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[1] Many new Earth remote-sensing instruments are embracing both the advantages and
added complexity that result from interferometric or fully polarimetric operation. To
increase instrument understanding and functionality, a model of the signals these
instruments measure is presented. A stochastic model is used as it recognizes the
nondeterministic nature of any real-world measurements, while also providing a tractable
mathematical framework. A wide-sense stationary, ergodic, Gaussian-distributed model
structure is proposed. Temporal and spectral correlation measures provide a statistical
description of the physical properties of coherence and polarization-state. From this
relationship, the model is mathematically defined. A method of realizing the model
(necessary for applications such as synthetic calibration-signal generation) is given, and
computer simulation results are presented. The signals are constructed using the output of
a multi-input, multi-output linear filter system, driven with white noise. INDEX TERMS:
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1. Introduction

[2] Radio-interferometers and polarimeters are being
usedmorewidely in remote sensing for probing the Earth’s
lands and oceans [e.g., Swift et al., 1991;Ruf, 1988;Yueh et
al., 1997]. While these techniques have a rich history in
the space sciences, Earth-viewing versions are relatively
rare. For example, results from only two synthesis
imaging radio-interferometer for airborne remote sensing
appear in the literature. The Electronically-Scanned
Thinned Array Radiometer (ESTAR) [Le Vine et al.,
2001; Ruf and Principe, 2003] uses interferometric
imaging across-track and real aperture imaging along-
track to image land and ocean surfaces from an aircraft.
Recently, a Y-shaped 2-D synthesis imager was proposed
for spaceflight [Kerr, 1998]. Earth Sensing using radio-
polarimetry has a similar history, with several airborne
instruments appearing in the last decade [Yueh et al., 1995;
Piepmeier and Gasiewski, 2001; Bobak et al., 2001;
Lahtinen et al., 2001] and the launch of a spaceborne
Earth-viewing polarimeter in 2003 [Gaiser, 1999].
[3] There are distinct differences in the operation and

calibration techniques of ground-based space-viewing

telescopes versus orbiting Earth-viewing instruments.
Operationally, Earth-viewing imagers have a fraction of
the integration time available compared to radio-tele-
scopes: seconds versus hours. Additionally, radio-tele-
scope elements have extremely narrow beams (�0.5�)
compared to low-Earth orbit (LEO) synthesis imagers,
whose wide beams (�60–90�) are required to image the
entire Earth at least once per day. Perhaps more impor-
tant are the calibration differences. Interferometric radio-
telescopes are typically calibrated using extrasolar point
sources, whereby the system can be characterized to
within a common gain coefficient [Thompson et al.,
1991]. Furthermore, if the flux of the point source is
known, the interferometer can be absolutely calibrated.
There are no obvious point sources when looking down-
ward at the Earth, at least ones that emit energy within
the protected spectrum allocated for passive observing.
Furthermore, because of their large beam widths, Earth-
viewing interferometers cannot selectively view a single
extrasolar point source. (Besides, the time and operations
required for regularly rotating a spacecraft for calibration
would cause data loss and increase mission risk.) There-
fore, a different calibration technique must be devised for
orbiting Earth-imaging systems. This paper lays the
groundwork for such a technique by rigorously examin-
ing the signals that these radiometers measure.

RADIO SCIENCE, VOL. 39, RS1001, doi:10.1029/2001RS002512, 2004

Copyright 2004 by the American Geophysical Union.

0048-6604/04/2001RS002512$11.00

RS1001 1 of 8



[4] While polarimetry and interferometry can be
investigated independently, they are based upon a
common concept—measuring the interdependence of
two signals. For polarimetry these signals are the ampli-
tudes of some orthogonal pair. In Earth remote sensing,
vertical and horizontal polarizations are chosen because
they correspond to the Earth’s natural polarization basis
as viewed from LEO. Two-beam interferometry involves
measuring the coherence of two signals separated in
space and/or time. In order to fully understand these
instruments, it is desirable to have an accurate model of
the types of signal pairs they measure. This type of model
can be employed in mathematical analysis, computer
simulations and for the generation of synthetic calibration
signals (one possible on-orbit calibration tool).
[5] The developed model’s structure and its applica-

bility to useful physical problems is discussed in
Section 2. Using this framework, Section 3 shows how
a comprehensive model can be determined from the
physical properties of the modeled wave(s). Section 4
gives a computational method for realizing the model. A
polarimetric example is carried through Sections 2 and 3.
This polarimetric example is implemented in Section 4 in
order to demonstrate the ideas presented. A Summary is
presented in the final section.

2. Model Structure and Applicability

2.1. Mathematical Model

[6] Electromagnetic waves generally have some degree
of randomness—an unpolarized component in polar-
imetry or an incoherent component in interferometry.
For this reason it is logical to employ a stochastic method
when modeling the pair of signals. Using an analytic
signal representation, the two signals of interest will be
written as follows:

X tð Þ ¼ A tð Þ cos n0t � B tð Þ sin n0t
¼ Re A tð Þ þ i B tð Þ½ �ein0t

� �
¼ Re P tð Þein0t

� �
Y tð Þ ¼ C tð Þ cos n0t � D tð Þ sin n0t ð1Þ

¼ Re C tð Þ þ i D tð Þ½ �ein0t
� �

¼ Re Q tð Þein0t
� �

The functions are capitalized to indicate that they are
random processes. Wide-sense stationarity is assumed so
that the following temporal and spectral correlation
functions can be defined.

E a tð Þ½ � ¼ ma
E a tð Þb* t � tð Þ½ � ¼ Rab tð Þ ð2Þ

Sab nð Þ ¼
Z 1

�1
Rab tð Þei2pntdt

where a and b can be X, Y, A, B, C, D, P or Q. Note that
only P(t) and Q(t) are complex random processes, the
rest are real.

2.2. Applying the Model

[7] This section shows how the mathematical model
developed can be related to problems in interferometry
and polarimetry. This is done by interpreting basic
physical concepts in interferometry and polarimetry in
terms of the mathematics of the model. It is left to the
reader to explore relationships to specific systems [e.g.,
see Christiansen and Högbom, 1985].
2.2.1. Interferometry
[8] The model described above can be readily applied

to two-beam interferometry through the mutual-coher-
ence functions. This is done by assuming that the random
processes used are ergodic. This allows the time averages
present in the mutual-coherence functions (see Born and
Wolf [1989] for a definition) to be equated to expected
values. This idea is expressed below.

�11 tð Þ ¼ hP tð ÞP* t � tð Þi ¼ RPP tð Þ
�22 tð Þ ¼ hQ tð ÞQ* t � tð Þi ¼ RQQ tð Þ ð3Þ
�12 tð Þ ¼ hP tð ÞQ* t � tð Þi ¼ RPQ tð Þ

The equation above shows how basic coherence proper-
ties can be used to define the temporal correlation
functions RPP(t), RQQ(t) and RPQ(t). In Section 3 it will
be shown that these are sufficient to completely
determine the second-order statistics of the model.
2.2.2. Polarimetry
[9] Stokes parameters are a tool commonly used to

represent the polarization of an electromagnetic wave.
Due to the fact that most conventional Earth imaging
systems (e.g., the Special Sensor Microwave/Imager
(SSM/I) spaceborne radiometer) measure the vertical
and horizontal fields separately, the modified Stokes
parameters [see Ishimaru, 1997], in brightness tempera-
ture, are typically used in Earth remote sensing. If the
signal X(t) from equation (1) is the horizontal field and
Y(t) is the vertical field, the following equation defines
the modified Stokes parameters.

s1

s2

s3

s4

2
666666664

3
777777775
/

h P tð Þj j2i

h Q tð Þj j2i

2Re hP tð ÞQ* tð Þif g

2Im hP tð ÞQ* tð Þif g

2
666666664

3
777777775

ð4Þ

The first two modified Stokes parameters are the power
in the horizontal and vertical fields respectively—thus
they are measured directly by most conventional Earth
imaging systems.
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[10] As shown in Brosseau [1998], the polarization
states at different frequencies are uncorrelated. Thus,
after invoking ergodicity, the modified Stokes parameters
can be written as a function of frequency, which leads to
the following result.

s1 nð Þ

s2 nð Þ

s3 nð Þ

s4 nð Þ

2
666666664

3
777777775
/

SPP nð Þ

SQQ nð Þ

2Re SPQ nð Þ
� �

2Im SPQ nð Þ
� �

2
666666664

3
777777775

ð5Þ

So, for polarimetry, the modified Stokes parameters can
be used to define the spectral correlation functions
SPP(n), SQQ(n) and SPQ(n). An example of this follows.
Note that the spectral correlation functions above are
related to the temporal correlation functions RPP(t),
RQQ(t) and RPQ(t) by a Fourier transform. This means
Section 3 will also show that the spectral correlation
functions are sufficient to completely determine the
second-order statistics of the model.
[11] Example: The signal to be modeled has 5 distinct

polarization bands within its overall bandwidth 2BW. The
lowest fifth of its spectrum is unpolarized and has unity
power density (‘modified Stokes densities’ are [0.5, 0.5,
0, 0]); the second fifth has a degree of polarization of 0.5,
unity power density and the polarized component is left-
circular ([0.5, 0.5, 0, �0.5]); the central fifth is com-
pletely linearly polarized at 30� and has unity power
density ([.75, .25, 0.866, 0]); the fourth section has a
degree of polarization of 0.5, unity power density and the
polarized component is right-circular ([0.5, 0.5, 0, 0.5]);
and the highest frequency section is also unpolarized with
unity power density ([0.5, 0.5, 0, 0]).Byusing equation (5),
the model parameters shown in Table 1 are found.
[12] It can be shown that modified Stokes parameters

for the total wave can be found by performing an
integration over frequency. This results in the modified
Stokes vector [1.1BW, 0.9BW, 0.346BW, 0].

3. Defining the Model

[13] Section 2.2 has shown how the mutual coherence
functions (interferometric applications) or the modified
Stokes parameters (polarimetric applications) can be
used to define the second order statistics of the random
process P(t) and Q(t). The task at hand is to show how
these can in turn be used to completely determine the
second-order statistics of the model.

3.1. Enforcing Stationarity

[14] The first step in this procedure is to enforce wide-
sense stationarity on the signals to be measured (X(t) and

Y(t).) Calculation of mX, mY, RXX(t), RYY(t) and RXY(t)
leads to the following conditions being needed for wide-
sense stationarity.

mA ¼ mB ¼ mC ¼ mD ¼ 0 ð6Þ

RAA tð Þ ¼ RBB tð Þ

RCC tð Þ ¼ RDD tð Þ

RAC tð Þ ¼ RBD tð Þ

RAD tð Þ ¼ �RBC tð Þ

RAB tð Þ ¼ �RAB �tð Þ

RCD tð Þ ¼ �RCD �tð Þ

ð7Þ

The model’s second-order statistics can be completely
defined by the means and correlations of the constituent
processes A(t), B(t), C(t) and D(t). The above equations
are important because they show that rather than having
four constants (the means) and ten functions (the
correlations) to find, there are now only six unknown
functions (two of which must be odd-symmetric.)
[15] Equation (6) implies P(t) and Q(t) are zero mean.

The relations in equation (7) can be used to find the
correlation functions of P(t) and Q(t).

RPP tð Þ ¼ 2 RAA tð Þ � i RAB tð Þð Þ

RQQ tð Þ ¼ 2 RCC tð Þ � i RCD tð Þð Þ

RPQ tð Þ ¼ 2 RAC tð Þ � i RAD tð Þð Þ

ð8Þ

The equations above are significant because there is now
only one real function defining each of the real and
imaginary parts of the spectra of P(t) and Q(t).
[16] An interesting result canbe stated fromequation (7).

By looking at a single signal (say X(t)) and its in-phase
and quadrature components (A(t) and B(t)) it can be seen

Table 1. Spectral Functions Found From Example Polarization

State

Frequency Band SPP(n) SQQ(n) SPQ(n)

(�1, �BW] 0 0 0
(�BW, �0.6BW] 0.5 0.5 0

(�0.6BW, �0.2BW] 0.5 0.5 �0.25i
(�0.2BW, 0.2BW] 0.75 0.25 0.433
(0.2BW, 0.6BW] 0.5 0.5 0.25i
(0.6BW, BW] 0.5 0.5 0
(BW, 1) 0 0 0
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that RAA(0) = RBB(0) and RAB(0) = 0. This means that at
any given time the in-phase and quadrature components
have the same variance and are uncorrelated. For
a Gaussian process, the result is that the amplitude of
the signal is Rayleigh distributed and the phase is
uniformly distributed. This result is stated in Brosseau
[1998].

3.2. Mathematical Model Definition

[17] Equations (7) and (8) imply that there is only one
set of correlation functions for A(t), B(t), C(t) and D(t)
that will produce a given set of correlation functions for
P(t) and Q(t). This set of correlation functions can be
found (in both the temporal and spectral domains) easily
from equation (8) by the method shown below. It should
be noted that equation (7)’s odd-symmetry condition on
RAB(t) and RCD(t) is always satisfied due to the conju-
gate symmetry of RPP(t) and RQQ(t).

RAA tð Þ ¼ 1

2
Re RPP tð Þf g ¼ 1

4
RPP tð Þ þ RPP

* ðtÞ
� �

) SAA nð Þ ¼ 1

4
½SPP nð Þ þ SPP �nð Þ�

RCC tð Þ ¼ 1

2
Re RQQ tð Þ
� �

¼ 1

4
RQQ tð Þ þ RQQ

* ðtÞ
� �

) SCC nð Þ ¼ 1

4
SQQ nð Þ þ SQQ �nð Þ

 �

RAB tð Þ ¼ �1

2
Im RPP tð Þf g ¼ i

4
RPP tð Þ � RPP

* ðtÞ
� �

) SAB nð Þ ¼ i

4
SPP nð Þ � SPP �nð Þ½ �

RCD tð Þ ¼ �1

2
Im RQQ tð Þ
� �

¼ i

4
RQQ tð Þ � RQQ

* ðtÞ
� �

) SCD nð Þ ¼ i

4
SQQ nð Þ � SQQ �nð Þ

 �

RAC tð Þ ¼ 1

2
Re RPQ tð Þ
� �

¼ 1

4
RPQ tð Þ þ RPQ

* ðtÞ
� �

) SAC nð Þ ¼ 1

4
SPQ nð Þ þ SPQ* ð�nÞ

 �

RAD tð Þ ¼ �1

2
Im RPQ tð Þ
� �

¼ i

4
RPQ tð Þ � RPQ

* ðtÞ
� �

) SAD nð Þ ¼ i

4
SPQ nð Þ � SPQ* ð�nÞ

 �

ð9Þ

By using the equations above and the first four
equalities in equation (7), all the correlation functions
of A(t), B(t), C(t) and D(t) can be found. This leads to a
model that has completely specified second-order
statistics; and that specification is unique (i.e., it is the
only one that will produce the desired correlation
functions for P(t) and Q(t) while maintaining stationarity
of X(t) and Y(t)).

[18] Example: This process was applied to the spectral
functions from the example in Section 2.2.2. Using
equation (9), the results are shown in Table 2.

3.3. Summary of Model Design

[19] A brief summary of the model design follows:
[20] 1. Define the spectral or correlation functions of

P(t) and Q(t) by considering the physical properties
(either interferometric or polarimetric) of the waves
to be modeled.
[21] 2. Apply equation (9) to get six valid spectral or

correlation functions for A(t), B(t), C(t) and D(t).
[22] 3. Apply equation (7) to get the complete set

of second-order statistical functions of the random pro-
cesses A(t), B(t), C(t) and D(t) and thus completely
define the model (up to second-order statistics.)
[23] It should be noted that there is no loss of gener-

ality in any of the steps, and that a single set of physical
parameters can only produce one valid model (up to
second-order statistics.)

4. Realizing the Model

[24] The previous sections have developed a stochastic
model for a pair of signals. This model is defined by the
temporal and spectral correlation functions of A(t), B(t),
C(t) and D(t). These are found from physical signal
properties. This is a clear mathematical model that has
the potential to be useful in theoretical analysis. How-
ever, for applications such as computer simulations and
synthetic signal generation it is necessary to create
realizations of these random processes. It is sufficient
to create realizations of the real variables A(t), B(t), C(t)
and D(t), as the other variables (P(t), Q(t), X(t) and Y(t))
can be created by deterministic functions of these four
realizations. To do this an assumption about the proba-
bility distribution of the processes will need to be made.
The obvious choice is to assume a Gaussian distribution.
This can be justified by appealing to the Central Limit
Theorem and has the advantage that it can be defined by
the second-order statistics the model gives. This results
in the required wide-sense stationary, ergodic process.

Table 2. Model Spectral Functions Found for Example in

Section 2.2.2

Frequency
Band

SAA(n) =
SBB(n)

SCC (n) =
SDD(n)

SAB
(n)

SCD
(n)

SAC (n) =
SBD(n)

SAD(n) =
�SBC (n)

(�1, �BW] 0 0 0 0 0 0
(�BW, �0.6BW] 0.25 0.25 0 0 0 0

(�0.6BW, �0.2BW] 0.25 0.25 0 0 0 �0.125
(�0.2BW, 0.2BW] 0.375 0.125 0 0 0.217 0
(0.2BW, 0.6BW] 0.25 0.25 0 0 0 0.125
(0.6BW, BW] 0.25 0.25 0 0 0 0
(BW, 1) 0 0 0 0 0 0
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[25] Once the probability density functions are known,
it is possible to create a sampled realization directly. If N
points of data were required, the correlation matrix for
these points could be calculated and a multivariate,
Gaussian random number generator applied (such as
the mvnrnd command found in the MATLAB software
package.) However, difficulties arise when the dimen-
sionality of this p.d.f. is considered. There are four
codependent outputs at every sample so a signal of
length N would have a p.d.f. of dimension 4N. For
example, a signal of 125 MHz bandwidth requires a
minimum sampling rate of 250 � 106 samples per
second—thus a two-second signal would require 500 �
106 samples and result in a probability density function
of dimension two billion. This is computationally
impractical so a simpler method must be found.
[26] A common technique in one dimension is to use a

linear filter to shape noise into a desired spectral shape.
The problem here is more complicated as the function is
from one dimension (time) into four dimensions (A(t),
B(t), C(t), D(t)). A generalized filter structure with N
inputs (I1(t), I2(t), . . ., IN(t)) and M outputs (O1(t), O2(t),
. . ., OM(t)) is given below (this structure is presented in
Jenkins and Watts [1968]).

O1 tð Þ ¼
XN

i¼1
h1i tð Þ * Ii tð Þ

O2 tð Þ ¼
XN

i¼1
h2i tð Þ * Ii tð Þ

..

.

OM tð Þ ¼
XN

i¼1
hMi tð Þ * Ii tð Þ

ð10Þ

The filter responses must be chosen so that the desired
correlation functions are realized. These functions are
given by the expressions below [Jenkins andWatts, 1968].

ROpOq
tð Þ ¼ E Op tð ÞOq t � tð Þ


 �
¼ ROqOp

�tð Þ
 �

¼ E
h XN

i¼1
hpi tð Þ * Ii tð Þ

� �
�
XN

j¼1
hqj t � tð Þ * Ij t � tð Þ

� �i
¼ E

XN

i¼1

XN

j¼1
hpi tð Þ * Ii tð Þ
 �h

� hqj t � tð Þ * Ij t � tð Þ
 �i

¼
XN

i¼1

XN

j¼1
RIiIj tð Þ * hpi tð Þ * hqj �tð Þ ð11Þ

This set of equations has a simpler form in the Fourier
domain, as the convolutions become multiplications.

SOpOq
nð Þ ¼

XN

i¼1

XN

j¼1
SIiIj nð ÞHpi nð ÞHqj �nð Þ

¼
XN

i¼1

XN

j¼1
SIiIj nð ÞHpi nð ÞH*

qj nð Þ ð12Þ

The final step takes advantage of conjugate symmetry
(which isguaranteedby the fact thathmn(t) is real for allmn.)
[27] A general set of solutions for the system of

equations given by equation (12) is nontrivial as the
system is nonlinear. Simplifications can be made by
making certain assumptions—the first of which is that
the input random processes are independent, white,
Gaussian, unit variance and zero mean (so SXi

Xj(n) =
d(i � j).) This ensures the outputs will be Gaussian and
zero mean as required; and that equation (12) reduces to
the form given below.

SOpOq
nð Þ ¼

XN

i¼1

XN

j¼1
d i� jð ÞHpi nð ÞHqj

* nð Þ

¼
XN

i¼1
Hpi nð ÞHqi

* nð Þ ð13Þ

In this case only four output processes are required (M =
4.) This means we have ten independent equations—one
for each of the correlation functions given in equation (7)
(there are 16 equations but there is redundancy, as shown
by the bracketed term in equation (11)). A solution is
presented for the case of four input processes (i.e., N = 4)
although the method can be applied to larger dimensions
provided that M = N and the specified spectra satisfy the
properties of a spectral matrix. The equations for this
problem (as defined by equation (13)) are given below
(the n dependence has been dropped for clarity.) The
outputs are denoted by A, B, C, D as before, while the
inputs are numbered 1, 2, 3, 4.

SAA ¼ HA1j j2 þ HA2j j2 þ HA3j j2 þ HA4j j2

SAB ¼ HA1H
*
B1 þ HA2H

*
B2 þ HA3H

*
B3 þ HA4H

*
B4

SAC ¼ HA1H
*
C1 þ HA2H

*
C2 þ HA3H

*
C3 þ HA4H

*
C4

SAD ¼ HA1H
*
D1 þ HA2H

*
D2 þ HA3H

*
D3 þ HA4H

*
D4

SBB ¼ HB1j j2 þ HB2j j2 þ HB3j j2 þ HB4j j2 ð14Þ

SBC ¼ HB1H
*
C1 þ HB2H

*
C2 þ HB3H

*
C3 þ HB4H

*
C4

SBD ¼ HB1H
*
D1 þ HB2H

*
D2 þ HB3H

*
D3 þ HB4H

*
D4

SCC ¼ HC1j j2 þ HC2j j2 þ HC3j j2 þ HC4j j2

SCD ¼ HC1H
*
D1 þ HC2H

*
D2 þ HC3H

*
D3 þ HC4H

*
D4

SDD ¼ HD1j j2 þ HD2j j2 þ HD3j j2 þ jHD4j2

Although these equations are nonlinear, they can still be
solved relatively easily. The solution method developed
is most succinctly expressed in matrix notation.

H ¼

HA1 HA2 HA3 HA4

HB1 HB2 HB3 HB4

HC1 HC2 HC3 HC4

HD1 HD2 HD3 HD4

2
666666664

3
777777775

ð15Þ
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S ¼

SAA SAB SAC SAD

S*AB SBB SBC SBD

S*AC S*BC SCC SCD

S*AD S*BD S*CD SDD

2
666666664

3
777777775

ð16Þ

Using this notation, equation (14) can be rewritten as
shown below.

S ¼ H H
y

ð17Þ

For matrices the y operation represents a conjugate
transpose. In order to find a suitable set of filters it is
sufficient to solve equation (17) at the frequency points
of interest. It is shown in Strang [1976] that because S is
positive semidefinite (always the case for spectral
matrices such as this [Jenkins and Watts, 1968]),
equation (17) can always be solved. A method for doing
this is outlined below.
[28] Because the spectral matrix S is Hermitian, it is

always unitarily diagonalizable, its eigenvalues are real
and its eigenvectors are orthogonal. This allows a
simple solution for equation (17) to be found by using
the diagonalized form of S. If the eigenvalues are
arranged on the main diagonal in the matrix � and

Figure 1. Resulting spectra for the example of Section 2.2.2.
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the eigenvectors in the matrix E then the following is
true.

S ¼ E � E
y

S ¼ E

ffiffiffiffi
�

q ffiffiffiffi
�

q
E
y

S ¼ E

ffiffiffiffi
�

q� �
E

ffiffiffiffi
�

q y !y

S ¼ E

ffiffiffiffi
�

q� �
E

ffiffiffiffi
�

q� �y

ð18Þ

ffiffiffiffi
�

q
is a matrix with the square-roots of the eigenvalues

on the main diagonal (so that
ffiffiffiffi
�

q ffiffiffiffi
�

q
¼ �.) Positive

semidefiniteness guarantees the eigenvectors are non-
negative, so

ffiffiffiffi
�

q
will always be a real matrix and hence be

equal to its own conjugate transpose.
[29] By comparing equation (18) with equation (17) it

can be seen that the filter responses can be calculated
by as follows:

H ¼ E

ffiffiffiffi
�

q
ð19Þ

Equation (19) shows how equation (14) can be solved by
finding the eigenvalues and eigenvectors of the spectral
matrix S at each frequency point. It is easy to show that
this method will produce filter spectra that are conjugate-
symmetric, which is necessary to ensure that the filters
have a real response. Reordering the eigenvalues and
eigenvectors will still result in a valid solution at a single
frequency point but care should be taken not to do this
when constructing functions over many frequency
points. Doing so would result in a sharp discontinuity
in the filter spectra produced which would increase the
length of the filter impulse response.
[30] In this section it has been shown how indepen-

dent, white, Gaussian noise functions (which are easily
generated) can be fed into a system of linear filters to
produce realizations of the model. The filter sets are
generated using equation (19) which depends on the
model parameters. This process is computationally trac-
table and produces results like those shown in the
example below.
[31] Example: The example functions coming from the

signal in section 2.2.2 were realized using the method-
ology given in this section. This process was carried out
using MATLAB and plots of the resulting spectra can be
seen in Figure 1. It can be seen that the frequency axes
extend outside the region [�BW, BW]—this corresponds
to oversampling. The frequency axes are normalized so
that the range of unaliased frequencies falls between
�0.5 and 0.5.

[32] The estimates of the realized spectra were found
using periodogram averaging. Four hundred spectra were
averaged in each case, and a rectangular windowwas used
in the time domain to remove the noisy terms associated
with a large jtj. Each plot has 399 frequency points and
the filters were truncated to 199 taps. Figure 1 shows
that the resulting spectra agree closely with those speci-
fied. The small differences can be accounted for by the
necessary truncation of the generation filters and by the
fact that a finite number of spectra were used to create
the periodogram average. The above model realization
can be readily translated into space-qualifiable microwave
circuitry for use in the characterization Earth-imaging
correlation radiometers (a subject for a separate paper).

5. Summary

[33] This paper begins by showing how standard
measures in polarimetry and interferometry (such as
Stokes parameters and mutual-coherence functions) can
be interpreted in terms of the model’s temporal or
spectral correlation functions. This statistical interpreta-
tion then allows a stationary, Gaussian model of the
signal pair to be defined. A stationary, Gaussian model
can be justified physically in Earth remote sensing as the
sources are natural thermal radiation. Additionally, the
stationarity assumption was shown to lead to a unique
model for any given set of physical properties. This
indicates a comprehensive, well defined stochastic model
in either the polarimetric or interferometric paradigm.
[34] To realize this signal (as would be required in such

applications as synthetic calibration-signal generation), it
is necessary to produce a signal pair that has the same
properties as the model. This can be done by generaliz-
ing a well-known noise-shaping technique in which a
white, Gaussian process is passed through a linear filter
in order to color its spectrum to a desired shape. The
method was corroborated by presenting results from a
MATLAB implementation.
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