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ABSTRACT

A reconstruction algorithm is developed that uses specific a-priori knowledge to produce higher resolution images
than standard approaches. Deconvolution is an important image reconstruction tool in fluorescence microscopy.
This is especially true for modern interferometric instruments (such as I5M and 4Pi systems), as they may have
complicated oscillatory point spread functions. Current methods are designed to work on an arbitrary object
— i.e. it is assumed that there is no available a-priori knowledge of the object (with the possible exception of a
non-negative condition on the fluorophore-emission intensities). In situations where there is a-priori knowledge
of the object, it may be possible to use this information to produce a higher quality reconstruction of the object.
A useful a-priori condition is investigated here.

It is assumed that the object can be represented by the sum of not more than L basis functions. The simplest
example of this is when the basis functions are impulses — this leads to an object of L or less non-zero points
on a background of zeros. This a-priori condition can be applied directly; applied to a limited region of the
object; applied in one dimension (for an object with a layered structure such as lipid bilayers); or applied in
two dimensions (for an object with a filamentary structure such as actin fibers.) A reconstruction algorithm is
described and applied to some illustrative simulated examples. The results are found for several fluorescence
microscopy methodologies and compared to the results produced by standard deconvolution methods.
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1. INTRODUCTION

Deconvolution is an integral and well-studied1–4 part of modern fluorescence microscopy. Processing of the
raw data is necessary to ensure that the maximum achievable image resolution is realized. In fact, the newer
interferometric methodologies5, 6 rely on deconvolution as a fundamental step in their operation rather than
just a method of sharpening the raw data. Image reconstruction algorithms can also be used ensure that the
resulting image conforms to any a-prior knowledge of the object. The most commonly used prior in fluorescence
microscopy is non-negativity — it is not physically possible for the fluorophore density to be negative.

A much stronger prior will be used here. This means that the resulting algorithm will not be as widely
applicable but it does give the potential to achieve higher resolutions in scenarios where the prior is met. The
prior restriction will be that the imaged fluorophore density is constructed from a weighted sum of L (or less)
known basis densities. This obviously means that an arbitrary non-negative fluorophore density can not be
reconstructed as is the case with most other reconstruction approaches.

The next section outlines the physics assumed in the imaging process. Some useful basis densities are then
discussed, followed by a development of the algorithm. Some simple examples are given to motivate the use of
this approach. Conclusions and references end the paper.
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2. THE OBSERVATION MODEL

The majority of three-dimensional fluorescence microscopy instruments are linear and shift invariant, which
means that the data produced can be related to the object investigated by a convolution equation.

d(x, y, z) =

∫ ∫ ∫

h(x − x′, y − y′, z − z′)o(x′, y′, z′)dx′dy′dz′ + n(x, y, z) (1)

Here the data d(x, y, z) is related to the object o(x, y, z) through a convolution with the instrument’s point spread
function h(x, y, z). All noise effects are assumed additive and included in the function n(x, y, z). Equation 1 is
the starting point for any physically-based procedure for constructing an estimate of the object.

It will be assumed here that the object can be written as follows.

o(x, y, z) =

N
∑

i=1

αi bi(x, y, z) (2)

This equation states that the object is the weighted sum of some set of basis functions {bi(x, y, z)} (possible
choices of these basis functions are discussed in the next section). Additionally, it will be assumed that not more
than L of the αi coefficients are non-zero but it is not known which L this is. If the αi coefficients are collected
into a vector α then this condition can be stated as follows

‖α‖0 ≤ L (3)

Where ‖ · ‖0 represents the common `0-norm∗ and simply counts the number of non-zero components.

Inserting Equation 2 into Equation 1 gives the following result.

d(x, y, z) =

N
∑

i=1

αi

∫ ∫ ∫

h(x − x′, y − y′, z − z′)bi(x
′, y′, z′)dx′dy′dz′ + n(x, y, z)

=
N

∑

i=1

αi gi(x, y, z) + n(x, y, z) (4)

This is the new observation equation. The reconstruction problem will be to find the L non-zero αis from the
data d(x, y, z).

3. USEFUL BASES

The basis functions bi(x, y, z) represent the fluorophore densities that may be present in the object. In general
the basis functions chosen to represent the object will depend strongly on what type of specimen is being imaged.
Several potentially useful possibilities will be discussed here.

3.1. Impulses

If the object is believed to have not more than L non-zero points then the obvious choice of basis is impulses.

bi(x, y, z) = δ(x − xi, y − yi, z − zi) (5)

The ith impulse is located at (xi, yi, zi). In choosing these locations, a discrete space representation of the object
is implied (as the object can only be non-zero on a discrete set of N locations). When α is recovered it simply
gives pixel values at a set of L positions.

∗Strictly speaking, this is not a norm as it violates the axiom ‖kx‖ = |k| ‖x‖ (where x is a vector and k is a scalar).



3.2. Lines

Consider a basis set comprising of straight lines (with constant fluorophore density along the lines) of various
offset and inclination. While it is unlikely that many real three-dimensional specimens could be constructed
from such a basis (as filamentary fibers will almost certainly bend and have a non-constant fluorophore density
along a strand), the basis can still find use. Consider a two-dimensional plane of data resulting from imaging
actin fibers. The volume of the object that contributes to this data is a planar slice with thickness determined
by the width of the point spread function. Over this volume it may be sufficiently accurate to model the actin
fibers as a sum of constant, straight lines. This means that if an inversion is performed on the 2D plane of data,
then the resulting L non-zero αi coefficients would determine the fluorophore density and select the offset and
the orientation of the fibers as they passed through the plane.

This could be done plane-by-plane to build up a full 3D image. Continuity between the planes would not
be guaranteed though. To achieve this sort of continuity, a more complicated set of basis functions would be
required. They would have to take into account fiber bending and non-uniform fluorophore distribution over the
fibers.

3.3. Planes

This is a similar idea to the ‘lines’ basis except now constant-fluorophore-density planes of varying offset and
inclination are used. If a one-dimensional line of data is taken, a tubular volume of the object (with width and
breadth again determined by the point-spread function) contributes to this data. If an object such as lipid-
bilayers/cell-walls can be modeled as locally planar in this region, then the local planar properties can be found
by finding the appropriate α for the line of data. An example of this idea is shown in Section 5.

4. THE RECONSTRUCTION PROCESS

The critical problem is determining the coefficient vector α from the data given. A standard approach in these
sorts of inversion problems is to select the minimum-square-error solution — that is, the one that minimizes the
square difference between the actual data and the data that would be expected. That is what will be done here
with the additional constraint that not more than L of the αi terms are non-zero and that none are negative.
It will be assumed that the basis functions are non-negative so that the final constraint ensures a non-negative
solution. This reconstruction rule is thus written as follows.

α̂ = argmin
α

{

‖d(x, y, z) −
N

∑

i=1

αi gi(x, y, z)‖2

}

s.t. ‖α‖0 ≤ L, αi ≥ 0 (6)

Where ‖ · ‖2 represents the standard `2 norm. This type of decision criterion is known as `0–regularization
(after the norm used) and is currently an active topic of investigation in the signal processing community.7–9

These investigations have produced results concerning (amongst other things) the uniqueness of `0 solutions,
computationally efficient solution methods and noise stability bounds. Rather than reproducing these results
here, a general discussion of `0–reconstruction and a demonstration of some achievable results will be presented.

To solve Equation 6 consider an exhaustive search over all possible combinations of L basis vectors. That is,
examine each possible set of L basis vectors from the complete set of N and select the one that allows the least
square-error. Let Ij indicate the jth set of possible non-zero indices (so that Ij contains L numbers between 1
and N inclusive). There are N -choose-L possible Ijs. For each one, the best coefficient values and the resulting
cost will be found. The best coefficients α̂j satisfy the following equation.

α̂j = argmin
α







‖d(x, y, z) −
∑

i∈Ij

αi gi(x, y, z)‖2







s.t. αi ≥ 0 (7)

This is a standard problem and can be easily solved. The final reconstruction is found by simply comparing the
costs for all Ij and selecting the minimum.
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Figure 1. Point spread functions for the three instruments investigated — confocal, I5M and 4Pi. Note that the three-
dimensional responses are rotationally symmetric about the z axis which means the above images completely specify the
3D point spread functions. The axial dimension (z) is along the optic axis while the lateral dimension (r =

√

x2 + y2) is
parallel to the focal plane.

Note that the cost of this method increases very rapidly with L (combinatorically in fact). Faster methods
are possible8 but the brute force approach guarantees the best solution without getting mired in implementation
issues. The computational cost may be a limiting factor in certain applications but certain easy steps can be
taken. For example, a standard reconstruction may be used to get an idea of where the components of interest
are. Only Ij sets that are consistent with this may be tested (i.e. the components are localized to a general area
using a standard reconstruction and the `0 approach is applied over only these areas to refine the resolution).

5. EXAMPLES

This section applies the algorithm developed to some simulated data for confocal, I5M and 4Pi systems. The
point spread functions for these systems were calculated as in Ref. 10 — i.e. using the vectoral theory of Ref. 11
and with numerical aperture of 1.35, index of refraction of 1.51, an excitation wavelength of 488nm and a
detection wavelength of 500nm. The point spread functions were calculated on a 5nm grid. Figure 1 shows the
resulting functions. The object to be imaged will be assumed to have planes perpendicular to the optic axis.
A one-dimensional scan through these planes will be taken and an axial profile estimated from this. The basis
functions {bi(x, y, z)} will be a collection of planes parallel to the focal plane.

bi(x, y, z) = δ(z − zi) (8)

Equation 4 gives the general observation equation. For this basis the following can be easily shown.

d(z) =

N
∑

i=1

α(zi)g(z − zi) where g(z) =

∫ ∫

h(x, y, z) dx dy (9)
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Figure 2. One-dimensional point spread functions for the three instruments (confocal, I5M and 4Pi) investigated.

Here αi and gi(x, y, z) have been indexed by zi so that the data can be cast as a one-dimensional convolution.
The effect of the planes in the object is to integrate the point spread function in the lateral dimensions. Figure
2 shows the one-dimensional point spread functions g(z).

Several two-layer objects will be simulated to demonstrate the reconstruction method described here. The
results will be compared to a standard Tikhonov reconstruction12 with a non-negativity condition enforced.
Tikhonov reconstruction is a minimum-least-square-error method with an additional term to eliminate instability
due to noise. Applied to the same variables as Equation 6, Tikhonov reconstruction is the following.

α̂ = argmin
α

{

‖d(x, y, z) −

N
∑

i=1

αi gi(x, y, z)‖2
2 + γ2‖α‖2

2

}

s.t. αi ≥ 0 (10)

This reconstruction is easily implemented and computationally efficient.

The first object will have two equal-fluorophore-density layers separated by 200nm. The data is contaminated
with Poisson noise† and has a maximum photon count of approximately 150. Figure 3 shows the resulting
Tikhonov and two-layer reconstructions. The Tikhonov regularization parameter γ was chosen manually as a
balance between resolving the two layers and removing noise artifacts. It can be seen that in all three cases the
Tikhonov reconstruction resolves the two layers. However, it does lower and spread the fluorophore density to

†The minimum-square-error condition used in this paper is matched to constant-variance Gaussian noise rather than
Poisson noise. Methods specific to Poisson statistics do exist13 but the minimum-square-error method has been used here
for simplicity.
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Figure 3. Tikhonov and two-layer (L=2) reconstructions for confocal, I5M and 4Pi data. The two layers are separated
by 200nm.

a greater or lesser extent. This problem does not occur with the two-layer reconstructions. Note that a 200nm
separation is about as narrow of a gap as can be reliably reconstructed for confocal data (at this noise level)
using the algorithm described in this paper. Notice that the positioning of the two layers is not exact for the
confocal case. Obviously, reconstructions with more than two layers would perform even more poorly. The 4Pi
and I5M reconstructions worked very well.

Figure 4 shows a scenario with a closer layer spacing (20nm) and a better signal-to-noise ratio (in this case
the maximum count is approximately 2000). The 20nm spacing is well below the accepted resolution of any of
these instruments and as expected, the Tikhonov reconstruction method fails to resolve the layers in all cases.
The two-layer algorithm fails for the confocal case (choosing a strong central peak rather than two of even
density). However, both the I5M and 4Pi reconstructions are accurate. This shows that with the appropriate
prior knowledge, it is possible to see detail below the accepted resolution limit.
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Figure 4. Tikhonov and two-layer (L=2) reconstructions for confocal, I5M and 4Pi data. The two layers are separated
by 20nm.

6. CONCLUSIONS

A deconvolution algorithm has been described that allows only a limited number of non-zero components in the
reconstructed image. The components are basis functions that are chosen by the user. Examples have shown
that (at least in some simple cases) there is scope for a significant increase in resolution if the object is consistent
with the condition on the number of components. However, the major drawback of the algorithm is that an
exhaustive search technique is used. More efficient implementations are a possible path of future research. The
results presented here also show that there is potential for strong prior knowledge to improve the resolution‡ of
an instrument.

‡The term ‘resolution’ should be used with care in this type of non-linear reconstruction process as the image quality
is dependent on the object.
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