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The Relationship of Transform Coefficients for Differing
Transforms and/or Differing Subblock Sizes

Brynmor J. Davis and S. Hamid Nawab

Abstract—Jiang and Feng have developed a relationship between the dis-
crete cosine transform (DCT) coefficients of a block and those of its sub-
blocks. Their derivation of this result can be significantly simplified. The
new derivation also generalizes to all linear, invertible transforms and any
separable subblock geometry.

Index Terms—Separable transform, subblock transform, transform co-
efficient relationship, transform domain processing.

I. INTRODUCTION

A relationship between the discrete cosine transform (DCT) [1] coef-
ficients of an image and the DCT coefficients of its subblocks has been
derived by Jiang and Feng [2]. This direct relationship is a computa-
tionally efficient alternative to first applying an inverse DCT (to obtain
the image in the pixel domain) and then taking the forward DCT over
the subblocks. Direct coefficient manipulations such as this facilitate
image processing in the transform domain, which is currently an active
area of research [3]–[6].
The derivation contained in [2] can be significantly simplified using

a matrix representation of the transforms. In addition, this approach
allows the relationship to be generalized from the DCT to any linear,
invertible transform (and even certain mixes of transforms across the
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subblocks). The constraints on the geometries of the subblocks are also
relaxed—while [2] only deals with A : 1 ratios between the subblocks
(e.g., a 12 � 20 image being divided into four 6 � 10 subblocks), the
new derivation can be applied to A : B ratios (e.g. four 6 � 10 sub-
blocks being related to 15 4� 4 subblocks) or even certain nonuniform
ratios (e.g. four 6 � 10 subblocks being related to a 12 � 8 subblock
and a 12 � 12 subblock).
A related approach is nonuniform transform domain filtering

(NTDF) [7], which is an extension of transform domain filtering
(TDF) [8]. Theoretically, NTDF can be used to relate coefficients
where there is a constant A : B ratio between the subblock sizes.
However, [7] does not include a clear relation between the coefficients,
nor does it describe explicitly which subblock and transform geome-
tries can be handled. Additionally, NTDF is designed specifically for
a pipelining architecture.
In comparison, the results presented here give a fundamental theo-

retical relation, along with a well-defined set of sufficient conditions
for its validity. These conditions are more general than those described
in either [2] or [7]. The result is presented first in one dimension and
then in two dimensions through the use of separable transforms and
separable subblock geometries. An example is also provided.

II. ONE-DIMENSIONAL RESULT

The majority of useful discrete transforms are linear and invertible
(e.g., the DCT, the discrete Fourier transform (DFT) [9], and the dis-
crete wavelet transform (DWT) [10]). This means their operation on a
N � 1 vector x can be represented by a matrix multiplication (see [9]
for examples). The transform matrix will beN�N and invertible. The
result of this matrix multiplication gives a vector of transform coeffi-
cients.

X =Tx (1)

x =T
�1
X: (2)

If the vector x is split into P contiguous subvectors with lengths
N1; N2; � � � ; NP ( P

i=1
Ni = N) and a (possibly different) trans-

form applied to each subvector, then the resulting set of transform
coefficients can still be found through multiplication with a N � N

matrix T̂ .

X̂ = T̂ x (3)

x = T̂
�1
X̂: (4)

The^indicates that transforms have been taken over a set of subvectors.
In addition, the matrices T̂ and T̂�1 can be constructed from the trans-
form matrices for each subvector. They will exhibit a block diagonal
structure, which is shown as

T̂ =

T1 0 � � � 0

0 T2 0 � � � 0

0 0 T3
...

...
...

. . . 0

0 0 � � � 0 TP

(5)

T̂
�1 =

T�1
1

0 � � � 0

0 T�1
2

0 � � � 0

0 0 T�1
3

...
...

...
. . . 0

0 0 � � � 0 T�1
P

: (6)
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Fig. 1. Form of separable subblock transforms.

Note that the matrix Ti will be Ni � Ni in order to represent the
Ni-point transform taken over the ith subvector.
Now, suppose that two different methodologies are used in taking

these subvector transforms (i.e. different transforms and/or different
partitions of x).

X̂1 = T̂1x (7)

X̂2 = T̂2x: (8)

The objective is to find a direct relationship between X̂1 and X̂2. A di-
rect relationship is a single step between these two coefficient vectors.
The alternative is first applying an inverse transform to one coefficient
vector (resulting in x) and then applying a forward transform to find
the other coefficient vector.
For linear invertible transforms, a direct linear relationship always

exists and can easily be shown to be unique. Let matrix multiplication
by R̂12 take X̂1 to X̂2 and R̂21 take X̂2 to X̂1. These relationships are
found as follows:

X̂2 = T̂2x

= T̂2 T̂
�1

1 X̂1

= R̂12X̂1 (9)
where

R̂12 = T̂2T̂
�1

1 : (10)
Similarly

X̂1 = R̂21X̂2 (11)
where

R̂21 = R̂
�1

12 = T̂1T̂
�1

2 : (12)

Thus, the direct relationship between the two sets of transform coeffi-
cients is found by precomputing the matrix product of the matrix rep-
resenting the forward transformation (from the output coefficient set)
with the matrix representing the inverse transform (from the input co-
efficient set). The subvectors can be any partition of x, and the only re-
strictions on the subvector transforms are that each one must be linear
and invertible (this includes the useful cases of the DFT, the DCT, the
DWT, and the identity transform).

III. TWO-DIMENSIONAL RESULT

In general, operators on two-dimensional (2-D) signals can also be
represented as matrices. This process involves ordering the elements
of the image and converting it to a one-dimensional (1-D) vector
(see [9] for a description of this process). Theoretically, a direct
linear relation could be derived using this formulation. However, the
matrices involved would become prohibitively large. This difficulty
can be avoided by using separable transforms (e.g. the 2D-DFT and
the 2D-DCT).
Separable 2-D transforms can be decomposed into a 1-D transform

on each column followed by a 1-D transform on each row of the result.
Thus, if the matrix T performs the transformation to be used on the
columns, the matrix U performs the transformation to be used on the
rows, and the 2-D signal x is a N � M matrix, the 2-D transform
coefficients can be found as follows (linearity and invertibility are again
assumed):

X =TxU
T (13)

x =T
�1
X(U�1)

T

(14)

where X will be a N �M matrix, T is a N � N matrix, and U is a
M �M matrix.
If a pair of transform matrices (T̂ and Û ) is defined as in (5), then

the resulting coefficients will be the transforms of separable subblocks
of the image. A separable subblock transform has a regular structure to
its boundaries, and its row-column transforms as shown in Fig. 1.
If subblock transforms of an image are taken in two different ways

(defined by T̂1, Û1, T̂2 and Û2), a linear relation between the two can be
found. The two sets of transform coefficients are given by the following
equations:

X̂1 = T̂1xÛ
T

1 (15)

X̂2 = T̂2xÛ
T

2 : (16)

From (10) and (12), the following matrices can be defined:

R̂12 = T̂2T̂
�1

1 (17)

R̂21 = T̂1T̂
�1

2 (18)

Ŝ12 = Û2Û
�1

1 (19)

Ŝ21 = Û1Û
�1

2 : (20)
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Fig. 2. Example subblock transforms.

These matrices give the relationship between the two sets of 2-D trans-
form coefficients X̂1 and X̂2.

X̂2 = R̂12X̂1Ŝ
T
12 (21)

X̂1 = R̂21X̂2Ŝ
T
21: (22)

The equation above demonstrates how separability can be used to cast
the 2-D problem as two 1-D problems.

IV. ILLUSTRATIVE EXAMPLE

This section gives a simple example on a 6 � 6 image. The two
separable subblock transforms chosen are shown in Fig. 2. The first is a
simple 2D-DCT transform on each of four 3� 3 subblocks. The second
subblock transform is more complicated (and somewhat contrived) in
order to show the generality of the result. In this case, the transform
coefficients are found by taking the DFT and DWT. The corner pixels
are treated as four subblocks (with no transform). The DWT is applied
to the remaining vertical edge pixels, and the DFT is applied to the
remaining horizontal edge pixels. This leaves a 4 � 4 subblock in the
middle. The DFT is applied to the rows of this subblock and the DWT
to the columns. In this example, the DWT will be taken using the Haar
wavelet [10].
The first step is to construct the matrices of the transforms used [i.e.,

the T matrix shown in (1)]. These are easily found using the definitions
of the DCT, DFT, and DWT. For the first subblock transform, a three-
point DCT is the only transform used.

TDCT =

1p
3

1p
3

1p
3

1p
2

0 �

1p
2

p
2

(2
p
3)

�

p
2p
3

p
2

(2
p
3)

(23)

For the second subblock transform, a four-point DFT and a four-point
DWT are used.

TDFT =

1
2

1
2

1
2

1
2

1
2
�

j

2
�

1
2

j

2
1
2
�

1
2

1
2

�

1
2

1
2

j

2
�

1
2
�

j

2

(24)

TDWT =

1
2

1
2

1
2

1
2

�

1
2

�

1
2

1
2

1
2

�

1p
2

1p
2

0 0

0 0 �

1p
2

1p
2

: (25)

The next step is to use these transform matrices to define T̂1, Û1,
T̂2, and Û2, as in (15) and (16). This is done by examining the row and
column structure of the subblock transform and applying (5) appropri-
ately. For this example, the following matrices are constructed:

T̂1 =

TDCT

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

TDCT

(26)

Û1 =

TDCT

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

TDCT

(27)

T̂2 =

1 0 0 0 0 0

0 0

0 0
TDWT

0 0

0 0

0 0 0 0 0 1

(28)

Û2 =

1 0 0 0 0 0

0 0

0 0
TDFT

0 0

0 0

0 0 0 0 0 1

(29)

The calculation of R̂12 and Ŝ12 is easily done using (17) and (19).
These matrices are displayed in the following (to two decimal places):

R̂12 =

0:58 0:71 0:41 0 0 0

0:58 �0:35 �0:20 0:58 0:35 �0:20

�0:58 0:35 0:20 0:58 0:35 �0:20

0 �0:5 0:87 0 0 0

0 0 0 0 �0:5 �0:87

0 0 0 0:58 �0:71 0:41

(30)

and (31), shown at the bottom of the page. R̂12 and Ŝ12 allow the co-
efficients of the second subblock transform to be calculated from those
of the first by using (21).
The coefficients of the first subblock transform can also be calcu-

lated from those of the second by using (22). This requires R̂21 and
Ŝ21. These can either be calculated using (18) and (20), or by noticing
R̂21 = R̂�112 and Ŝ21 = Ŝ�112 and using (30) and (31).

Ŝ12 =

0:58 0:71 0:41 0 0 0

0:58 �0:35 �0:20 0:58 0:35 �0:20

0:29� 0:29j 0:35j �0:41� 0:20j �0:29 + 0:29j �0:35 �0:20� 0:41j

0 0:35 �0:61 0 0:35 0:61

0:29 + 0:29j �0:35j �0:41 + 0:20j �0:29� 0:29j �0:35 �0:20 + 0:41j

0 0 0 0:58 �0:71 0:41

(31)
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V. CONCLUSIONS

A general linear relationship between the coefficients of two dif-
ferent subblock transformations was developed. This relationship holds
for any mix of linear, invertible transforms and separable subblock
transform geometries (as illustrated in Fig. 1). The relationship can be
found by simply precomputing the result of an inverse transform ma-
trix multiplied by a differing forward transform matrix.
This result is a generalization of previous work by Jiang and Feng

[2]. In that paper, it was also shown that the matrix giving their linear
relation is sparse (which results in reduced computational load). This
property holds for the DCT case when the subblocks areA : 1 ratios of
the larger blocks. In general (i.e., for other transforms and subblock ra-
tios), this sparseness may not be present. This means that the reduction
in computational load may not be as great. Whether it is efficient to re-
late transform coefficients by the method developed here will depend
on the particular scenario as well as the applicability of any fast algo-
rithms for the transforms of interest (these algorithms may make re-
lating the coefficients through an inverse transform operation followed
by a forward transform operation more desirable).
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A Low-Complexity Adaptive Echo Canceller
for xDSL Applications

Shou-Sheu Lin and Wen-Rong Wu

Abstract—A finite impulse response (FIR)-based adaptive filter struc-
ture is proposed for echo cancellation in xDSL applications. The proposed
algorithm consists of an FIR filter, a cascaded interpolated FIR filter, and
a tap-weight overlapping and nulling scheme. This filter requires low com-
putational complexity and inherits the stable characteristics of the conven-
tional FIR filter. Simulations show that the proposed echo canceller can ef-
fectively cancel the echo up to 73.4 dB [for a single-pair high-speed digital
subscriber line (SHDSL) system]. About 55% complexity reduction can be
achieved compared with a conventional FIR filter.

Index Terms—Adaptive filter, DSL, echo cancellation, interpolated FIR
filter.

I. INTRODUCTION

In a digital subscriber loop (DSL) environment, full duplex trans-
mission via a single twisted pair can be achieved using a hybrid circuit.
Due to the impedance mismatch problem, the hybrid circuit will intro-
duce echoes. A typical echo response, shown in Fig. 1, consists of a
short and rapidly changing head echo and a long and slowly decaying
tail echo. Conventionally, an adaptive transversal FIR filter [1] is used
to synthesize and cancel the echo. For high-speed applications such as
HDSL [2], HDSL2 [3], and single-pair high-speed digital subscriber
line (SHDSL) [4], the echo response is usually very long. The conven-
tional FIR echo canceller may require hundreds of tap weights, and the
computational complexity becomes very high.
In order to reduce the computational complexity, some researchers

tried to use an adaptive infinite impulse response (IIR) filter to cancel
the tail echo. However, the adaptive IIR filtering suffers from the local
minima and stability problems. Since an IIR filter usually consists of
a feedforward and a feedback filter, a compromising approach is to let
the feedforward filter be adaptive only. In [5], August et al. collected
some echo responses for the European subscriber loops and used a cri-
terion to determine the feedback filter optimally. In [6], Gordon et al.
considered echo cancellation as a series expansion problem. They used
a set of IIR orthonormal functions to expand the echo response and
let the expanding coefficients be adaptive. The orthonormal responses
were obtained using a set of predetermined cascaded feedback filters.
If only a small number of loops are considered, good performance can
be obtained using these methods. However, since the existing loop re-
sponses are versatile, it will be difficult to find a feedback filter that
will always yields the optimal performance.
To retain the FIR structure of the echo canceller, and to reduce the

complexity, an interesting echo canceller structure was proposed in [7].
The canceller is cascaded from an adaptive FIR head echo canceller
and an adaptive interpolated FIR (IFIR) tail echo canceller. Since the
tail echo always decays smoothly, an IFIR filter with a small number
of coefficients can effectively cancel the echo. Unfortunately, the IFIR
filter proposed in [7] has an uncontrollable transient response, and the
direct cascade of an FIR and an IFIR filter will leave a certain period
of the echo response uncancelled. Although this problem is critical,
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