" #
: ð12Þ

These pulses are the so-called Gaussian–Schell model pulses [17].
When T0 is much larger than !c * 1=& and T (i.e. regimes II and III), only fields within

individual pulses exhibit a non-zero correlation. Thus, the overlap at the screen between
pulses can be ignored and hpðtÞ can replace h(t) in the calculation. An additional
simplification, that the fractional bandwidth &=!c is sufficiently small, and some
calculation yields the normalized mutual coherence function at the screen A,

"Aðz, z, t, tþ tdÞ ¼ exp & ð2tþ td & 2z=cÞ2

4T2

$ %
exp &

t2d
2#2

$ %
expð&i!ctdÞ, ð13Þ

1546 R.W. Schoonover et al.
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where

#2 ¼ 2T2

1þ 2&2T2
,

¼ 2T2!2c
!2c þ 2T2

: ð14Þ

Note that in regime III, Equation (14) is approximated by taking #2 * !2c , i.e. the
autocorrelation is dominated by the properties of the underlying stationary stochastic
field. In regime I #2 * 2T2 and the autocorrelation is then dominated by the effect of the
pulsed modulation.

Any real measurement of the intensity at the detector involves an integration over the
time, t. By assuming that the order of the temporal integration and the expectation
operator can be interchanged, the expected measurement can be found by integrating
Equation (10) over all time. The expected normalized detector-integrated intensity pattern
on the screen can be shown to be

IðPÞ ¼
ð1

&1
dt"DðP,P, t, tÞ / 1þ expð&t2d=2#

2Þcosð!ctdÞ, ð15Þ

where td is the difference in propagation times from the two pinholes, i.e. td ¼ ðR2 & R1Þ=c.
In order to achieve a stable, meaningful measurement, the variance of I(P) about its mean
must go to zero, i.e. an ergodicity condition is required [25]. In deriving Equation (15),
slow detection was assumed, i.e. the detector integration time is much larger than any
other time scale in the system. If the slow detector integration time greatly exceeds T0, the
interference pattern will not change in time, as the diffraction patterns from individual
pulse members are statistically unrelated.

Plots of the detector-integrated intensity are shown in Figures 2 and 3. In Figure 2, the
shape of the interferogram is mainly determined by the coherence time (!c * 1=&).
The pulse time, T, is not a factor in the interference pattern (although it affects the
total recorded intensity). In Figure 3, the shape of the interferogram is mainly determined
by the pulse time, T. Despite the fact that the two figures represent fields in two separate
regions of the parameter space, the resultant integrated intensity patterns are nearly
indistinguishable at the detector. This result implies that an interferometric measurement
cannot distinguish between coherence time of the original pulse and the shaping of that
pulse through h(t). Such an ambiguity mirrors one shown in the spectral domain in which
fields that lie in different regimes of parameter space can have identical spectra [17].

Now consider the interference pattern produced when interference between multiple
pulses may be recorded, i.e. regime I. Similar calculations yield the intensity on the screen
after many pulses,

IðPÞ ¼ 1þ
X

n

X

m

exp & ðm& nÞ2T2
0&

2

2þ 4&2T2

" #

) exp &#2

2

td

#2
þ ðm& nÞT0

2T2

" #2
" #

cosð!ctdÞ: ð16Þ
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This equation is valid as long as consecutive pulses do not overlap, i.e. when T0 > T. It is

noteworthy that consecutive pulses may create secondary interference patterns on the
screen spaced, in delay time, by multiples of the pulse period T0. The primary interference
pattern, occurring when n¼m, represents the superposition of correlated fields within
individual pulses. The secondary interference structures are due to the cross-correlation
between the fields in pulses m 6¼ n, where T0jm& nj is the time delay between the two
pulses. The number of the secondary interference patterns is dictated by the relevant
regime. In regime I, since the coherence time extends across multiple pulses, approximately
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Figure 2. The interference pattern for a field with !c ¼ 1015 rad s&1, T ¼ 10 fs, !c ¼ 1=& ¼ 100 fs,
and T0 + !c,T, i.e. regime II. In this example, the pulse time is the dominant parameter, as the
coherence time is 10 times greater. Here, and in all other simulations, the distance between planes A
and D is d ¼ 50mm and the spacing between the slits is 2mm.
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Figure 3. The interference pattern for a field with !c ¼ 1015 rad s&1, T ¼ 50ð21=2Þ fs,
!c ¼ 1=& ¼ 10ð21=2Þ fs and T0 + !c,T, i.e. regime III. In this example, the coherence time is the
dominant parameter, as the pulse time is 5 times greater.
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!c=T0 secondary interference structures will be present in the interference pattern.
In regimes II and III, only the primary interference structure will be present. In these
cases, the secondary interference patterns wash out with time-averaging because the fields
in consecutive pulses are incoherent. In Figure 4, an interferogram is shown with the same
properties as Figure 2, only with T0 now small enough that consecutive pulses are within
the coherence time of each other. One can see that smaller interference patterns show up
next to the standard interference pattern in the center. The case that !c > T0 shows that
consecutive pulses can have a stable phase relation and hence produce predictable
interference fringes. The repetition rate (1=T0) is beyond what is currently realisable,
but was chosen to show interpulse interference effects. Typical ultrafast pulsed lasers
operate with repetition rate frequencies from tens of MHz to tens of GHz. However, a
harmonically mode-locked diode laser has been demonstrated to operate at 500GHz [29]
(T0 ¼ 2 ps), which is similar to the values used in these simulations and is likely sufficient
to observe interpulse effects.

The utility of a two-pinhole interferometer lies in the fact that the position on the
screen maps directly to the time-difference coordinate. However, in the non-stationary
case, the mutual correlation function depends also on an absolute time coordinate.
The dependence on the absolute time coordinate reflects the fact that the deterministic
pulse modulates the stationary stochastic field. Each pulse in the pulse train generates a
distinct diffraction pattern and the correlation that one might naively deduce from
individual diffraction patterns (i.e. modulus squared of the diffracted field) is not
equivalent to the statistical correlation that one recovers with sufficient averaging.
Time averaging by slow detectors effectively projects the mutual coherence onto the
screen without any resolution of the absolute time coordinate. Even fast detectors can only
approximately resolve the dependence on the absolute time coordinate, with a resolution
determined on the integration time of the detector. Thus, the absolute time-dependence in
" is often lost when performing an interference experiment. Without knowledge of the

The intensity when multiple pulses interfere on the screen
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Figure 4. The interference pattern for a field with !c ¼ 1015 rad s&1, T ¼ 10 fs, !c ¼ 1=& ¼ 100 fs,
and T0 ¼ 100 fs, i.e. regime I. In this example, the coherence time is the dominant parameter, as
the pulse duration is 10 times smaller than the coherence time. Multiple pulses can be seen to
interfere on the screen. Note that , 0.75mm on the screen corresponds to a delay of 100 fs.
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dependence on both time variables, one can no longer use Fourier transform relations
to unambiguously map the spectrum [see Equation (7)] to the detected intensity
[see Equation (16)]. Information regarding pulse duration, stability and repetition rate
is now mixed in an underdetermined fashion and thus T, T0, and !c cannot be
resolved uniquely.

4. Simulations and discussion

Results from the previous section for average quantities can be verified through numerical
simulations of realisations of the random field. In particular, simulations show that
time-averaged measurements coincide with the predicted measurements, validating the
assumption of cyclo-ergodicity used in Equation (15). Following the strategy presented
in [30], realisations of a discrete random process are used to simulate the source.
A complex, white, Gaussian random process is realized using a random number generator
and then fed into a linear shift-invariant filter so that the output random process has the
spectrum given in Equation (11). This process is then modulated to produce a pulsed field.
The signal at a given point on the screen, neglecting propagation factors, can then
be found by taking two copies of the field, offsetting each in time by an amount
corresponding to the pinhole-to-screen distance, and taking the square magnitude of
their sum. The result gives the intensity on the screen as a function of time and with a
temporal resolution higher than what is currently achievable experimentally. A time
average is then implemented to simulate measurable quantities.

In these simulations, pulses are created by realising the underlying stationary process
!UðtÞ. Simulations of the scenarios shown in Figures 2, 3 and 4 are shown in Figures 5, 6
and 7, respectively. There is good agreement between the simulations and the analytic
results. The instantaneous intensity is shown as a function of screen position and time in
the upper plot, and the time average as a function of position is shown in the lower plot.
These simulations provide an alternative numerical means to calculate measurable
quantities at the screen. One can also attain representative fields that are accessible neither
via measurement nor through analytic calculations based only on second-order statistics.
The intensity of such a representative field is shown in the upper plots of Figures 5, 6
and 7. One notices that each pair of overlapping pulses produces an oscillatory intensity
pattern, but these should not be confused with interference patterns. Magyar and Mandel
showed previously that uncorrelated light can create diffraction patterns that look like
interference [31], but as they rightly concluded, this is not a statistical effect. As seen in the
figures, many of these features wash out due to instability in the fringe position. Only the
fields displaying coherence (or at least partial coherence) have the stable phase structure
that allows the oscillations to survive the time averaging.

The necessity of taking long-time averages to get stable, statistically meaningful results
requires taking averages over many pulses. As an example of what may happen when too
little data is taken, in Figure 8 a plot of the integrated intensity averaged over two pulses is
shown. The two-pulse average is very clearly different than the 500-pulse measurements
shown in Figure 6 with the same system parameters. It is clear that any measurement
averaged over only a few pulses will not be indicative of the underlying random process
associated with the pulsed field.
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Figure 5. A simulation with T¼ 10 fs, T0¼ 500 fs, !c¼ 100 fs and !c ¼ 1015 rad s&1 with 100 pulses
measured. The top plot shows the instantaneous intensity as a function of screen position and time.
Note that only a small fraction of the time axis is shown. The bottom plot is the average of the signal
over the full 100 pulses. See Figure 2 for analytic results. (The colour version of this figure is included
in the online version of the journal.)
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Figure 6. A simulation with T ¼ 50ð21=2Þ fs, T0¼ 500 fs, !c ¼ 10ð21=2Þ fs and 100 pulses are again
measured. Speckle-like effects, where different parts of the pulse interfere with each other are
visible in the upper plot. There is only phase-stability around the coherence length. See Figure 3 for
analytic results. (The colour version of this figure is included in the online version of the journal.)
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Figure 7. A simulation with the parameters T¼ 10 fs, T0¼ 100 fs, !c¼ 100 fs and 500 pulses
measured. The interpulse interference is stable; secondary fringe structures are thus present. See
Figure 4 for analytic results. (The colour version of this figure is included in the online version of the
journal.)
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Figure 8. A simulation with system parameters T¼ 100 fs, !c¼ 10 fs, T0¼ 500 fs and only two
pulses measured. The measured intensity has not converged to its many-pulse average. (The colour
version of this figure is included in the online version of the journal.)
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In Figure/movie 9, a simulation of a random field (with system parameters
characteristic of regime I) impinging on the detector is shown. Again, one can see fringes
in the instantaneous intensity, and due to a long coherence time, these fringes remain
stable across the detection screen. Consecutive pulses fall within the coherence time of the
field, and multiple interference patterns appear at the detector.

In Figure/movie 10, the simulation shown is characteristic of regime II. The system
parameters are the same as in Figure 9 excepting the coherence time, which is significantly
shorter. Even though consecutive pulses overlap on the detector, producing fringes in the
plot of instantaneous intensity, these are not phase-stable due to the short coherence time.

These simulations make clear the fact that measures of coherence must be taken
over long times, which is to say, many pulses. Recently, experiments to measure the
coherence properties of short pulses have appeared in the literature. In some cases, the
coherence properties are measured over many pulses [27]. In others, single- or few-shot
measurements are made [32, 33]. In both these cases, however, the pulse time T is much
longer than the coherence time !c. This effectively accounts for the time-averaging needed
when shorter pulses are employed.

Both the simulation of fields in Figures 5–7 and the mathematical descriptions of the
average intensity in Equation (15) assume long detection times. Often, however,
measurements are made with time-gated systems to reduce noise. The theory presented
in this work can easily be extended to such cases by altering the form of Equation (15) to
account for the change in detection time, namely,

ð1

&1
dt !

ð1

&1
dt hdðtÞ, ð17Þ

Figure 9. A simulation with system parameters T¼ 10 fs, !c¼ 500 fs, T0¼ 100 fs. The top panel
shows the optical intensity as a function of time or screen position after passing through the two
pinholes. The blue line running across this panel represents the detection plane. The second panel
shows the instantaneous intensity, not "ðP,P, t, tÞ, of the field as a function of position. The third
panel shows the accumulated average intensity. In this simulation, one notices a stable instantaneous
fringe position which results in several measurable fringe patterns in the average intensity.
(The colour version of this figure is included in the online version of the journal.)
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where hdðtÞ can account for time-gating. Care needs to be taken that cyclo-ergodicity
constraints are still met in such detection. As one can see in Figure/movie 11, the process
of gated detection can significantly alter the interferogram created by a pulsed field. One
can compare Figure 11 to Figure 7 to see the difference in gated detection, since both

Figure 10. A simulation with system parameters T¼ 10 fs, !c¼ 10 fs, T0¼ 100 fs. In the simulation
above, one notices a similar instantaneous intensity pattern. However, the fringe position is not
stable except in a region near x¼ 0, as can be seen by the lack of fringes off-centre in the plot of final
accumulated intensity. Running this simulation for longer than is presented will further reduce the
secondary fringes to a negligible level (cf. Figures 6). (The colour version of this figure is included in
the online version of the journal.)

Figure 11. A simulation with system parameters T¼ 10 fs, !c¼ 100 fs, T0¼ 100 fs and a gated
detector with repetition period equal to T0 and a gate-width of 40 fs. One can see that parts of the
wavefronts are no longer detected as shown in the top two plots. In the upper plot, the part
of the field that is not detected no longer appears in the spatio-temporal representation of the
field intensity. Since each screen position corresponds to different arrival times of the field, the
gated detection results in intensity nulls (seen at ,0.6mm and ,1.4mm). One can compare
the final frame of this movie to Figure 7 to see the difference between slow detection and fast,
gated detection. (The colour version of this figure is included in the online version of the journal.)
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simulations use the same temporal parameters for the pulsed field. One can also include in
this model the process of ‘physical detection’ by adding in another term in the integrand of
Equation (15) to account for the frequency response of the detector [34].

5. Conclusion

The interference pattern in a Young’s two-pinhole experiment has been examined in the
context of pulsed, stationary fields. Three time scales are important in such fields: the
coherence time, the pulse time, and the interpulse time. Based on these time scales, regimes
have been identified to classify the interferograms generated by these pulses. Analytic
results illustrate an equivalence between interferograms from different regimes and predict
multipulse interference effects. Numerical simulations verify these results, and also
illustrate the role of gated detection in interpreting interferograms for pulsed fields.
The two-pinhole interferometer used in this paper could equally well be replaced with a
Michelson interferometer or a number of other interferometric detection devices.
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