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ABSTRACT

A multi-wavelength 3D fluorescence microscope, with trans-
fer functions varying significantly with wavelength, is pro-
posed. This microscope measures multiple wavelengths con-
currently and scans through the object at a rate significantly
below the Nyquist criterion, which gives a reduced image
acquisition time. The sub-Nyquist sampling produces a set
of images contaminated by aliasing. Due to the differing
transfer functions, the aliasing effects are different in each
image. This allows the aliasing operator to be inverted and a
single unaliased image to be constructed. This is an applica-
tion of the generalized sampling expansion first introduced
by Papoulis. The instrument is demonstrated through sim-
ulation and shown to produce images of a similar quality
to those that would be expected from a Nyquist-rate instru-
ment.

1. INTRODUCTION

Fluorescence microscopy is an important tool in biology
due, in part, to its ability to image live specimens and to uti-
lize high specificity fluorescent markers. The utility of flu-
orescence microscopy has been increased by modern three-
dimensional instruments that have achieved resolution on a
sub-cellular scale. Prominent among these modern instru-
ments are systems that rely on interferometric techniques
[1, 2].

In order to construct a three-dimensional image, a fluo-
rescence microscope must scan through the object in multi-
ple spatial dimensions. To avoid aliasing, the spatial scan-
ning rate must satisfy the Nyquist criterion [3]. This re-
quirement results in significant image acquisition time. The
method proposed here reduces this time by allowing a sub-
Nyquist spatial scanning rate. The reduced image acquisi-
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tion time is particularly important in applications that in-
volve imaging an evolving object.

Typically, only light of one wavelength is collected in
a microscope. Here many wavelengths will be collected
simultaneously, with differing optical interference proper-
ties, to produce multiple images. This means that light that
would typically be discarded is now collected and processed
usefully, and that the object is being observed through mul-
tiple channels. This diversity in observation is what allows
the reduction in scanning rate.

For a 1D system it has been shown that the use of M
channels allows sampling at a rate of 1/M times the Nyquist
frequency [4]. This result does impose certain conditions
on the allowable impulse responses in order to assure well-
posedness and does not address noise issues. Ill-posed and
noisy problems are considered in [5] and [6]. For the inter-
ferometric fluorescence microscopy application, the prob-
lem will also be noisy and ill-posed, as beyond a given
spatial-frequency support the instrument passes no informa-
tion.

By considering systems of dimension two and higher,
sampling efficiencies can be found by considering the spec-
tral support of the signal to be sampled and the spatial sam-
pling pattern [7]. This approach has also been incorporated
into multi-channel systems [8] but will not be considered
here. For simplicity a regular, rectangular sampling grid
will be considered, however more general systems and con-
ditions are the subject of on-going research [9, 10].

In the following section, the theory of sampling and im-
age reconstruction for multiple channels is reviewed in the
context of this application. Instrument design and descrip-
tion are then covered, followed by some illustrative exam-
ples. Lastly, conclusions are drawn.
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Fig. 1. Block diagram of the observation model. Note that
the sets of data collected dm(x, y, z) are sampled at identi-
cal rates and will, in general, be below the Nyquist rate.

2. MULTI-CHANNEL SAMPLING AND
RECONSTRUCTION

A generic observation model of the proposed system is given
in Fig. 1. An object is passed through M linear, shift-
invariant observation channels and the resulting data sets
are sampled. The sampling to be considered here will be
below the Nyquist rate and identical in each channel.

If sampling is performed on a three-dimensional rect-
angular grid, the collected data can be easily related to the
object and the system responses in the Fourier domain [3].
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Here capitalization indicates a Fourier domain representa-
tion of the lowercase function. The term f is the spatial-
frequency vector (fx, fy, fz), Tx, Ty and Tz are the sam-
pling periods and the set A gives the spectral replication
offsets.
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If the Nyquist criterion is met, then only one term in the
sum of Eqn. 1 will be non-zero for any value of f . This
means that the continuous signal can easily be recovered by
using a band-pass filter, which performs interpolation in the

spatial domain. If the Nyquist criterion is not met then more
than one term (say N terms) will contribute at each value of
f in the sum. For the multi-channel system, this gives the
following observation model.
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Where f
2
, · · · , fN are the frequencies that alias into f

1
and
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is the aliasing operator.
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If the aliasing operator H
(

f
1

)

can be inverted at f
1
, then

the spatial frequencies f
1
, f

2
, · · · , fN can be reconstructed

from the M sub-Nyquist/aliased images collected. Note that
if the Nyquist criterion is met then H

(

f
1

)

becomes a col-
umn vector.

The required invertibility of H
(

f
1

)

gives some obvious
conditions on the system, e.g. the matrix cannot have more
columns than rows so the under-sampling factor N cannot
be greater than the number of measurements collected. In
the presence of noise, invertibility alone is not enough to
ensure a good reconstruction. Issues such as solution ex-
istence and noise amplification [11] become important. For
these reasons it is desirable to have a well conditioned alias-
ing operator. How the microscope can be designed to ensure
this is considered in the next section.

The reconstruction approach taken in this preliminary
work will be to do a simple truncated singular value de-
composition (TSVD) inversion [12] of the aliasing matrix
at each value of f

1
. That is, components of the object that

would be too noisy in the reconstruction are discarded. This
retention threshold constitutes the regularization parameter
for this reconstruction method.
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Here the double subscripts denote a particular entry in the
matrix. If the matrix GH

(
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)

is the identity (ideal case),
then ρ

(
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)

= 1 ∀ n.
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Fig. 2. Schematic of the proposed microscopy system. Im-
portant features include interferometric excitation and/or
detection, an adjustable path delay between the two arms
of the system and multi-wavelength detection.

3. MULTI-WAVELENGTH INTERFEROMETRIC
MICROSCOPY

In fluorescence microscopy the object is first stained with
a fluorescent dye. This dye is then excited by light at a
specific wavelength which causes the fluorophores to emit
over a set of longer wavelengths. This emitted light is then
collected and used to form an image of the fluorophore den-
sity. Interferometric fluorescence microscopy systems such
as 4Pi [1] and I5M [2] excite and/or collect from both sides
of the object and combine the two beams coherently at the
detector. This results in interference and a higher achievable
resolution.

Here multiple emission wavelengths will be collected
at the same time to give many observation channels. As
mentioned in Section 2, it is desirable to have a system
that produces a well-conditioned aliasing operator. It is for
that reason that this method is applied to interferometric
systems. Introducing a path delay between the two exci-
tation/collection arms causes the interference properties to
change with the wavelength collected — i.e. a path length
that produces constructive optical interference at a given
wavelength will produce destructive interference at a nearby
wavelength (see [13] for a discussion of optical interfer-
ence). This will result in significantly differing channel
properties at each wavelength and thus the potential to cre-
ate a well-conditioned aliasing operator (if all the channels
are similar then the rows of H

(

f
1

)

will be similar and this
will result in a poorly conditioned matrix). A diagram of
the proposed system is shown in Fig. 2. This system is a
generalization of that proposed in [14].

The effects of changing the interference properties are
primarily visible in the depth/axial dimension of the system,
which will be denoted by z. The point spread functions of
the channels remain relatively unchanged perpendicular to
this axis. For this reason, sub-Nyquist sampling will only
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Fig. 3. Point spread functions for the 4Pi microscope when
the detection is at a wavelength of 500nm and 580nm. The
delay between the two arms is set to give zero phase off-
set (constructive interference) at 500nm and −0.66π phase
offset at 580nm.

be carried out in the z direction. This means aliasing will
only occur along the axial axis and an axial sampling rate
of between 1/(N − 1) and 1/N times the Nyquist rate will
result in N columns in the aliasing operator H

(

f
1

)

.
Finally, it is worth making a comment on the noise in

fluorescence microscopy systems. The data collected obeys
(to a good approximation) a Poisson noise model. This
means that a longer collection time at each scan position
will give a higher photon count and thus better noise char-
acteristics. However, the overall goal in this paper is to
reduce image acquisition time. Since the system collects
wavelengths that would otherwise be discarded in a single-
wavelength-detection system, the photon count is not re-
duced. In other words, it takes the same amount of time
with either system to scan a given position to achieve a cer-
tain noise level but the multi-wavelength system needs to
scan less positions and thus gives a better image acquisition
time.

4. RESULTS

A modified 4Pi-Type-C [1] microscope was considered for
these examples. The modifications were the addition of
multi-wavelength detection and a path delay between the
detection arms. The excitation wavelength was taken to be
488nm and the collected emissions were limited to the range
500-580nm. The numerical aperture of the lenses used was
1.35 and the excitation light was taken to be circularly po-
larized. These parameters are the same as those used in [15]
and the same method for calculating the point spread func-
tions was employed. That is, the method is based on the
vectorial optics result from [16].
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Fig. 4. The test object to be used to validate the reconstruc-
tion method.

Two example point spread functions are shown in Fig. 3.
It can be seen that the instrument produces significantly dif-
ferent point spread functions at different wavelengths. Note
that although the point spread functions are three dimen-
sional, the microscope geometry assures that they will be
cylindrically symmetric around the axial axis. For this rea-
son it is only necessary to display an axial (z) vs lateral
(
√

x2 + y2) image to describe the point spread function.
This cylindrical symmetry property will be retained for

display purposes throughout these examples. In order to do
this, a cylindrically symmetric test object will be chosen.
Fig. 4 shows this test object. It is a collection of concentric
sinusoidal oscillations with decreasing period. The mini-
mum period corresponds to the maximum spatial frequency
passed by the instrument.

For the sake of comparison, a reconstruction will be
produced from a single channel scanned above the Nyquist
rate. This is shown in Fig. 5 where the single channel is at
a 500nm detection wavelength and has zero phase delay.
Note that the reconstruction has been interpolated (using
zero padding in the Fourier domain) to have the same 10nm
× 10nm grid as used in the original test object (Fig. 4). The
object is reconstructed well except for at the high lateral
spatial frequencies where the oscillations fall outside the in-
strument passband. The mean square difference between
the reconstruction and the original object is 0.0051. Note
that the regularization parameter is set to allow a compara-
tively large passband — this corresponds to relatively low
noise levels. Also, the reconstruction is not windowed in
the Fourier domain so ringing artifacts can be expected.

The first sub-Nyquist example considered will be when
two wavelengths are collected and the axial scanning is car-
ried out at half the Nyquist rate. The two channels used cor-
respond to the point spread functions shown in Fig. 3. The
reconstruction and the purity measure (Eqn. 5) are shown
in Fig. 6. It can be seen that the usable frequency domain
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Fig. 5. Reconstruction of the test object from a single
Nyquist-rate channel (left). The Fourier components that
are used to create the reconstruction are shown on the right
— a value of 1 indicates the component was used.
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Fig. 6. Reconstruction of the object from two channels sam-
pled at half the Nyquist rate (left). The purity measure ρ(f)
is shown on the right.

components are similar to the single-channel, Nyquist-rate
example (the same regularization parameter was used). Fre-
quency domain zero-padding was again used to put the re-
constructions on a common grid. The mean square error in
this case is 0.0076.

The next example uses five wavelengths (500nm, 527nm,
540nm, 553nm, 580nm) with a delay that gives phase shifts
of 0, 0.5π, 0.66π, -0.5π and -0.66π respectively. Each of
these channels will be sampled at one quarter of the Nyquist
rate. The resulting reconstruction and purity measure are
shown in Fig. 7. For this low sampling rate the loss of us-
able Fourier domain components is noticeable. The recon-
struction quality is also noticeably lower. This is reflected
in the mean square error which is 0.0095 for this example.

As would be expected, the results presented here have
shown that the technique proposed becomes less effective
as higher gains in image acquisition time are attempted. Al-
though not shown here, it is also true that performance de-
grades (in comparison to the Nyquist-rate single channel)
as noise is increased. An increased noise requires stronger
regularization and the aliasing cannot be inverted as cleanly.
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Fig. 7. Reconstruction of the object from four channels
sampled at one quarter the Nyquist rate (left). The purity
measure ρ(f) is shown on the right.

5. CONCLUSIONS

Multi-channel sampling and reconstruction theory has been
applied to an interferometric fluorescence microscopy ap-
plication. The multi-channel approach allows a sub-Nyquist
spatial sampling rate which gives a reduction in image ac-
quisition time — an important consideration in high resolu-
tion microscopy. The time improvement demonstrated here
is on the order of a factor of 2 to 4. This method relies on a
dedicated post-processing operation and an instrument with
significantly differing channels.

The theory was demonstrated through simulation on a
modified 4Pi fluorescence microscope. While these simula-
tions showed encouraging results, it should be noted that the
microscope was not optimized to work in a multi-channel
setting. There are many modifications that could be made
to the system that may give properties more suited to multi-
channel operation. Of particular interest would be introduc-
ing pupil filters to the lenses to allow point spread function
engineering (e.g. [17]). Design issues such as this are an
area of future research.
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