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ABSTRACT 

Histologic information is often the ground truth against which imaging technology performance is measured. Typically, 
this information is limited, however, due to the need to excise tissue, stain it and have the tissue section manually 
reviewed. As a consequence, histologic models of actual tissues are difficult to acquire and are generally prohibitively 
expensive. Models and phantoms for imaging development, hence, have to be simple and reproducible for concordance 
between different groups developing the same imaging methods but may not reflect tissue structure. Here, we propose a 
route to histologic information that does not involve the use of human review nor does it require specialized dyes or 
stains. We combine mid-infrared Fourier transform infrared (FT-IR) spectroscopy with imaging to record data from 
tissue sections. Attendant numerical algorithms are used to convert the data to histologic information. Additionally, the 
biochemical nature of the recorded information can be used to generate contrast for other modalities. We propose that 
this histologic model and spectroscopic generation of contrast can serve as standard for testing and design aid for 
tomography and spectroscopy of tissues. We discuss here the biochemical and statistical issues involved in creating 
histologic models  and demonstrate the use of the approach in generating optical coherence tomography (OCT) images 
of prostate tissue samples. 
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1. INTRODUCTION 
Histopathology is the gold standard for evaluation of microscopic imaging technologies. In particular, correlative 
information for the evaluation of in-vivo imaging technologies usually consists of a corresponding hematoxylin and 
eosin (H&E) stained image of the excised tissue.  Most often, data from an imaging technology are presented side-by-
side with the corresponding H&E image. In general, the confirmatory correlation sought is a visual cue that replicates 
the contrast of H&E images by the particular contrast of the imaging modality. In some cases, contrast information from 
multiple imaging modalities and dyes can be combined in efforts to reproduce the observed H&E structure. There are 
few reports, however, on using histopathology as a basis for the development of imaging technologies. In particular, the 
use of histologic ground truth can help simulate the forward problem and help understand a modality’s performance 
under different experimental parameters, quality of data obtained and potential distortions that may be encountered. 
Unfortunately, histologic ground truth is not readily available for such use due to the need to stain tissue and the manual 
nature of examinations. 

A new concept has recently emerged in which chemical imaging can be used to measure the intrinsic biochemical 
content of tissue and employ the same for histologic recognition. The method does not require dyes but relies on spectral 
data recording. Instead of relying on a human (pathologist) to make decisions, objective numerical algorithms are 
employed to segment tissue. In one such effort, infrared spectroscopy is used in an imaging format to measure the 
content of tissue. While efforts to describe tissue using IR spectroscopy are nearly 60 years old, advances in both 
instrumentation and computational capability have revolutionized this area of investigation [1]. Studies are now being 
published that involve statistically significant populations of patients (>100), millions of spectral measurements and 
detailed understanding due to new computational algorithms. The instrumentation advances have mostly centered around 
the development of Fourier transform infrared (FT-IR) spectroscopic imaging [1, 2, 3]. 
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FT-IR imaging combines the imaging capabilities of optical microscopy with the chemical selectivity of FT-IR 
spectroscopy. Similar to optical microscopy, FTIR imaging of tissue provides images. At each pixel, additionally, is a 
spectrum that depends uniquely on the sample’s chemical composition. IR absorption spectra are, thus, a unique and 
quantitative “fingerprint” of composition. FTIR spectroscopy is well established for the high-throughput, non-invasive 
and non-destructive recording of molecular vibrational modes [4]. While not as molecularly specific as some techniques 
(e.g. mass spectroscopy), spectra provide holistic measurements rapidly and reproducibly [5]. Correspondingly, contrast 
in FTIR images [6] is generated using algorithms to find differences in tissue chemistry. For example, by selecting 
appropriate spectral parameters, one is able to “dial” a specific chemistry. Instead of recognizing microscopic structural 
patterns, we have recently demonstrated an alternate approach to prostate histopathology by directly measuring tissue 
chemistry [7]. Since both tissue structure and chemical composition are measured, the process is also termed chemical 
imaging.  

A number of laboratory studies have demonstrated carefully biochemical changes indicative of disease [8], determined 
optical [9] and biological confounding factors [10,11] and demonstrated preliminary potential [12]. Until recently, there 
was a general lack of substantially validated protocols to perform automated tissue recognition with FT-IR imaging. The 
primary reason was the slow nature of data acquisition and the trade-off between light intensity and spatial resolution in 
FT-IR microscopy that prevented validations on large (hundreds) of samples. The drawbacks have been addressed by 
new technologies and high-throughput sampling methods. For example, a recent report combined FT-IR imaging with 
combinatorial tissue microarrays (TMA), fast numerical processing and statistical tests [13]. The study developed both 
objective protocols as well as performed substantial validation [14]. Following the study, protocols to classify tissue into 
one of ten cell types without human input and without using any stains are available. The net result is that color-coded 
images of tissue are available that correspond to each cell type. The large population sampling provides an estimate of 
statistical variance that captures heterogeneity in measurements. The TMA results can be translated to larger, radical 
prostatectomy (RP) samples or whole mounts without any protocol modifications but few studies have actually 
demonstrated that result.  

In this manuscript, we propose to utilize the advances in automated histologic classification to provide an image that can 
be used to predict the response of another optical imaging modality. The modality chosen as a demonstrative example is 
optical coherence tomography (OCT) [15,16,17]. In OCT reflections of low-coherence light are detected permitting the 
imaging of tissue microstructure in-situ. Micron-scale resolution images can be obtained without the need for excision 
and histological processing, and the technology has been applied for imaging a wide range of nontransparent tissues 
[18,19,20,21,22,23]. Imaging depths of 1-2 mm, resolutions of less than 2 μm [24,25] and real-time image acquisition 
have all been demonstrated [26] using probes [27,28] and for both animal models and humans [29]. The information 
content of OCT, however, is limited to linear scattering (structure) visualization and will require an expert to interpret 
data and make decisions. While efforts have been made towards extending OCT for molecular imaging of biological 
tissue [30,31,32] the gold standard for comparison has generally been H&E images. To simulate the forward problem, 
the usual approach is to model and validate on spheres suspended in a liquid [33]. Here we show that IR imaging results 
can be employed to generate computationally the likely image that would be obtained by OCT. A limited set of physical 
effects is modeled in this preliminary communication but the major idea of using validated histology to simulate image 
formation in an optical imaging modality is proposed and broadly demonstrated. 

 

2. EXPERIMENTAL 
Spectroscopic imaging data sets were acquired for small sample regions separately by averaging two interferometer 
scans at 4cm-1 spectral resolution, and a moving mirror speed of 2.2cm/s on the Perkin-Elmer Spotlight 400 imaging 
spectrometer with a linear array detector and a raster scanning technique. A NB-medium apodization and undersampling 
ratio of 2 (referenced to a He-Ne laser) are employed in data collection. As the peaks of interest are the fundamental 
vibrational modes and the substrate cutoff is approached around 700 cm-1, the free-scanning spectral range is truncated to 
4000-720 cm-1 for optimal information content and storage. Each pixel in the image recorded was corresponds 6.25μm 
square at the sample. An IR background is collected with 120 scans per pixel at a location on the substrate with no tissue 
present and the ratio of the background to sample intensity is computed. Any remaining vapor artifacts are removed from 
the spectral data using the Perkin-Elmer Spotlight atmospheric correction algorithm. A formalin-fixed, paraffin-
embedded radical prostatectomy sample was obtained from an anonymized donor in the NIH tissue array research 
program. A thin (~5 μm) section of the tissue was microtomed and placed onto a BaF2 disk. The sample was washed in 
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hexane for 24 hours and paraffin was removed. Data were processed following previously described procedures [34]. 
Figure 1 shows the class image obtained after automated tissue segmentation. Figure 2 shows the distribution of protein 
in tissue based on the Amide I vibrational mode, which is roughly indicative of density differences between tissues. 

    

 
Fig. 1. Classified image of a section of prostate tissue in which colors denote specific cell types. Epithelium, fibroblast-rich 

stroma and largely extra-cellular matrix classes are denoted by green, magenta and thistle colors respectively. 

 

 
Fig. 2. Grayscale image demonstrating the relative distribution of the Amide I vibrational mode absorbance within tissue. 

The texture in the image is roughly indicative of the density changes in the structure of the tissue. 

 

3. MODELING 
3.1 Transformations between tissue properties 

While different imaging techniques operate using different contrast mechanisms, e.g., scattering, absorption, 
fluorescence, etc., it is generally assumed that contrast is directly correlated to object structure. Consequently, one can 
reasonably produce mappings between tissue properties using relatively simple, local, mathematical operations. For 
example, each of the tissue types in Fig. 1 can be modeled as having a different refractive index in the near infrared. 
Defining an arbitrary unit of index contrast Δn , and assigning refractive indices 1+ Δn( ) to epithelium, 1+1.6Δn( ) to 
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extra-cellular matrix, and 1+ 2.4Δn( ) to fibroblast-rich stroma, results in the index map seen in Fig. 3. Alternatively, one 
can directly associate the grayscale values in Fig. 2 with the refractive index contrast.  

 

 
Fig. 3. A near-infrared index contrast or scattering potential (Δn) image calculated by assigning a different refractive index 

to each class in Fig. 1. 

3.2 Simple simulation of OCT image formation 

Starting with the maps of scattering potential based on Fig. 2 or as shown in Fig. 3, it is possible to simulate OCT 
imaging. OCT is a coherent imaging technique that uses low-coherence interferometry to resolve sample structure in the 
axial (depth) direction and scanning of the focus to resolve transverse structure. Modern OCT systems often collect data 
in the spectral domain, as spectroscopic data collection offers significant advantages in terms of speed and signal 
strength [35,36]. Mathematically, two-dimensional spectral OCT data, S, can be expressed [37] as 

 ( ) ( ) ( ) ( )dzzxnkzxgkAkxS ,,,, 2∫ Δ= , (1) 

where k is wavenumber (the spectral axis), A is a factor dependent on the spectral profile of the optical source and g is 
the focused field produced by the objective lens. It should be noted that this model employs the first Born 
approximation, i.e., only singly scattered light is considered. Multiply scattered light does not contribute to the usable 
image in OCT and results in image artifacts.  

In the simple model used here, the illumination source is assumed to have a flat emission profile over the collected 
bandpass and a Gaussian beam [38] describes the focused field. An objective numerical aperture of 0.025 is simulated 
and the spectrometer is modeled as collecting 160 data points over a spectral range corresponding to wavelengths 
between 980nm and 1020nm. With these parameters the transverse resolution of the system is approximately 25.5μm 
(calculated from the Gaussian beam waist) and the depth of focus is approximately 1020μm (calculated from the 
Rayleigh range). 

To a first approximation, the relation described in Eq. (1) can be inverted by taking an inverse Fourier transform over the 
k axis. The axial resolution of the system is defined by the bandwidth of the source and for the parameters simulated 
here, this gives a value of approximately 12.5μm. Equation (1) was evaluated for the scattering potentials shown in both 
Fig. 2 and Fig. 3, and OCT images calculated – the image from Fig. 2 is shown in Fig. 4, and the image from Fig. 3 is 
shown in Fig. 5. The difference between the images illustrates the basis of contrast. If simple density changes are 
considered, Fig. 4 provides an image in which the contrast between the classes is limited (cf. Fig. 1). In the case where 
properties of cell types are explicitly considered, the contrast between classes is accurately reflected in the image.  
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Fig. 4. A simulated OCT image calculated from the scattering potential of Fig. 2. The axial dimension is in z and the 

transverse dimension is x. The focus of the objective lens is at the z=0 plane and the probing light is assumed to be 
incident from the bottom of the image. 

 
Fig. 5. A simulated OCT image calculated from the scattering potential of Fig. 3.  

The effects of the limited OCT resolution can be seen in both images. Also visible is the loss signal strength as one 
moves outside of the depth of focus. Standard OCT image reconstruction breaks down outside of the depth of focus, 
resulting in transverse blurring and a rapid decay in signal strength. However, more advanced image reconstruction 
techniques can be applied to eliminate the transverse blurring and lessen the signal decay [33,39] – these methods could 
be applied to the simulated data but are not considered here. 

3.3 Including noise and absorption  

Absorption and multiple scattering limit the depth of imaging achievable in OCT. These effects are not captured in the 
linearized model of Eq. (1), as applying the first Born approximation involves assuming that the illuminating field at a 
point is not appreciably affected by the rest of the sample. An exact accounting of absorption and multiple scattering can 
be difficult, since both effects are non-local, i.e., the absorption of the field to a given point depends on the entire 
propagation path of the incident light, and the strength of the multiply scattered field at a point depends on the scattering 
from all neighboring points. However, as a first approximation, the sample absorption can be modeled with a 
homogeneous absorption coefficient. For a well-collimated beam the incident field will then decay exponentially into the 
sample. The incident field in Eq. (1) is then replaced by 

 g x,z,k( )→ g x,z,k( )exp −αkz( ), (2) 
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where α is the absorption coefficient. This modified forward model was applied to the index map seen in Fig. 3 and the 
corresponding OCT images are displayed in Fig. 6. Three different absorption coefficients were simulated and it can be 
seen that the absorption does indeed limit the depth of imaging in these simulations. 

 

 
Fig. 6. Simulated OCT images calculated with a forward model that includes absorption. Three different absorption 

coefficients are simulated, resulting in three differing penetration depths for the illuminating light. 

Noise can also be a crucial limiting factor in the performance of OCT imaging systems. Fluctuations of the 
interferometer reference beam often dominate the statistics, and so noise can be reasonably modeled as Gaussian and 
spatially independent in the image domain (see Ref. 36 for a more detailed OCT noise model). The effects of noise on 
the image are illustrated in Fig. 7. In this figure the signal to noise ratio (SNR) is defined as 20 log10 P σ( ), where P is 
the peak value of the image and σ is the standard deviation of the Gaussian noise. 

 
Fig. 7. The α=0.2×10-3 image of Fig. 6 corrupted by varying amounts of measurement noise. All of these images are 

displayed on the same scale with some high-noise, high-signal pixels saturating the color map.  

 

4. CONCLUSIONS 
The use of histologic models derived from spectroscopic imaging and automated analysis of clinical samples has been 
proposed in this manuscript. While the technology to extract histologic ground truth is becoming readily available and 
used by many practitioners, the use of such information to model and understand other imaging systems has not been 
demonstrated. A simple set of image formation steps and effects of experimental parameters were implemented in this 
manuscript to simulate OCT images from the corresponding class images and spectral texture. The effects of using both 
approaches, idealized sample absorption and noise can be seen in the generated images. It is anticipated that the 
methodology proposed here will be refined and may prove useful in the modeling, design and evaluation of imaging 
instruments for specific tissue types. 
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