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Abstract: Temporally-stationary electromagnetic fields with arbitrary
second-order coherence functions are simulated using standard statistical
tools. In cases where the coherence function takes a commonly-used
separable form, a computationally-efficient variation of the approach can be
applied. This work provides a generalization of previous spatio-temporal
simulators which model only scalar fields and require either restrictions
on the coherence function or consider only two points in space. The
simulation of a partially-polarized Gaussian Schell-model beam and a
partially-radially-polarized beam are demonstrated.
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1. Introduction

The non-deterministic nature of light is well known and is the subject of a significant body of
literature, e.g. [1, 2]. Stochastic electromagnetic behavior may be taken to arise from fluctua-
tions in the primary source of the field and/or from the interaction of the field with some random
medium. While a time- and space-dependent probability density function (PDF) is required to
completely define a non-deterministic classical electromagnetic field, physical measurements
do not capture this full description. Optical detectors typically measure a time integral of the
square magnitude of the impinging field. As a result, the second-order moments of the PDF are
directly related to physical measurements and are foremost among the parameters used in the
characterization of stochastic electromagnetic fields. The average intensity, spatial and temporal
coherence lengths and the polarization state are all determined by the second-order coherence
function. This work describes the numerical generation of a discrete random process that can
be used to simulate a temporally-stationary electromagnetic field with arbitrary second-order
correlation properties.

The simulation of a stochastic scalar field was recently demonstrated [3]. This computa-
tional method generates a random process as a function of two spatial coordinates and time.
The random process represents a scalar field and can be used in a wide range of numeri-
cal experiments. Visualization of the instantaneous intensity of a partially-coherent Gaussian
Schell-model beam [1] was demonstrated, as was the effect of its propagation through a random
medium.

The effect of propagation on coherence functions is dictated by analytic relations [1, 4] but
these can be difficult to evaluate in many cases of interest. Numerical approaches (e.g. [5])
can be applied or simplifications such as geometrical propagation can be used in some circum-
stances [6]. A beam simulator provides a complementary tool as it allows the random field to be
generated, propagated numerically and the coherence function estimated from the output. More
generally, the simulated beam can be used as an input to any field-based numerical model of an
optical system and the output used in Monte Carlo investigations of the (possibly stochastic)
optical system or the properties of the resultant field. By simulating the random process, rather
than computing the correlation functions, it is possible to gain insight into the short-time be-
havior of the quantities of interest, rather than just their effects in the long-time measurements.
Additionally, one can envision the numerical demonstration of analytical or experimental re-
sults from coherence theory, such as propagation-induced spectral shifts [7] or the observation
of interference effects from uncorrelated sources using short-time-average measurements [8].

The simulator detailed in this work generalizes that described in [3] and also of earlier
work [9] that considered the simulation of a scalar field at two points, or a vector field at a single
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point. Specifically, the simulator described here has no restrictions on the coherence function
that can be modeled and a vector field is generated. The form of the coherence function required
in [3] excludes the simulation of certain fields, e.g. Twisted Anisotropic Gaussian Schell-Model
(TAGSM) beams [10] or the partially-coherent output from a laser or waveguide with more than
one non-zero mode [11]. Restrictions on the form of the coherence function also appear in re-
lated literature [5]. The model presented here has no such restrictions and can therefore be
used to numerically investigate phenomena such as the propagation of TAGSM beams [12] or
the estimation of mode distribution from the spatial coherence of a laser [13]. The coherence
of fields produced by arrays of correlated sources is also of practical interest (e.g. [14]) and
their numerical simulation would not be possible with previous partially-coherent-field simula-
tors. The vector nature of the new model also represents a significant generalization as effects
such as propagation-induced polarization change [15] or the influence of random media on the
polarization state [16] are now encompassed.

2. Generating the Field

The second-order statistics of a stationary two-dimensional electric field are described by the
coherence function,

Γ j j′(x,y,x′,y′,τ) =< E j(x,y,t)E ∗
j′(x

′,y′,t − τ) >, (1)

where j and j′ can take on the values x or y, and E j(x,y,t) is the electric field at spatial coor-
dinates (x,y), at time t and in direction j. Here a script typeface is used to indicate a random
quantity and angle braces indicate an expected value. The electric field is assumed to be sta-
tionary so Γ depends on τ but not t. Ergodicity is also assumed so that a temporal average over
one realization of the random field is equivalent to an ensemble average, at any given t, over
many realizations of the field.

The algorithms developed in this paper generate a random variable with user defined second-
order statistics for a discrete set of ( j,x,y,t) values. Two different algorithms will be given. The
first case is applicable to any coherence function Γ and will be known as the ‘general’ case.
The general case produces a random variable at any user-defined set of spatial (x,y) points and
field directions j at these points. This set of ( j,x,y) values will be mapped to a one-dimensional
vector and the location in this vector indexed by the integer n. The temporal axis is assumed
to be regularly sampled at or above the Nyquist rate and with samples indexed by m. Thus the
values of the continuous coherence function Γ j j′(x,y,x′,y′,τ) at the points of interest are used
to define a discrete coherence function Γ[n,n ′,m−m′]. Here curved brackets ( ) are used to
indicate continuous variables and square brackets [ ] indicate discrete variables.

The second case is said to be ‘separable’ and requires the coherence function to be factorable
into a particular form. This form arises frequently in coherence theory and is similar to that
required in [3], but with a generalization to vector fields. In the separable case the form of the
coherence function is exploited to allow a significantly more efficient algorithm. The separable
algorithm also requires that the x, y and t directions are regularly sampled at a rate satisfying
the Nyquist criterion and that j takes on values of both x and y at all spatio-temporal points
(i.e. all field directions are considered). The sampled x and y axes are then indexed by k and
l respectively. As a result, the values of the continuous coherence function Γ j j′(x,y,x′,y′,τ) at
the sample points are used to define a discrete coherence function Γ j j′ [k, l,k′, l′,m−m′].

The algorithms described here start with a set of uncorrelated random variables, which are
linearly manipulated to produce a set of discrete-time random processes that have the desired
second-order correlation properties. The input random variables can be realized in simulation
by using random number generators — specific examples of this are given later in the paper.
The linear manipulations involve scaling and shift-invariant filtering in the separable case; and
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random variable summation using the Cholesky decomposition [17] and shift-invariant filtering
in the general case. Both of these techniques are standard methods of manipulating the statistics
of random processes [18, 19]. The resulting complex random processes represent the complex
amplitude field at the discrete points of interest.

2.1. The General Case

The algorithm starts with one complex random variable for each discrete point considered.
These input processes X have second-order correlations given by,

< X [n,m]X ∗[n′,m′] >= δ [n−n′]δ [m−m′], (2)

where δ [·] is the discrete-argument delta function. These input random variables will be ma-
nipulated to give a discrete field E that exhibits the required second-order correlations.

Consider the discrete-time Fourier transform of the coherence function,

W [n,n′,ω) = ∑
u

Γ[n,n′,u]e−iωu. (3)

This can be regarded as a matrix function of angular frequency W̄ (ω), with n and n′ index-
ing the rows and columns respectively and ¯ denoting a matrix. Since the matrix is a discrete
representation of the cross-spectral density, it is guaranteed to be Hermitian and positive semi-
definite [1]. This means that it can be decomposed using the Cholesky decomposition to give
a matrix V̄ (ω) such that V̄ (ω)V̄ †(ω) = W̄ (ω), where † represents the Hermitian (conjugate
transpose). Writing this explicitly,

W [n,n′,ω) = ∑
r

V [n,r,ω)V ∗[n′,r,ω). (4)

It is then useful to define a set of temporal filters,

hV [n,r,m] =
1

2π

∫ π

−π
V [n,r,ω)eiωmdω . (5)

The output random variables, which simulate the field, can then be calculated as,

E [n,m] = ∑
r

∑
q

hV [n,r,m−q]X [r,q]. (6)

This equation describes the implementation of the general algorithm.
Eq. (6) is a discrete convolution over the time axis and a summation over all the input

processes. Taking the cross correlation, it can be shown that,

< E [n,m]E ∗[n′,m′] > =
1

2π

∫ π

−π
W [n,n′,ω)eiω(m−m′)dω ,

= Γ[n,n′,m−m′]. (7)

This verifies that the method described by Eq. (6) produces random processes with the desired
second-order correlations.

The quantity W is the discrete cross spectral density of the field to be simulated. The
Cholesky decomposition is used to find V such that Eq. (4) is satisfied but it would also be possi-
ble to use an eigenvector-based approach as given by the Karhunen-Loève decomposition [19].
Such a decomposition would lead to a synthesis of the field according to the principles of the
coherent mode representation [1] — V [n,r,ω) would be the r th coherent mode at frequency
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ω . Algorithms for both Cholesky and eigenvector-based matrix decompositions are well stud-
ied [17] but the Cholesky decomposition is chosen here as it guarantees V [n,r,ω) = 0 for r > n.
This means that fewer filters hV need to be calculated and stored. In both the Cholesky and
eigenvector-based methods, significant computational savings can be realized if W is sparse.
Efficient algorithms exist for sparse decomposition [17] and fewer non-zero h V filters will be
produced.

2.2. The Separable Case

In the separable case all dimensions are assumed to be regularly sampled on a grid with a
sampling rate satisfying the Nyquist criterion. Without loss of generality, the sampling rates
will be normalized to 1. The coherence function is assumed to take the separable form,

Γ j j′ [k, l,k
′, l′,m−m′] = Aj[k, l]A∗

j′ [k
′, l′]Bj j′η [k− k′, l− l′]R[m−m′]. (8)

As a reminder, k and l are the discrete spatial indices, while m and j continue to index time
and the field direction respectively. In Eq. (8), A j[k, l] controls the local scale of the coherence
function, B j j′ determines the relation between the x- and y-polarized fields, η [k − k ′, l − l′]
determines the spatial coherence and R[m−m ′] determines the temporal coherence. B j j′ obeys
the constraints Bxx = Byy = 1, Byx = B∗

xy = b and |b| ≤ 1. Additionally, if the magnitudes of
Ax[k, l] and Ay[k, l] are equal, |b| is the degree of polarization [1] at [k, l]. The functions η and
R are correlation functions and must satisfy the standard positive-semidefiniteness conditions.

The separability of the factor η shown in Eq. (8) implies the degree of spatial coherence
is uniform across the x-y plane. While this is a restrictive assumption, it is often seen in the
literature and results in what is typically referred to as either a Schell-model or quasihomoge-
neous [20] source. The separability of R in Eq. (8) implies that the temporal spectrum of the
field does not change with space or field direction. In an earlier simulator [3] an assumption
analogous to Eq. (8) was used and as mentioned in Sec. 1, this does not allow the simulation of
a significant number of practically-important fields.

As with the general case, input random variables are uncorrelated so that,

< X j[k, l,m]X j′ [k′, l′,m′] >= δ j j′δ [k− k′]δ [l− l′]δ [m−m′], (9)

where δ j j′ is the Kronecker delta. The constraints on B guarantee that it is a positive semi-
definite tensor, so the Cholesky decomposition can be used to define the matrix factor H̄ such
that,

H̄H̄† = B̄ =
[

Bxx Bxy

Byx Byy

]
. (10)

Explicitly,

H̄ =
[

1 0
b

√
1−|b|2

]
. (11)

Analogous decompositions for η and R can be found such that,

R[m] = ∑
q

hR[q]h∗R[q−m], (12)

η [k, l] = ∑
o,p

hη [o, p]h∗η [o− k, p− l]. (13)

For example, hη [o, p] can be found by Fourier-transforming η [k, l] to η̂(ω1,ω2), taking the pos-
itive square root (η̂ is real and non-negative as it is a power spectral density) to get ĥη(ω1,ω2)
and then inverse Fourier transforming to find h η [o, p].
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The desired random process can then be constructed as,

E j[k, l,m] = Aj[k, l]∑
q

hR[m−q]∑
o

∑
p

hη [k−o, l− p] ∑
s=x,y

HjsXs[o, p,q], (14)

where the matrix H̄ relates to Hj j′ in the same way that B̄ relates to B j j′ in Eq. (10).
From Eq. (14) it is easily verified that < E j[k, l,m]E ∗

j′ [k
′, l′,m′] >= Γ j j′ [k, l,k′, l′,m−m′]. The

processing described in Eq. (14) consists of linear shift-invariant filtering to produce the desired
spatial and temporal coherence characteristics, a linear combination of the x- and y-polarized
input fields to produce the desired polarization relation and multiplication by spatial amplitude
profiles. This processing will be much less computationally expensive than that required for
the general case. If the field considered has N ×N spatial samples, the general case will re-
quire the calculation and implementation of approximately 2N 4 temporal filters, while the most
expensive operation in the separable algorithm can be implemented using N ×N Fast Fourier
transforms (or (N + M − 1)× (N + M − 1) transforms if hη is M ×M and discrete-Fourier
wrap-around effects are to be avoided).

3. Examples

The generation of two example fields is described in this section. A vectorial Gaussian Schell-
model beam is simulated to demonstrate the separable-Γ algorithm and a partially-radially-
polarized beam is simulated to demonstrate the general-Γ algorithm. In both cases the input
random variables X are simulated using standard Gaussian random number generators. In ad-
dition to satisfying Eq. (2) or Eq. (9), each random variable is zero-mean and complex with
a variance of 0.5 in each of the real and imaginary parts and no real-imaginary correlation.
The linear processing maintains the Gaussian PDF structure so the generated field E is also
Gaussian. This corresponds to thermal or chaotic light [21] and the PDF of the field is com-
pletely determined by Γ.

3.1. The Separable Case: A Gaussian Schell-Model Beam

A vectorial Gaussian Schell-model [22] satisfies the separable form shown in Eq. (8). Such a
beam will be simulated here on a 12 × 12 spatial grid (normalized units) with 5 samples per
spatial unit. The temporal axis is 1000 units long with one sample per unit. The constituent
functions of Eq. (8) are Gaussian with the following parameters: A has unit amplitude and a
second-order moment of 4 for both the x and y field directions; η is unit amplitude and has a
second-order moment of 1; R has unit amplitude and a second-order moment of 4; B is defined
by b = 0.5. The filter hη is truncated to 20 samples and hR is truncated to 12 samples. Truncation
allows the random field to be generated using a finite number of input random variables.

The random process is generated using Eq. (14) and ergodicity allows the coherence function
to be estimated by replacing the expectation operator in Eq. (1) with a discrete average over
time. The local coherence properties at a point (x,y) can be decomposed as,

Γ j j′(x,y,x,y,0) = I(x,y)
{

[1−P(x,y)]
δ j j′

2
+P(x,y)p j(x,y)p∗j′(x,y)

}
, (15)

where I(x,y) is the average intensity, P(x,y) is the degree of polarization and p j(x,y) represents
the normalized complex amplitude of the fully-polarized field component in the j direction
[1]. The resulting estimates of these measures along with |Γxx(x,y,0,0,0)| (measures spatial
coherence), |Γxx(0,0,0,0,τ)| (measures temporal coherence) and the instantaneous intensity
are shown in Fig. 1. There is strong agreement between the specified values and those calculated
from the realized random processes. Note that only the real part of the vector p(x,y) is used
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to plot the field direction, however this is justified as the estimated coherence shows that the
intensity of the imaginary component is less than 2% of the intensity of the real component
at all spatial points. This agrees with the specification of Γ, which defines a linearly polarized
field.

3.2. The General Case: A Partially-Radially-Polarized Beam

To demonstrate the general method given by Eq. (6), the local properties of Eq. (15) will be
used to describe a partially-polarized, partially-coherent radially polarized beam [23]. The spa-
tial and temporal coherence will be included by multiplying these local properties with the
functions η and R from the Gaussian-Schell example and the degree of polarization will be 0.5.

A fully-radially-polarized beam is known as the TEM ∗
01 mode of a laser when Gauss-

Laguerre functions are used to describe the modes. The TEM ∗
01 mode is the sum of a TEM01

mode and a TEM10 mode with orthogonal polarization directions. This simple mathematical
representation is not trivial to reproduce experimentally (e.g. [24, 25]), where the presence of
additional modes may result in a reduction of spatial coherence and/or degree of polarization.
The example considered here has P(x,y) = 0.5, [px(x,y), py(x,y)] = [x,y]/

√
x2 + y2 and I(x,y)

equal to the intensity of the TEM∗
01 mode.

The resulting coherence function no longer satisfies Eq. (8), as B would have to be a function
of x and y (note that a fully-radially-polarized beam can be cast in the form of Eq. (8) by setting
b = 1 and having Ax and Ay equal to the appropriate TEM01 and TEM10 modes). The fully-
general method was used to generate the partially-radially-polarized field although it should
be noted that a hybrid separable-general method could have been employed. If B is allowed to
vary with (x,y) and H is defined according to Eq. (10), then using H js(x,y) in Eq. (14) would
allow the generation of a field with the prescribed spatially-varying polarization properties.
This hybrid method would set the polarization state at each point with dedicated processing
but the separable nature of the spatial and temporal coherence would be exploited to affect
computational gains. The fully-general method was used in the example presented here as a
proof-of-concept.

The radially-polarized field was realized on the same grid used for the Gaussian-Schell ex-
ample, although there is now no requirement to use a regularly-spaced spatial grid. The fact that
η and R describe coherence functions that drop to zero at a finite range (due to the truncation
of the filters in the previous example) makes the Cholesky decomposition much more tractable.
It reduces the number of non-zero entries in the correlation matrix W̄ (ω) and therefore eases
storage requirements. It also reduces numerical complications in the Cholesky decomposition
that might arise due to round-off errors in the tails of the coherence functions.

The results seen in Fig. 2 again show excellent agreement between the expected and observed
values. Note that the degree of polarization is undefined at the origin as the intensity is zero. The
intensity of the complex component of p(x,y) is again small — less than 2% of the intensity of
the real part at all spatial points.

4. Conclusions and Outlook

A method for simulating spatio-temporal stochastic electromagnetic fields has been pre-
sented. The random processes generated can be used in numerical experiments where the non-
deterministic behavior of light is important. Unlike previous simulators, there are no restrictions
on the coherence properties and vectorial fields are modeled. This allows the simulation of a
variety of fields that cannot be simulated with previous methods — for example, partially-
polarized beams, multi-mode light from lasers or waveguides, twisted anisotropic Gaussian
Schell-model beams and fields produced by arrays of correlated sources.

One can also envision straight-forward extensions of this work where temporally non-
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Fig. 1. Realized and specified coherence properties for the Gaussian-Schell example. The
specified intensity I(x,y) and field direction p(x,y) (in blue) are shown in (a) and the re-
alized values in (b). The white bar indicates one spatial unit. An overlay of x-axis cross
sections from (a) and (b) is shown in (c), where the dashed line gives the specified profile.
Specified and realized images of |Γxx(x,y,0,0,0)| are shown in (d) and (e) respectively, with
an x-axis cross section in (f). A movie (1.4MB) showing 100 consecutive frames of the in-
stantaneous intensity is given in (g). The realized degree of polarization P(x,y) is shown in
(h) while the specified value was P = b = 0.5. A temporal correlation |Γxx(0,0,0,0,τ)| is
shown in (i).
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Fig. 2. Realized and specified coherence properties for the radially-polarized example. The
specified intensity I(x,y) and field direction p(x,y) (in blue) are shown in (a) and the re-
alized values in (b). The white bar indicates one spatial unit. An overlay of x-axis cross
sections from (a) and (b) is shown in (c), where the dashed line gives the specified profile.
Specified and realized images of |Γxx(x,y,3,0,0)| are shown in (d) and (e) respectively, with
an x-axis cross section in (f). A movie (1.4MB) showing 100 consecutive frames of the in-
stantaneous intensity is given in (g). The realized degree of polarization P(x,y) is shown
in (h) while the specified value was P = 0.5. A temporal correlation |Γxx(0,0,3,0,τ)| is
shown in (i).
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stationary fields are considered. However this would involve an increase in dimensionality as
the absolute time t would need to be included. As a result, substantially more computational
effort would be required. In the examples shown here a Gaussian input process produced a
Gaussian simulated field. If non-Gaussian distributions are desired the relation between in-
put and output random variables is less clear. However, there is the potential to include non-
Gaussian statistics using similar random-process generation methods, e.g. [26]. This would
allow the simulation of non-thermal light.
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