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The framework of cyclostationary random processes is used to develop classical coherence theory for the
measurement of statistically periodic stochastic optical fields, such as those produced by pulsed lasers. Cyc-
loergodicity is invoked to show that precise and accurate inferences of the nonstationary process statistics can
be made from a single field realization. In particular, many-pulse observations using nonlinear and/or nonsta-
tionary techniques, such as spectral shearing interferometry, can be used to fully characterize the standard
two-time correlation function of a statistically periodic source. The theory is demonstrated through the simu-
lation of spectral shearing interferometry and frequency-resolved optical gating measurements.
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I. INTRODUCTION

Coherence theory #1–3$ is a response to two important
observations about the nature of optical measurements. First,
detector limitations will generally preclude the direct infer-
ence of a complex electromagnetic field, giving instead only
time-integrated intensity measurements. Second, optical
fields are generally stochastic due to imperfect knowledge of
the optical source and/or the inherently probabilistic nature
of the generation of light. The resulting framework makes
coherence theory indispensable in the prediction of observ-
able optical phenomena. As noted in Ref. #4$, “An interesting
feature of the theory of coherence is that it operates with
measurable quantities only.”

Considering photodetector sensitivity and response times,
it is clear that the set of observable measurements is much
smaller than the set of physically allowable source statistics.
As coherence theory describes quantities measurable by such
real instruments, the set of fields to which it can be applied is
necessarily restricted. The restrictions most commonly en-
forced are those of stationarity and ergodicity. Stationarity
requires that the ensemble statistics of the field do not vary
with time, and ergodicity ensures that a time-averaged detec-
tor response can be expected to converge to the appropriate
ensemble probabilistic measure. While stationarity and er-
godicity cannot hold for causal fields or finite-time measure-
ments #5,6$, they provide sufficiently accurate approximate
models for real-world signals in a wide variety of important
cases. Indeed coherence theory can be used to describe and
understand many interesting optical phenomena occurring
with nondeterministic light or stochastic optical systems—
e.g., propagation-induced spectral changes #7$, white light
interference #8$, atmospheric beam wander #9$, etc. Addition-
ally, an understanding of coherence theory forms the basis of
many instruments that use the statistical nature of light to
make inferences—e.g., stellar speckle interferometry #10$,
optical coherence tomography #11$, interference spectros-
copy #12,13$, etc. In short, coherence theory is used to make
sense of observable data.

While stationarity and ergodicity are of great utility in the
interpretation of optical measurements, stochastic nonsta-

tionary fields are increasingly important in modern optics,
particularly with the expanding use of pulsed laser sources
and the ever-increasing speed of those sources. Although
nonstationary coherence theory is less mature than stationary
coherence theory, it is the subject of a significant body of
literature. For example, it has been shown that physical con-
siderations impose certain laws on the allowable space-time
correlations of a nonstationary electromagnetic field #14,15$
and nonstationary-field propagation in certain systems can be
analyzed #16–19$. One may also define a nonstationary
modal decomposition #20,21$ analogous to the coherent-
mode decomposition. Authors have posited various restric-
tions on the statistics of the field in order to define tractable
classes of nonstationary fields. For example, in the elemen-
tary pulse model a field is constructed as an incoherent sum
of temporally distinct, fully coherent pulses #22$; the dual of
this model, the spectral elementary pulse model, has also
been described #23$; alternatively, an intrinsically stationary
field #6,24,25$ consists of a stationary source that is tempo-
rally modulated. Such nonstationary models are typically de-
fined in terms of correlation functions—i.e., ensemble mo-
ments of the field. Consequently, it may be possible to
determine the ensemble expectation of a hypothetical instan-
taneous measurement or of a time-integrated quantity. How-
ever, without ergodicity !which is usually taken to imply
stationarity; e.g. see Ref. #26$, Sec. 12-1", there is no guar-
antee that a time-integrated measurement from a single field
realization will converge to the calculated ensemble expec-
tation. For the statistically periodic !cyclostationary" fields
considered here, convergence can be guaranteed under cer-
tain cycloergodicity conditions. Restated, the statistics of cy-
cloergodic fields may be estimated in an accurate and precise
manner, but precision cannot be guaranteed for arbitrary non-
stationary fields.

This work leverages the well-developed field of cyclosta-
tionary random processes in an analysis of the metrology of
nonstationary fields. An overview of cyclostationarity can be
found in Ref. #27$, while Ref. #28$ contains a comprehensive
bibliography of publications concerning cyclostationarity.
Cycloergodicity is invoked to allow the measurement of sta-
tistically stable time-integrated measurements from nonsta-
tionary fields. As with standard ergodic coherence theory, the
cycloergodic coherence theory described here is only appli-
cable to a subset of the set of arbitrary fields; however, this*bryn@uiuc.edu
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subset is substantially larger than the standard ergodic set.
Cyclostationarity requires that the ensemble statistics of the
field be periodic in time, as opposed to stationarity which
requires that they be constant in time. Cyclostationarity has
been mentioned in relation to optical fields in the literature
#29–32$ but its potential for optical metrology has not been
fully exploited. This is in contrast to other fields where cy-
clostationarity has been heavily utilized, including in optical
signal processing #33$.

The pulsed fields produced by modelocked or Q-switched
lasers are becoming increasingly important in laboratory set-
tings. In addition, pulsed lasers are being used in conjunction
with nonlinear systems to produce novel sources—e.g., ex-
treme ultraviolet or soft x-ray pulse trains #34,35$, terahertz
!THz" fields #36,37$, and broadband continua #38$. Cyclos-
tationarity is a natural model for these sources as they can be
expected to exhibit periodic statistics. The work presented
here allows the statistical interpretation of measurements
taken from such sources, with the goal of allowing
measurement-based inference of the source statistics. The
statistical behavior of the source determines the temporal and
spectral distribution of energy, the stability of the field, and
the potential efficacy of techniques such as optical pulse
compression #39$. Preliminary work in the measurement of
broadband continua has already shown interesting statistical
phenomena and significant pulse-to-pulse instability #40$. It
will be shown that instruments designed to provide determin-
istic single-pulse characterization, such as spectral phase in-
terferometry for direct electric-field reconstruction !SPIDER"
#41,42$ and frequency resolved optical gating !FROG"
#43,44$, can also be used to provide a statistical characteriza-
tion of periodically pulsed fields by taking many-pulse mea-
surements.

The next section provides a terse review of cyclostation-
ary random processes and establishes the notation. In Sec. III
cycloergodicity is briefly reviewed and consistent estimators
of the second-order correlations of a cycloergodic random
process are described. The stable measurement of periodic
field statistics is discussed in Sec. IV with SPIDER and
FROG examples given. Many-pulse SPIDER and FROG re-
sults are simulated in Sec. V and are shown to agree with
theoretical predictions. A discussion and references conclude
this work.

II. CYCLOSTATIONARITY

The coherence theory presented in this paper hinges on
the assumption of the cyclostationarity of the stochastic
fields in question. A cyclostationary model is chosen for two
reasons: it is a natural framework in which to analyze sto-
chastic periodically pulsed fields, and it allows the invoca-
tion of cycloergodicity to interpret measurements in terms of
the ensemble statistics of the field. Cyclostationary stochastic
processes have been extensively studied, and the reader is
referred to the literature !see Refs. #27,28$" for a comprehen-
sive discussion. A limited review is given here in order to lay
the groundwork for the optics-centered results presented later
in the paper.

A. Definition

Here and in the rest of this work, the notation of Ref. #2$
is followed when applicable. In particular, the temporal Fou-
rier transform operator is defined as % exp#i2!"t$dt.

Let the complex random process E!t" be the complex ana-
lytic envelope of a real scalar field. An nth-order probability
density function !PDF" p!#1 ,#2 , . . . ,#n ; t1 , t2 , . . . , tn" defines
the joint statistics of E!t" at n times; i.e., it describes the
probability that E takes value #1 at time t1, #2 at time t2, etc.
To obtain a complete characterization of a general random
process, the PDF must be specified to an infinite order. In the
stationary case the PDFs obey the equation

p!#1,#2, . . . ,#n;t1,t2, . . . ,tn"

= p!#1,#2, . . . ,#n;t1 + T,t2 + T, . . . ,tn + T" , !2.1"

for all T. The implication is simply that the statistical char-
acteristics of the random process are not dependent on the
origin of the time axis. Cyclostationarity is less restrictive
than stationarity—Eq. !2.1" must still be satisfied but only
for some T. The smallest value of T for which Eq. !2.1" is
satisfied is known as the period of the process. The statistical
properties of a cyclostationary random process are dependent
on the origin of the time axis but this dependence is periodic.

B. Correlations and spectra

It is not usually possible to measure the PDFs that fully
characterize a random optical field. For this reason, aggre-
gate properties are typically used to partially characterize the
field. The moments of the PDF are a popular metric and are
often expressed in terms of correlation functions. Following
Ref. #2$, the correlation function of order !M ,N" is defined
as

$!M,N"!t1,t2, . . . ,tM+N"

= &E*!t1"E*!t2" ¯ E*!tM"E!tM+1" ¯ E!tM+N"' ,

!2.2"

where &·' is the expectation operator.
The correlation functions for which M =N appear most

commonly in standard coherence theory. Following Ref. #2$,
such correlation functions will be referred to as even-order,
while correlation functions for which M !N are odd-order.
Odd-order correlation functions receive little attention be-
cause they can be shown to be zero for a stationary source in
all but a limited set of special cases !see Ref. #2$, Sec. 8.3,
for a full discussion". In the nonstationary case the odd-order
correlation functions may be nonzero, which implies that a
phase shift % changes the statistics of the field. If E!t" is
replaced by ei%E!t" in Eq. !2.2", it can be seen that the even-
order !M =N" correlations are unaffected, while the odd-
order correlations change. Thus a field with nonzero odd-
order correlations has quadrature components with differing
statistics; e.g., $!2,0"!t1 , t2" can be used to describe squeezed
light #45$. In this work it is assumed that all odd-order cor-
relation functions are zero so that the quadrature components
are statistically equal, the field is unsqueezed, and there is no
preferential phase offset.
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Fourier-domain spectral correlations have also found
great utility. The Fourier transform of the random process
E!t" is denoted by Ẽ!"" and is assumed to exist, at least in the
sense of mean-square stochastic convergence !see Ref. #26$,
Sec. 11-4". The spectra &!M,N" can then be defined as

&!M,N"!"1,"2, . . . ,"M+N"

= &Ẽ*!"1"Ẽ*!"2" ¯ Ẽ*!"M"Ẽ!"M+1" ¯ Ẽ!"M+N"' ,

=( ¯( $!M,N"!t1,t2, . . . ,tM+N")
j=1

M

exp#− i2!" jtj$

' )
k=M+1

M+N

exp#i2!"ktk$dt1dt2 ¯ dtM+N. !2.3"

The spectra defined above give a measure of the correlation
between frequency components of the field. These spectra
facilitate the interpretation of nonstationary optical fields as a
composition of correlated spectral components #46,47$. Such
an interpretation is particularly apt for modelocked lasers,
where the multiple modes generated in the laser cavity ide-
ally have a well-defined intermode phase relation.

Since optical detectors respond to the optical intensity
*E!t"*2, the M =N=1 correlation function and spectrum are of
particular interest. Cyclostationarity can be seen to enforce a
particular structure on these functions. Since $!1,1"!t1 , t2"
=$!1,1"!t1+T , t2+T", a Fourier series expansion can be made
as

$!1,1"!t − (,t" = +
m=−)

)

C!(;m"e−i2!m"Tt, !2.4"

where the repetition frequency is defined as "T=T−1 and m is
an integer. Using Eq. !2.3", it can then be seen that

&!1,1"!"," + *" = +
m=−)

)

W!";m"+!* − m"T" , !2.5"

where

W!";m" =( C!(;m"ei2!"(d( . !2.6"

Cyclostationarity implies that the spectrum &!1,1"!"1 ,"2"
consists of continuous distributions of singularities along
lines of unit slope in the "1−"2 plane, herein referred to as +
lines. These + lines are spaced by multiples of the repetition
frequency. This shows that only certain frequency compo-
nents of the field have correlations. For stationary fields it
can be seen that only the m=0 term is nonzero in Eq. !2.4".
In this case W!" ;0" becomes the standard spectral density
and frequency components of the field are uncorrelated.

The form seen in Eq. !2.5" clearly places a spectral re-
striction on the class of nonstationary fields that can be con-
sidered. As noted in Sec. I, some restriction is necessary in
order to ensure a meaningful relationship between detector
measurements and the statistics of the source. Cyclostation-
arity allows the cycloergodic relations discussed in the next

section to be employed, while also encompassing a broad
class of optical fields encountered in modern optics.

The spectrum of an example cyclostationary random pro-
cess EC!t" is illustrated in Fig. 1. In this case a cyclostation-
ary field is created by periodically modulating a stationary
field,

EC!t" , a!t"EI!t" . !2.7"

Nonstationary fields constructed in this manner are known as
intrinsically stationary #6$. In this example a periodic Gauss-
ian modulation function is used,

a!t" = +
n=−)

)

e−!t − nT"2/!2-a
2", !2.8"

with -a=10 fs and T=100 fs. The underlying stationary field
EI!t" is defined by a Gaussian correlation function

$I
!1,1"!t − (,t" = e−(2/!2-I

2", !2.9"

where -I=100 fs. The pulse repetition rate T used in this
example allows clear visualization of the field spectrum but
is much higher than the repetition rate achieved in modern
pulsed lasers.

A stationary field ES!t" with the same spectral content as
EC!t" may be defined by setting WS!" ;0"=WC!" ;0". How-
ever, since this field is stationary, WS!" ,m"=0 for all m!0.
The resulting spectrum can be seen in Fig. 2. The cyclosta-
tionary field EC!t" and the stationary field ES!t" will be used
in illustrative examples throughout this work.

A comparison of Figs. 1 and 2 illustrates the differences
between the second-order spectrum of a stationary process
and that of a cyclostationary process. In Fig. 2, temporal
stationarity requires that distinct Fourier components be un-
correlated, with the result that the spectrum is nonzero only
on the "1="2 locus. The less restrictive condition of cyclos-
tationarity allows correlations between Fourier components
separated by multiples of "T. As a result the spectrum is
nonzero along the offset, unity-slope + lines seen in Fig. 1.
This spectrum is more general than the stationary case, but

FIG. 1. !Color online" Graphical representation of the spectrum
&C

!1,1"!"1 ,"2" of an example cyclostationary random process. Spec-
tral correlations are nonzero only along lines of unity slope, offset
by multiples of the pulse repetition frequency.
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more restrictive than the general nonstationary case where
periodic statistics are not required and any two Fourier com-
ponents may be correlated.

III. CYCLOERGODICITY

A. Motivation

Cycloergodicity can be invoked to relate a single realiza-
tion of a cyclostationary random process to the probability
distributions that define it. Since a single realization of the
process is generally all that is experimentally available, cy-
clostationarity provides an important tool for making infer-
ences about the probabilistic properties of the field. Formally,
a cyclostationary process is cycloergodic in some function of
the PDF if that function of the PDF can be consistently esti-
mated from a single realization of the random process. If
gL#E!t"$ estimates the field parameter . from a duration L
measurement of the field E!t", then consistency requires !see
Ref. #26$, Sec. 8-2",

lim
L→)

P,*gL#E!t"$ − .* / 0- = 1, !3.1"

for all 010 and where “P” is probability. In practical experi-
ments a finite observation time is used but is understood to
be long enough to allow the estimator to converge to within
a reasonable distance of the infinite-observation value. Mag-
yar and Mandel performed a maser experiment where the
effects of insufficient measurement duration are demon-
strated #48$.

In the same manner that ergodicity requires stationarity,
cyclostationarity is a necessary, but not sufficient, condition
for cycloergodicity. While a description of the conditions
necessary for cycloergodicity is beyond the scope of this
work, Gardner et al. #27$ provide the following summary:
“Consistent estimates of second-order statistical functions of
an #almost cyclostationary$ stochastic process can be ob-
tained provided that the stochastic process has finite or ‘ef-
fectively finite’ memory. Such a property is generally ex-
pressed in terms of mixing conditions or summability of
second- and fourth-order cumulants.” Almost-cyclostationary

processes form a broader class than the cyclostationary pro-
cesses considered here. Intuitively, the periodic nature of the
cyclostationary random process allows probabilistic mea-
sures to be estimated using an averaging procedure over
many periods of a single realization. If the process has an
infinite memory, the single realization may not be represen-
tative of all possible outcomes, giving a process that is not
cycloergodic. For a discussion of this idea in the stationary
framework, see Ref. #2$, Secs. 2.2.2 and 2.2.3.

In the general nonstationary case there are no constraints
on the temporal dependence of the statistics of the field. So
while it is possible to define probabilistic measures !such as
the mean and higher-order moments" as a function of time, it
is not generally possible to consistently predict the outcomes
of time-integrated measurements or to infer probabilistic in-
formation from such measurements. As an example, consider
the estimation of the expected intensity as a function of time
for a random field. In the general nonstationary case, a single
field realization can give little indication of the time-
dependent expected value—at each point in time only a
single datum is available. The uncertainty of the expected
intensity at a given time is nonzero and may not be reduced
by taking more data. A precise estimate of the time-
dependent mean intensity cannot be found. In the cycloer-
godic case, one can perform an averaging across periods of
the field in order to get a consistent estimate of the expected
intensity at each position within a period.

In general, some restrictions on the nonstationarity of the
field are required in order to meaningfully interpret measure-
ments. These restrictions limit the utility of completely gen-
eral nonstationary coherence theory. In a recent work a sta-
tistical description of pulse trains was presented #49$ in a
manner that allowed the modeling of various effects includ-
ing pulse-to-pulse correlations. That work implicitly employs
a restricted cyclostationary model. As a result, the authors
report spectral correlations of the form seen in Eq. !2.5" but
cycloergodicity was not exploited. The analyses presented
here are based on a less restrictive model and invoke cyclo-
ergodicity to allow the prediction of measurements and the
use of single field realizations in inferences regarding the
probabilistic properties field.

As a caveat, it should be noted that cyclostationarity is not
the only nonstationary model that may produce ergodicity
properties. For example, a stable, predictable, slow detector
measurement may be possible for a field consisting of a
slowly varying nonstationary component and a rapidly vary-
ing stationary component. This is known as a locally station-
ary model #5,50$ and can be used in situations where the
coherence length of a field is much less than the pulse width
#25,51,52$. Local stationarity does not apply to stable ul-
trafast pulse trains, as the field can be expected to remain
coherent within a single pulse duration, or even between
pulses.

B. Time-frequency correlation estimation

The estimators presented in this section and in Sec. III C
represent only a small fraction of the literature on cycloer-
godicity, and a more comprehensive review is recommended
#27,28$.

FIG. 2. !Color online" Graphical representation of the spectrum
&S

!1,1"!"1 ,"2" of an example stationary random process. Spectral
correlations are nonzero only along the "1="2 line.
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The coefficients C!( ;m" seen in Eq. !2.4" can be esti-
mated from a single realization of the field E!t" using

Ĉ!(;m,l,L" =
1
L
(

l−L/2

l+L/2

E*!t − ("E!t"ei2!m"Ttdt . !3.2"

The estimate Ĉ is a function of L, the measurement duration,
and l, the central time in the measurement. Assuming cyclo-
ergodicity, Ĉ!( ;m , l ,L" is a consistent estimator of C!( ;m",
so that

lim
L→)

&Ĉ!(;m,l,L"' = C!(;m" !3.3"

and

lim
L→)

&*Ĉ!(;m,l,L" − &Ĉ!(;m,l,L"'*2' = 0. !3.4"

It can be seen that these limits are not dependent on the
measurement origin l. The mean condition seen in Eq. !3.3"
ensures accuracy, while the variance condition of Eq. !3.4"
describes precision. Together these two consistency condi-
tions are denoted by →

L
, where the limit is taken with respect

to the under-set variable!s". This allows Eqs. !3.3" and !3.4"
to be written as

Ĉ!(;m,l,L"→
L

C!(;m" . !3.5"

C. Frequency-frequency correlation estimation

The estimator given in Sec. III B is a function of the tem-
poral variable ( and the spectral-offset index m. An estimator
can also be implemented entirely in the spectral domain by
first defining the intermediate measurement

F!";l,L" = (
l−L/2

l+L/2

E!t"ei2!"tdt . !3.6"

F!" ; l ,L" can be interpreted as a limited-time Fourier trans-
form or, by regarding l as a variable rather than a parameter,
a bandpass filter about ". An estimated spectrum can then be
defined as

Ŵ!";m,l!,L!,L" =
1
L!
(

l!−L!/2

l!+L!/2 1
L

F*!";l,L"F!" + m"T;l,L"dl ,

!3.7"

where l! defines temporal origin of measurement, L! is the
length of measurement, and L−1 gives the spectral resolution
of F!" ; l ,L". Cycloergodicity can then be invoked to give

Ŵ!";m,l!,L!,L"→
L,L!

W!";m" , !3.8"

where the limit in L! is taken before the limit in L. The
convergence shown in Eq. !3.8" is predicated on the assump-
tion that W!" ;m" is a smooth function of ". In the event that
it is not smooth, the estimator converges to a smoothed ver-
sion of W!" ;m" !see Ref. #27$ for details".

In practical measurements, L! and L cannot achieve the
limits in Eqs. !3.5" and !3.8". Instead, these parameters must

be large enough to allow the estimators to converge to within
an acceptably small variance. If (c is the maximum width of
$!1,1"!t−( , t", then the measurement duration has to be many
multiples of (c or T !whichever is larger". For the remainder
of this work it is assumed that these conditions on L and L!
are met.

IV. MEASUREMENT OF PULSED FIELDS

In this section the measurement of a field with a cyclos-
tationary envelope E!t" is considered. Consistent with the
majority of the nonstationary coherence theory literature, at-
tention is largely restricted to the second-order correlations
$!1,1"!t1 , t2" or, equivalently, &!1,1"!"1 ,"2". These functions
are insufficient to fully characterize the field but are closely
related to data measured in experimental systems. In the sta-
tionary case, $!1,1"!t1 , t2" #or &!1,1"!"1 ,"2"$ characterizes the
statistics of the process up to second order. This is also true
of the nonstationary case when $!1,0"=$!2,0"=0 as assumed
here.

The measurement instrumentation is modeled as a detec-
tor preceded by optical elements that are used to transform
the field in some manner. A slowly responding detector of
intensity can be modeled as giving Ĉ!0;0 , l ,L" from Eq.
!3.2". Similarly, a spectrometer can be modeled as providing
Ŵ!" ;0 , l! ,L! ,L" #Eq. !3.7"$. The information collected by
the intensity detector is a subset of that provided by the
spectrometer—i.e., the intensity detector data can be synthe-
sized from the spectrometer measurement but not vice versa.
For this reason, spectral detection will be considered
throughout this section, with the understanding that it repre-
sents the more general detection method.

The spectrometer is modeled as collecting
Ŵ!" ;m , l! ,L! ,L" for m=0, which consistently estimates
W!" ;0" for cycloergodic fields. Thus the spectrometer does
not provide an unambiguous characterization of the spectrum
&!1,1"!"1 ,"2" unless the field is stationary, in which case
W!" ;m" is nonzero only for m=0. In order to measure the
second-order statistics of E!t", the goal is to design predetec-
tor optical elements that produce a field that can be used to
fully estimate the spectrum of E!t"—i.e., to find W!" ;m" for
all m. As a first step in this design process, one can consider
linear, temporally stationary, predetector optics.

A. Stationary linear measurements

A linear, temporally stationary optical system can be char-
acterized by an impulse response h!t". The resulting prede-
tector field envelope is then

P!t" , h!t" ! E!t" , !4.1"

where ! represents convolution. This operation can also be
represented in the Fourier domain by the transfer function
h̃!"". It should be noted that since E!t" is cyclostationary
with period T, P!t" is also cyclostationary with period T.

The data collected by the spectrometer are represented by
D!" ; l! ,L! ,L", which is defined according to Eq. !3.7" but
where P!t" is measured rather than E!t" and m=0.
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D!" ; l! ,L! ,L" is a consistent estimator of WP!" ;0", the "1
="2 +-line coefficients of the spectrum of P!t". The spectrum
of P!t", &P

!1,1"!"1 ,"2", can be related to the spectrum of E!t"
using Eq. !4.1" and standard stochastic results. Assuming cy-
cloergodicity, the resulting spectrometer data converge as

D!";l!,L!,L"→
L,L!

WP!";0" = *h̃!""*2W!";0" . !4.2"

The linear, temporally stationary model includes a number of
common instruments. For example, an interferometer can be
modeled with the impulse response h!t"=+!t"++!t−(".

From Eq. !4.2" it can be seen that linear, temporally sta-
tionary, predetector optics do not give access to W!" ;m" for
m!0. As a result, the instrument is still insensitive to much
of the two-frequency spectrum &!1,1"!"1 ,"2". The inadequacy
of linear, temporally stationary measurements in the charac-
terization of pulsed fields has been previously noted in a
deterministic context #53,54$.

The use of the "1="2 line of &!1,1"!"1 ,"2" as an intuitive
and accessible spectrum for nonstationary fields has been
proposed #55$. As described above, this locus of the two-
frequency spectrum does describe the expected value of
spectral measurements of E!t", and the measurement may
converge to this value for cyclostationary or other well-
behaved fields. While such measurements may be predicted,
they do not allow the inference of nonstationary statistics.
This can be seen by noting that one may always construct a
stationary random process with a single-frequency spectrum
of &!1,1"!" ,"", as seen in the examples of Figs. 1 and 2. The
nonuniqueness of second-order nonstationary fields con-
strained only by &!1,1"!" ,"" has also been noted in the con-
text of temporally Gaussian pulses #56$ and intrinsically sta-
tionary fields #25$.

Despite such ambiguities, the prevalence of linear, tempo-
rally stationary measurement optics has resulted in most sto-
chastic pulsed sources being characterized in terms of the
single-frequency spectrum &!1,1"!" ,"". The standard ap-
proach is to posit a source model based either on mathemati-
cal #22,23,49$ or physical #57–59$ considerations. Noise and
stochastic influences are also modeled !often in terms of con-
cepts such as jitter, pulse-width fluctuation, or carrier-
envelope offset" and the ensuing effects on &!1,1"!" ,"" inves-
tigated. The resulting explanations of measurements and
noise sources are model dependent and subject to significant
interpretation difficulties #29$.

The approach taken in this work is to make only a limited
assumption about the source statistics !i.e., cycloergodicity",
to not restrict noise sources, and to measure more data. Spe-
cifically, &!1,1"!"1 ,"2" is estimated for "1!"2. In order to do
this, nonlinear and/or nonstationary measurement optics
must be used. This approach is in line with ultrafast pulse
characterization techniques such as SPIDER and FROG,
which are inherently nonlinear and/or nonstationary. Ul-
trafast measurement techniques such as these have been pre-
sented in a deterministic framework with the goal of measur-
ing a single, isolated pulse. The stochastic measurement
analyzed here differs in that the measurement is taken over
many pulses in order to reliably measure statistical quanti-

ties. It should also be noted that the assumption of cyclosta-
tionarity is less restrictive than most pulsed-source models
and that the issue of ergodicity has been largely ignored in
previous work on nonstationary optical fields.

B. Spectral-shearing interferometry

The use of nonlinear and/or nonstationary optics to mea-
sure cyclostationary signals can be well demonstrated with a
SPIDER system. The SPIDER technique is illustrated in Fig.
3 using a diagram based on Fig. 1 in Ref. #60$. The reader is
also referred to that article for a discussion of practical issues
involved in the construction of the interferometer. The SPI-
DER apparatus uses a nonlinear crystal to mix two tempo-
rally offset replicas of the field E!t" with a third highly dis-
persed copy. Since the time response of the apparatus is
dependent only on the cyclostationary field E!t", the field
envelope at the detector, P!t", is cyclostationary. The cyclo-
ergodicity of P!t" is also assumed in this work.

Part of the field E!t" is passed through a dispersive ele-
ment to produce a chirped pulse with a long duration. This
dispersed pulse is mixed with each of two temporally offset
pulses in a nonlinear 2!2" crystal. The dispersion introduced
is assumed to allow the dispersed pulse to be regarded as a
pure frequency across the duration of an undispersed pulse.
Each of the undispersed, offset pulses is mixed with a differ-
ent portion of the dispersed signal and thus mixes with a
different frequency. A relative frequency shear * is produced
and the SPIDER signal is modeled as #41$

P!t;(,*" , E!t" + E!t − ("ei2!*t, !4.3"

where ( gives the temporal offset produced in the étalon seen
in Fig. 3. It should be noted that the model given by Eq. !4.3"
requires a sufficiently short and well-defined pulse profile. In
general, cyclostationary fields need not be restricted to those
with periodically localized intensity distributions. Addition-
ally, Eq. !4.3" describes the ideal situation where the dis-

FIG. 3. !Color online" Illustration of the SPIDER pulse mea-
surement technique, where the pulse shading indicates frequency
content. An étalon is used to create two offset replicas of the pulse,
while a chirped version of the pulse is produced in a dispersive
element. These fields are mixed in a nonlinear crystal and the re-
sulting up-converted pulses detected with a spectrometer.
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persed pulse behaves as a pair of local oscillators for mixing
with each of the offset pulses. In a field with significant
random fluctuations this model may not be accurate.

From Eq. !4.3" it can be seen that the Fourier-domain
representation of the predetector envelope is

P̃!";(,*" = Ẽ!"" + Ẽ!" + *"ei2!!"+*"(. !4.4"

The "1="2 profile of the resulting spectrum is, then,

&P
!1,1"!",";(,*" = &*Ẽ!""*2 + *Ẽ!" + *"*2

+ Ẽ*!""Ẽ!" + *"ei2!!"+*"(

+ Ẽ!""Ẽ*!" + *"e−i2!!"+*"(' ,

=&!1,1"!","" + &!1,1"!" + *," + *"

+ &!1,1"!"," + *"ei2!!"+*"(

+ &!1,1"!" + *,""e−i2!!"+*"(, !4.5"

where the & terms without subscripts describe statistics of
E!t", the envelope of interest. The envelope P!t" is assumed
to be cycloergodic with the result that the spectrometer mea-
surement converges as

D!";(,*,l!,L!,L"

→
L,L!.

W!";0" + W!" + *;0" + W!";m"ei2!!"+*"(

+ W!" + *;− m"e−i2!!"+*"(, * = m"T,

W!";0" + W!" + *;0", * ! m"T,

!4.6"

where m is an integer. Note that the Hermitian symmetry of
&!1,1"!"1 ,"2" results in the relation

W!";m" = W*!" + m"T;− m" , !4.7"

which ensures that Eq. !4.6" describes real-valued data. Non-
negativity can also be proven using the inequality

*W!";m"* 3 /W!";0"W!" + m"T;0" . !4.8"

As shown in Eq. !4.6", the nonlinear SPIDER technique can
be used to create a dependence between the "1!"2 spectral
correlations of E!t" and measured data. This is evidenced by
the W!" ;m", m!0 terms that are present when * is a mul-
tiple of the repetition rate "T.

With a well-chosen delay ( and band-limited W!" ;m"
terms, the SPIDER data can be manipulated using linear fil-
tering and demodulation to isolate a single term #42$ and
remove the dependence on (. Assuming that *=m"T, the
processed data are

D!!";m,l!,L!,L"→
L,L!

W!";m" . !4.9"

The full &!1,1"!"1 ,"2" spectrum may be constructed via Eq.
!2.5" by taking measurements for multiple values of m. The
resulting spectrum could then be used to characterize the
stability of the source. For example, a nonstationary modal
expansion #20,21$ can be used to determine a nonstationary
degree of coherence.

The SPIDER data expected from the example signals de-
scribed in Sec. II B can be calculated. The SPIDER data for
the pulsed field !with spectrum shown in Fig. 1" can be seen
in Fig. 4, while the stationary field !with spectrum shown in
Fig. 2" gives the SPIDER data shown in Fig. 5. As dictated
by Eq. !4.6", oscillatory spectral interference effects occur
whenever the shear frequency * is a multiple of the repeti-
tion frequency "T and the corresponding W!" ;m" term is
nonzero. Consequently the pulsed field !Fig. 4" can be dis-
tinguished from the stationary field !Fig. 5" even though they
have the same frequency content. Furthermore, the nonsta-
tionary spectrum seen in Fig. 1 can be estimated by measur-
ing a full range of spectral shears.

The use of the SPIDER apparatus proposed here is sig-
nificantly different from the traditional single-pulse, deter-
ministic measurement scheme. In the deterministic case only
a single spectral shear * is required to calculate a spectral
phase. However, a deterministic single-pulse measurement
will not capture the statistical properties of the source. The
stochastic case has a much greater range of potential mea-
surements and as a result requires a multiple-shear measure-
ment system. The construction of a multiple-shear SPIDER
system may include significant technical hurdles and will
ultimately be limited by the range and accuracy of shears *
that can be implemented. Additionally, the SPIDER imple-
mentation shown in Fig. 3 relies on temporally localized
pulses. A stochastic field may be cyclostationary but not ex-
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FIG. 4. !Color online" SPIDER data for the pulsed example
field: !a" spectral profiles for many different spectral shears *, plot-
ted as an image, and !b" a single profile at *="T=10 THz #marked
with a dashed line in !a"$, normalized by the maximum data value
and plotted with the corresponding cross-spectral profile WC!" ;1".
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hibit temporal localization. Despite these limitations, the
analysis presented here illustrates the principle of nonstation-
ary coherence measurements. There is also the possibility of
utilizing a novel nonlinear and/or nonstationary instrument
or other pulse measurement systems such as the FROG tech-
nique discussed in the next section.

C. Frequency-resolved optical gating

Like SPIDER, the ultrafast measurement technique
FROG is used to measure the temporal profile of optical
pulses #61$. FROG encompasses a family of measurement
systems that depend on the optical arrangement and nonlin-
earity used. One example is second harmonic generation
!SHG" FROG, which is illustrated in Fig. 6. SHG FROG can
be cast in the framework used in Sec. IV B but with the
predetector field

P!t;(" , E!t"E!t − (" . !4.10"

The Fourier transform of the predetector field P̃!" ;(" is then
given by a convolution operation which can be written ex-
plicitly as

P̃!";(" =( Ẽ!" − "!"Ẽ!"!"ei2!"!(d"!. !4.11"

From the above result, the second-order spectral correlations
of P!t" can be calculated as

&P
!1,1"!"1,"2;("

=( ( &!2,2"!"1 − "!,"!,"! + "","2 − "! − """

' e−i2!""(d"!d"". !4.12"

The second-order spectrum of P!t" can be seen to be depen-
dent on the fourth-order spectrum of E!t", the field to be
measured. This is because the FROG predetector field #Eq.
!4.10"$ is dependent on the product of E!t" with a delayed
version of E!t"; i.e., it is second-order in E!t".

Due to cyclostationarity, the fourth-order temporal corre-
lations of E!t" are also periodic with respect to the placement
of the time origin. Analogous to Eq. !2.5", this introduces a
constraint on the form of the spectral correlations,

&!2,2"!"1,"2,"3,"1 + "2 − "3 + *"

= +
m=−)

)

V!"1,"2,"3;m"+!* − m"T" . !4.13"

Substituting Eq. !4.13" into Eq. !4.12" confirms that the
second-order spectrum of the predetector data, &P

!1,1"!"1 ,"2",
is of the form given in Eq. !2.5", as required for a cyclosta-
tionary signal. Assuming the cycloergodicity of P!t", the
FROG data then converge as

D!";(,l!,L!,L"→
L,L!

( ( V!" − "!,"!,"! + "";0"

'e−i2!""(d"!d"". !4.14"

The integral in "" can be recognized as an inverse Fourier
transform. As a result, the data can be more compactly rep-
resented by taking the Fourier transform with respect to (, to
give

D̃!"; f ,l!,L!,L"→
L,L!

( V!" − "!,"!,"! + f ;0"d"!.

!4.15"

The forward model for the many-period SHG FROG system
is given by Eq. !4.15". It can be seen that the fourth-order
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FIG. 5. !Color online" SPIDER data for the stationary example
field: !a" spectral profiles for many different spectral shears *, plot-
ted as an image, and !b" a single profile at *="T=10 THz #marked
with a dashed line in !a"$, normalized by the maximum data value
and plotted with the corresponding cross-spectral profile WS!" ;1".

FIG. 6. !Color online" Illustration of the second-harmonic gen-
eration FROG technique. Two offset pulses are mixed in a nonlinear
crystal and the resulting field detected with a spectrometer.
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statistics, determined by V!"1 ,"2 ,"3 ;m", are mapped to a
two-dimensional data set. This gives a loss of dimensionality
and hence an ill-posed inverse problem. However, the fourth-
order spectral correlations can be expressed in terms of the
second-order spectral correlations when the field E!t" is sta-
tistically Gaussian !see Ref. #2$ Sec. 8.5.3". Specifically,

&!2,2"!"1,"2,"3,"4" = &!1,1"!"1,"3"&!1,1"!"2,"4"

+ &!1,1"!"1,"4"&!1,1"!"2,"3" .

!4.16"

Restricting attention to cyclostationary fields, Eqs. !2.5" and
!4.13" can be substituted above to give

V!"1,"2,"3;m" = +
m"=−)

)

W!"1;m""W!"2;m − m""

'+!"3 − "1 − m""T" + +
m!=−)

)

W!"2;m!"

'W!"1;m − m!"+!"3 − "2 − m!"T" .

!4.17"

This relation can then be used in Eq. !4.15" and by making
use of Eq. !4.7" it can be seen that

D̃!"; f ,l!,L!,L"→
L,L!

+
m=−)

) 0( W!"!;m"

'W*!" − "! − m"T;m"d"!1+!f − m"T"

+
1
2 +

m!=−)

)

W2" + f − m!"T

2
;m!3

'W*2" − f − m!"T

2
;m!3 . !4.18"

Like the SPIDER measurement #Eq. !4.6"$, it can be seen
that the SHG FROG instrumentation couples W!" ;m", m
!0 terms into the observable data. As a result, the nonsta-
tionary nature of the signal affects the data in a way not
possible with linear, stationary measurements.

The first term in Eq. !4.18" is a weighted set of + lines
regularly spaced in f , corresponding to a periodic signal in (.
This periodic signal has the same repetition rate as the field
and can be seen to arise from changes in the overlapping area
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FIG. 7. !Color online" SHG FROG data for the pulsed example
field: !a" data in the frequency and delay !"−(" domain and !b" data
in the frequency and delay frequency !"− f" domain. To calculate
!b" a one-dimensional Fourier transform was applied to the area
within the dashed box in !a". The data in both !a" and !b" have been
normalized.
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FIG. 8. !Color online" SHG FROG data for the stationary ex-
ample field: !a" data in the frequency and delay !"−(" domain and
!b" data in the frequency and delay frequency !"− f" domain. To
calculate !b" a one-dimensional Fourier transform was applied to
the area within the dashed box in !a". The data in !a" and !b" have
been normalized to the same scale used in the corresponding plots
in Fig. 7.
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of the two offset signals in Eq. !4.10". This term is periodic
in ( and as such does not depend on the correlation length (c
of E!t", but rather on how energy is temporally distributed
within a period T. Any effects of the correlation length #i.e.,
the range of ( over which E!t" and E!t−(" predictably inter-
fere$ enter the data through the second term in Eq. !4.18".

Figures 7 and 8 show SHG FROG data for the pulsed and
stationary example fields described in Sec. II B. Since the
SHG FROG data have infinite extent in (, the effects of a
finite data-collection window are significant. This is reflected
in the figures, where the data window used to calculate the
Fourier-domain data is shown. The windowing effect broad-
ens and lowers the + lines seen in Eq. !4.18" and also intro-
duces some ringing artifacts. This can be seen by noting that
for both example fields the expression given by Eq. !4.18" is
non-negative, while negative values are seen in both Figs.
7!b" and 8!b".

The data from the stationary field seen in Fig. 8 are easily
distinguished from those of the pulsed field seen in Fig. 7.
However, unlike the SPIDER system, the FROG apparatus
does not have a simple relationship between the data and the
second-order spectral functions W!" ;m". In addition, a given
data set does not uniquely determine a second-order spec-
trum, as can be seen by noting that a field with spectral
components W!" ; ±m" and a field with spectral components
e±i%mW!" ; ±m" produce the same data. Data interpretation is
further complicated if the field statistics are non-Gaussian, as
Eq. !4.15" must be used instead of Eq. !4.18". While the
inverse problem of inferring the field statistics from SHG

FROG data is neither trivial nor well posed, the ill-posedness
may be mitigated by the inclusion of any prior knowledge of
constraints on the source statistics. Alternatively, SHG
FROG measurements may allow the estimation of incom-
plete but meaningful statistical metrics.

While data interpretation may be difficult with the SHG
FROG system analyzed here, it does possess some important
advantages over the SPIDER instrument. FROG can be ex-
perimentally realized in a robust instrument that has the ca-
pability of collecting both " and ( simultaneously #62$. The
SPIDER system described in Sec. IV B collects sequential
one-dimensional data sets in order to construct two-
dimensional data. The use of SPIDER systems also involves
highly sensitive calibration procedures #63$ that may have to
be repeated for each shear * measured. FROG may be lim-
ited by the length of delay ( that can be realized in the
instrument, particularly if long-correlation-length fields are
to be measured. However, the SHG FROG instrument shown
in Fig. 6 does not rely on temporally localized pulses, in
contrast to the SPIDER system seen in Fig. 3.

V. SIMULATIONS

In this section numerical simulations are used to demon-
strate two results from the preceding theoretical work: that
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FIG. 9. !Color online" Realizations of !a" the pulsed example
field and !b" the stationary example field. In both cases the ampli-
tude scale is normalized to units of the mean amplitude. Note that
the axis limits differ between !a" and !b" in both amplitude and
phase.
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FIG. 10. !Color online" Computed spectra of the numerical ex-
amples: !a" spectra for time series of various durations and the
predicted spectrum !marked with “)”" for the pulsed field EC!t", !b"
the differences between the measured spectra and the predicted
spectrum for EC!t", !c" measured and predicted spectra for the sta-
tionary field ES!t", and !d" the differences between the measured
spectra and the predicted spectrum for ES!t".
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the expressions describing stochastic many-period SPIDER
and FROG data are valid and that the measurements con-
verge as predicted by cycloergodicity. By manipulating the
output of a Gaussian complex random number generator,
time signals with prescribed stochastic properties can be gen-
erated #64$. These signals are then processed according to the
measurement model, and the resulting signals are checked
for convergence and consistency with the predicted data.

The two example fields described in Sec. II B are simu-
lated. The stationary field ES!t" is realized by filtering the
generated random numbers in a manner that takes white
noise to a random process with the spectrum seen in Fig. 2.
Similarly, the random numbers can be filtered in a manner
that produces the spectrum shown in Eq. !2.9". The resulting
time signal is then modulated according to Eq. !2.7" to pro-
duce a realization of EC!t". Examples of the realized fields
can be seen in Fig. 9.

Despite clear differences in the time series of the pulsed
and stationary fields, they have the same spectral energy dis-
tribution. This can be verified by defining a numerical spec-
trometer according to Eq. !3.7". The realizations of EC!t" and
ES!t" were processed according to this spectrometer model,
and the results are displayed in Fig. 10. Here the measure-
ment duration L! is varied while L determines the spectral
resolution, which in these examples is approximately
0.16 THz. From Fig. 10 it can be seen that both the pulsed
and stationary examples converge to the same predicted
spectrum. The close similarity of the spectra seen in Fig. 10,
contrasted with the significant difference between the time
plots seen in Fig. 9, further emphasizes the fact that measur-
ing the power spectrum of a nonstationary field does not
allow a characterization of the temporal statistics. The tem-
poral statistics depend strongly on the frequency-to-
frequency correlations. These W!" ,m", m!0 terms describe
the intermode correlation or, in the terminology of pulsed
lasers, the mode locking.

Due to the stationary nature of ES!t" and the short period
of EC!t", the instrument shown in Fig. 3 would not be suit-
able for measuring the example fields considered here. How-
ever, a hypothetical SPIDER measurement can be simulated
by constructing the predetector field P!t" according to Eq.
!4.3". A delay of (=500 fs was used and the spectral shear *
was incremented in steps of approximately 0.77 THz. The
resulting time series were each processed with the numerical
spectrometer model. The results can be seen in Fig. 11 for
the pulsed field and Fig. 12 for the stationary field. Again it
can be seen that as the measurement duration is increased,
the measured data converge to the predicted data. It should
also be noted that when a single statistical period is mea-
sured, as in the traditional deterministic application of SPI-
DER, the resultant data are significantly different from those
produced after many periods. In this work the SPIDER sys-
tem is being used in a fundamentally different way—to char-
acterize field statistics !e.g., period-to-period stability" rather
than measure the field over a single period.

A SHG FROG simulation can be performed by construct-
ing P!t" from the realized time series according to Eq. !4.10"
and then applying the computational spectrometer. The offset
( was incremented in steps of approximately 6.4 fs, and the
resulting data can be seen in Fig. 13 for the pulsed field
example and Fig. 14 for the stationary field example. The
SHG FROG example also shows convergence and agreement
with the theoretical prediction. Again, the single-period mea-
surement differs substantially from the many-period, sto-
chastic measurement.

VI. CONCLUSIONS

Motivated by pulsed lasers and sources driven by pulsed
lasers, cyclostationary and cycloergodic models were applied
to the measurement of stochastically periodic optical fields.
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The resulting analyses generalize stationary ergodic coher-
ence theory by including time-varying statistics and also
contribute to nonstationary coherence theory by addressing
ergodicity. That is, measurement precision is improved with
increasing measurement integration times.

The second-order statistics of a nonstationary field are
determined by the two-frequency correlation &!1,1"!"1 ,"2".
While linear, temporally stationary spectral measurements
are only affected by "1="2 correlations, it was shown that
nonlinear and/or nonstationary techniques such as SPIDER
and FROG give data dependent on "1!"2 correlations.
Rather than applying these techniques in the standard
manner—i.e., to characterize a single optical pulse—many-
period measurements can be used to infer properties of the

spectrum &!1,1"!"1 ,"2". Consequently, the stochastic many-
period measurements have a meaning distinct from the de-
terministic single-pulse data.

It was seen that SPIDER can theoretically reconstruct the
two-frequency spectrum completely while SHG FROG re-
sults in an ill-posed relation between the spectrum and the
collected data. While the principle of statistical pulsed-
source characterization has been demonstrated theoretically,
current physical implementations of both SPIDER and SHG
FROG may not be ideal for performing statistical measure-
ments for all fields. In addition to investigating the perfor-
mance of alternative existing ultrafast measurement tech-
nologies !e.g., #44,63$", further research may be done in the
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development of novel instrumentation for the characteriza-
tion of statistically pulsed sources.

The analysis presented here is independent of spatial po-
sition. The application of a cyclostationary model in the
analysis of the spatiotemporal behavior of nonstationary
fields may help connect theoretical predictions !e.g., #65$"
and experimental results !e.g., #66,67$". It is also possible to
relax the condition of cyclostationary statistics to almost-
cyclostationary statistics #27$, where the + lines seen in the
spectrum of Eq. !2.5" need not have a uniform spacing. This
model could be used in the description of instruments that
generate correlated modes at irregular frequencies !e.g.,
#37$". Finally, the work presented here may also be extended

to include the measurement of correlations between optical
fields by, for example, using a many-period measurement in
cross-correlation FROG #68$.
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